Properties

Label 5040.2.d.b.4591.1
Level $5040$
Weight $2$
Character 5040.4591
Analytic conductor $40.245$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5040,2,Mod(4591,5040)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5040, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5040.4591"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5040 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5040.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,-4,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(29)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(40.2446026187\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 1680)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 4591.1
Root \(-1.22474 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 5040.4591
Dual form 5040.2.d.b.4591.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{5} +(-2.44949 + 1.00000i) q^{7} +2.44949i q^{11} -4.44949i q^{13} +6.89898i q^{17} +4.44949 q^{19} -2.00000i q^{23} -1.00000 q^{25} +6.89898 q^{29} -8.44949 q^{31} +(1.00000 + 2.44949i) q^{35} +6.89898 q^{37} +0.898979i q^{41} -8.00000i q^{43} -10.8990 q^{47} +(5.00000 - 4.89898i) q^{49} -10.4495 q^{53} +2.44949 q^{55} -4.89898 q^{59} -12.8990i q^{61} -4.44949 q^{65} +15.7980i q^{67} +6.44949i q^{71} -5.34847i q^{73} +(-2.44949 - 6.00000i) q^{77} +9.79796i q^{79} +2.89898 q^{83} +6.89898 q^{85} +15.7980i q^{89} +(4.44949 + 10.8990i) q^{91} -4.44949i q^{95} +2.65153i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{19} - 4 q^{25} + 8 q^{29} - 24 q^{31} + 4 q^{35} + 8 q^{37} - 24 q^{47} + 20 q^{49} - 32 q^{53} - 8 q^{65} - 8 q^{83} + 8 q^{85} + 8 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5040\mathbb{Z}\right)^\times\).

\(n\) \(2017\) \(2801\) \(3151\) \(3601\) \(3781\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) −2.44949 + 1.00000i −0.925820 + 0.377964i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.44949i 0.738549i 0.929320 + 0.369274i \(0.120394\pi\)
−0.929320 + 0.369274i \(0.879606\pi\)
\(12\) 0 0
\(13\) 4.44949i 1.23407i −0.786937 0.617033i \(-0.788334\pi\)
0.786937 0.617033i \(-0.211666\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.89898i 1.67325i 0.547777 + 0.836624i \(0.315474\pi\)
−0.547777 + 0.836624i \(0.684526\pi\)
\(18\) 0 0
\(19\) 4.44949 1.02078 0.510391 0.859942i \(-0.329501\pi\)
0.510391 + 0.859942i \(0.329501\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.00000i 0.417029i −0.978019 0.208514i \(-0.933137\pi\)
0.978019 0.208514i \(-0.0668628\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 6.89898 1.28111 0.640554 0.767913i \(-0.278705\pi\)
0.640554 + 0.767913i \(0.278705\pi\)
\(30\) 0 0
\(31\) −8.44949 −1.51757 −0.758787 0.651339i \(-0.774207\pi\)
−0.758787 + 0.651339i \(0.774207\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.00000 + 2.44949i 0.169031 + 0.414039i
\(36\) 0 0
\(37\) 6.89898 1.13419 0.567093 0.823654i \(-0.308068\pi\)
0.567093 + 0.823654i \(0.308068\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0.898979i 0.140397i 0.997533 + 0.0701985i \(0.0223633\pi\)
−0.997533 + 0.0701985i \(0.977637\pi\)
\(42\) 0 0
\(43\) 8.00000i 1.21999i −0.792406 0.609994i \(-0.791172\pi\)
0.792406 0.609994i \(-0.208828\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −10.8990 −1.58978 −0.794890 0.606754i \(-0.792471\pi\)
−0.794890 + 0.606754i \(0.792471\pi\)
\(48\) 0 0
\(49\) 5.00000 4.89898i 0.714286 0.699854i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −10.4495 −1.43535 −0.717674 0.696379i \(-0.754793\pi\)
−0.717674 + 0.696379i \(0.754793\pi\)
\(54\) 0 0
\(55\) 2.44949 0.330289
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −4.89898 −0.637793 −0.318896 0.947790i \(-0.603312\pi\)
−0.318896 + 0.947790i \(0.603312\pi\)
\(60\) 0 0
\(61\) 12.8990i 1.65155i −0.564003 0.825773i \(-0.690739\pi\)
0.564003 0.825773i \(-0.309261\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −4.44949 −0.551891
\(66\) 0 0
\(67\) 15.7980i 1.93003i 0.262199 + 0.965014i \(0.415552\pi\)
−0.262199 + 0.965014i \(0.584448\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 6.44949i 0.765414i 0.923870 + 0.382707i \(0.125008\pi\)
−0.923870 + 0.382707i \(0.874992\pi\)
\(72\) 0 0
\(73\) 5.34847i 0.625991i −0.949755 0.312995i \(-0.898668\pi\)
0.949755 0.312995i \(-0.101332\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −2.44949 6.00000i −0.279145 0.683763i
\(78\) 0 0
\(79\) 9.79796i 1.10236i 0.834388 + 0.551178i \(0.185822\pi\)
−0.834388 + 0.551178i \(0.814178\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 2.89898 0.318204 0.159102 0.987262i \(-0.449140\pi\)
0.159102 + 0.987262i \(0.449140\pi\)
\(84\) 0 0
\(85\) 6.89898 0.748299
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 15.7980i 1.67458i 0.546759 + 0.837290i \(0.315861\pi\)
−0.546759 + 0.837290i \(0.684139\pi\)
\(90\) 0 0
\(91\) 4.44949 + 10.8990i 0.466433 + 1.14252i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 4.44949i 0.456508i
\(96\) 0 0
\(97\) 2.65153i 0.269222i 0.990899 + 0.134611i \(0.0429785\pi\)
−0.990899 + 0.134611i \(0.957021\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 8.89898i 0.885482i 0.896650 + 0.442741i \(0.145994\pi\)
−0.896650 + 0.442741i \(0.854006\pi\)
\(102\) 0 0
\(103\) −8.89898 −0.876843 −0.438421 0.898770i \(-0.644462\pi\)
−0.438421 + 0.898770i \(0.644462\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 15.7980i 1.52725i 0.645662 + 0.763623i \(0.276581\pi\)
−0.645662 + 0.763623i \(0.723419\pi\)
\(108\) 0 0
\(109\) −13.7980 −1.32160 −0.660802 0.750560i \(-0.729784\pi\)
−0.660802 + 0.750560i \(0.729784\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 3.34847 0.314997 0.157499 0.987519i \(-0.449657\pi\)
0.157499 + 0.987519i \(0.449657\pi\)
\(114\) 0 0
\(115\) −2.00000 −0.186501
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −6.89898 16.8990i −0.632428 1.54913i
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 1.79796i 0.159543i 0.996813 + 0.0797715i \(0.0254191\pi\)
−0.996813 + 0.0797715i \(0.974581\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 18.6969 1.63356 0.816780 0.576950i \(-0.195757\pi\)
0.816780 + 0.576950i \(0.195757\pi\)
\(132\) 0 0
\(133\) −10.8990 + 4.44949i −0.945061 + 0.385820i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −21.1464 −1.80666 −0.903331 0.428945i \(-0.858885\pi\)
−0.903331 + 0.428945i \(0.858885\pi\)
\(138\) 0 0
\(139\) −7.55051 −0.640426 −0.320213 0.947346i \(-0.603754\pi\)
−0.320213 + 0.947346i \(0.603754\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 10.8990 0.911418
\(144\) 0 0
\(145\) 6.89898i 0.572929i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 3.79796 0.311141 0.155570 0.987825i \(-0.450278\pi\)
0.155570 + 0.987825i \(0.450278\pi\)
\(150\) 0 0
\(151\) 8.89898i 0.724189i 0.932141 + 0.362094i \(0.117938\pi\)
−0.932141 + 0.362094i \(0.882062\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 8.44949i 0.678679i
\(156\) 0 0
\(157\) 17.3485i 1.38456i 0.721630 + 0.692279i \(0.243393\pi\)
−0.721630 + 0.692279i \(0.756607\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 2.00000 + 4.89898i 0.157622 + 0.386094i
\(162\) 0 0
\(163\) 23.5959i 1.84817i 0.382181 + 0.924087i \(0.375173\pi\)
−0.382181 + 0.924087i \(0.624827\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 8.00000 0.619059 0.309529 0.950890i \(-0.399829\pi\)
0.309529 + 0.950890i \(0.399829\pi\)
\(168\) 0 0
\(169\) −6.79796 −0.522920
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 3.79796i 0.288753i −0.989523 0.144377i \(-0.953882\pi\)
0.989523 0.144377i \(-0.0461177\pi\)
\(174\) 0 0
\(175\) 2.44949 1.00000i 0.185164 0.0755929i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0.247449i 0.0184952i 0.999957 + 0.00924759i \(0.00294364\pi\)
−0.999957 + 0.00924759i \(0.997056\pi\)
\(180\) 0 0
\(181\) 13.7980i 1.02559i 0.858510 + 0.512797i \(0.171391\pi\)
−0.858510 + 0.512797i \(0.828609\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 6.89898i 0.507223i
\(186\) 0 0
\(187\) −16.8990 −1.23578
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 10.4495i 0.756099i 0.925785 + 0.378049i \(0.123405\pi\)
−0.925785 + 0.378049i \(0.876595\pi\)
\(192\) 0 0
\(193\) −12.6969 −0.913946 −0.456973 0.889481i \(-0.651066\pi\)
−0.456973 + 0.889481i \(0.651066\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −0.247449 −0.0176300 −0.00881500 0.999961i \(-0.502806\pi\)
−0.00881500 + 0.999961i \(0.502806\pi\)
\(198\) 0 0
\(199\) 4.44949 0.315416 0.157708 0.987486i \(-0.449590\pi\)
0.157708 + 0.987486i \(0.449590\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −16.8990 + 6.89898i −1.18608 + 0.484213i
\(204\) 0 0
\(205\) 0.898979 0.0627875
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 10.8990i 0.753898i
\(210\) 0 0
\(211\) 6.69694i 0.461036i 0.973068 + 0.230518i \(0.0740421\pi\)
−0.973068 + 0.230518i \(0.925958\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −8.00000 −0.545595
\(216\) 0 0
\(217\) 20.6969 8.44949i 1.40500 0.573589i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 30.6969 2.06490
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −20.6969 −1.37370 −0.686852 0.726797i \(-0.741008\pi\)
−0.686852 + 0.726797i \(0.741008\pi\)
\(228\) 0 0
\(229\) 7.10102i 0.469249i −0.972086 0.234624i \(-0.924614\pi\)
0.972086 0.234624i \(-0.0753860\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 12.2474 0.802357 0.401179 0.916000i \(-0.368601\pi\)
0.401179 + 0.916000i \(0.368601\pi\)
\(234\) 0 0
\(235\) 10.8990i 0.710971i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 26.4495i 1.71088i 0.517906 + 0.855438i \(0.326712\pi\)
−0.517906 + 0.855438i \(0.673288\pi\)
\(240\) 0 0
\(241\) 0.898979i 0.0579084i −0.999581 0.0289542i \(-0.990782\pi\)
0.999581 0.0289542i \(-0.00921769\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −4.89898 5.00000i −0.312984 0.319438i
\(246\) 0 0
\(247\) 19.7980i 1.25971i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −1.30306 −0.0822485 −0.0411243 0.999154i \(-0.513094\pi\)
−0.0411243 + 0.999154i \(0.513094\pi\)
\(252\) 0 0
\(253\) 4.89898 0.307996
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1.10102i 0.0686798i −0.999410 0.0343399i \(-0.989067\pi\)
0.999410 0.0343399i \(-0.0109329\pi\)
\(258\) 0 0
\(259\) −16.8990 + 6.89898i −1.05005 + 0.428682i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 1.10102i 0.0678918i −0.999424 0.0339459i \(-0.989193\pi\)
0.999424 0.0339459i \(-0.0108074\pi\)
\(264\) 0 0
\(265\) 10.4495i 0.641907i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 20.4949i 1.24960i −0.780786 0.624798i \(-0.785181\pi\)
0.780786 0.624798i \(-0.214819\pi\)
\(270\) 0 0
\(271\) 19.1464 1.16306 0.581531 0.813524i \(-0.302454\pi\)
0.581531 + 0.813524i \(0.302454\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2.44949i 0.147710i
\(276\) 0 0
\(277\) 13.5959 0.816900 0.408450 0.912781i \(-0.366070\pi\)
0.408450 + 0.912781i \(0.366070\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 1.10102 0.0656814 0.0328407 0.999461i \(-0.489545\pi\)
0.0328407 + 0.999461i \(0.489545\pi\)
\(282\) 0 0
\(283\) −4.00000 −0.237775 −0.118888 0.992908i \(-0.537933\pi\)
−0.118888 + 0.992908i \(0.537933\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −0.898979 2.20204i −0.0530651 0.129982i
\(288\) 0 0
\(289\) −30.5959 −1.79976
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 24.6969i 1.44281i −0.692513 0.721405i \(-0.743497\pi\)
0.692513 0.721405i \(-0.256503\pi\)
\(294\) 0 0
\(295\) 4.89898i 0.285230i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −8.89898 −0.514641
\(300\) 0 0
\(301\) 8.00000 + 19.5959i 0.461112 + 1.12949i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −12.8990 −0.738593
\(306\) 0 0
\(307\) −8.89898 −0.507892 −0.253946 0.967218i \(-0.581728\pi\)
−0.253946 + 0.967218i \(0.581728\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −3.10102 −0.175843 −0.0879214 0.996127i \(-0.528022\pi\)
−0.0879214 + 0.996127i \(0.528022\pi\)
\(312\) 0 0
\(313\) 14.6515i 0.828153i −0.910242 0.414077i \(-0.864105\pi\)
0.910242 0.414077i \(-0.135895\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −17.1464 −0.963039 −0.481520 0.876435i \(-0.659915\pi\)
−0.481520 + 0.876435i \(0.659915\pi\)
\(318\) 0 0
\(319\) 16.8990i 0.946161i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 30.6969i 1.70802i
\(324\) 0 0
\(325\) 4.44949i 0.246813i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 26.6969 10.8990i 1.47185 0.600880i
\(330\) 0 0
\(331\) 7.10102i 0.390307i −0.980773 0.195154i \(-0.937479\pi\)
0.980773 0.195154i \(-0.0625206\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 15.7980 0.863135
\(336\) 0 0
\(337\) 12.6969 0.691646 0.345823 0.938300i \(-0.387600\pi\)
0.345823 + 0.938300i \(0.387600\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 20.6969i 1.12080i
\(342\) 0 0
\(343\) −7.34847 + 17.0000i −0.396780 + 0.917914i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 34.8990i 1.87348i −0.350032 0.936738i \(-0.613829\pi\)
0.350032 0.936738i \(-0.386171\pi\)
\(348\) 0 0
\(349\) 10.6969i 0.572594i 0.958141 + 0.286297i \(0.0924244\pi\)
−0.958141 + 0.286297i \(0.907576\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 31.7980i 1.69243i 0.532838 + 0.846217i \(0.321126\pi\)
−0.532838 + 0.846217i \(0.678874\pi\)
\(354\) 0 0
\(355\) 6.44949 0.342303
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 12.2474i 0.646396i 0.946331 + 0.323198i \(0.104758\pi\)
−0.946331 + 0.323198i \(0.895242\pi\)
\(360\) 0 0
\(361\) 0.797959 0.0419978
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −5.34847 −0.279952
\(366\) 0 0
\(367\) −9.79796 −0.511449 −0.255725 0.966750i \(-0.582314\pi\)
−0.255725 + 0.966750i \(0.582314\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 25.5959 10.4495i 1.32887 0.542510i
\(372\) 0 0
\(373\) −10.0000 −0.517780 −0.258890 0.965907i \(-0.583357\pi\)
−0.258890 + 0.965907i \(0.583357\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 30.6969i 1.58097i
\(378\) 0 0
\(379\) 11.1010i 0.570221i −0.958495 0.285111i \(-0.907970\pi\)
0.958495 0.285111i \(-0.0920303\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 6.20204 0.316909 0.158455 0.987366i \(-0.449349\pi\)
0.158455 + 0.987366i \(0.449349\pi\)
\(384\) 0 0
\(385\) −6.00000 + 2.44949i −0.305788 + 0.124838i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 21.5959 1.09496 0.547478 0.836820i \(-0.315588\pi\)
0.547478 + 0.836820i \(0.315588\pi\)
\(390\) 0 0
\(391\) 13.7980 0.697793
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 9.79796 0.492989
\(396\) 0 0
\(397\) 37.8434i 1.89930i 0.313306 + 0.949652i \(0.398563\pi\)
−0.313306 + 0.949652i \(0.601437\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −27.7980 −1.38816 −0.694082 0.719896i \(-0.744189\pi\)
−0.694082 + 0.719896i \(0.744189\pi\)
\(402\) 0 0
\(403\) 37.5959i 1.87279i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 16.8990i 0.837651i
\(408\) 0 0
\(409\) 17.7980i 0.880052i 0.897985 + 0.440026i \(0.145031\pi\)
−0.897985 + 0.440026i \(0.854969\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 12.0000 4.89898i 0.590481 0.241063i
\(414\) 0 0
\(415\) 2.89898i 0.142305i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −15.5959 −0.761910 −0.380955 0.924593i \(-0.624405\pi\)
−0.380955 + 0.924593i \(0.624405\pi\)
\(420\) 0 0
\(421\) −29.5959 −1.44242 −0.721208 0.692718i \(-0.756413\pi\)
−0.721208 + 0.692718i \(0.756413\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 6.89898i 0.334650i
\(426\) 0 0
\(427\) 12.8990 + 31.5959i 0.624225 + 1.52903i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 1.55051i 0.0746855i −0.999303 0.0373427i \(-0.988111\pi\)
0.999303 0.0373427i \(-0.0118893\pi\)
\(432\) 0 0
\(433\) 0.449490i 0.0216011i −0.999942 0.0108005i \(-0.996562\pi\)
0.999942 0.0108005i \(-0.00343799\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 8.89898i 0.425696i
\(438\) 0 0
\(439\) 9.75255 0.465464 0.232732 0.972541i \(-0.425234\pi\)
0.232732 + 0.972541i \(0.425234\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 1.10102i 0.0523111i 0.999658 + 0.0261555i \(0.00832651\pi\)
−0.999658 + 0.0261555i \(0.991673\pi\)
\(444\) 0 0
\(445\) 15.7980 0.748895
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −0.202041 −0.00953491 −0.00476745 0.999989i \(-0.501518\pi\)
−0.00476745 + 0.999989i \(0.501518\pi\)
\(450\) 0 0
\(451\) −2.20204 −0.103690
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 10.8990 4.44949i 0.510952 0.208595i
\(456\) 0 0
\(457\) 22.4949 1.05227 0.526133 0.850402i \(-0.323641\pi\)
0.526133 + 0.850402i \(0.323641\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 8.20204i 0.382007i 0.981589 + 0.191004i \(0.0611742\pi\)
−0.981589 + 0.191004i \(0.938826\pi\)
\(462\) 0 0
\(463\) 24.0000i 1.11537i −0.830051 0.557687i \(-0.811689\pi\)
0.830051 0.557687i \(-0.188311\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −12.6969 −0.587544 −0.293772 0.955875i \(-0.594911\pi\)
−0.293772 + 0.955875i \(0.594911\pi\)
\(468\) 0 0
\(469\) −15.7980 38.6969i −0.729482 1.78686i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 19.5959 0.901021
\(474\) 0 0
\(475\) −4.44949 −0.204157
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −3.10102 −0.141689 −0.0708446 0.997487i \(-0.522569\pi\)
−0.0708446 + 0.997487i \(0.522569\pi\)
\(480\) 0 0
\(481\) 30.6969i 1.39966i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.65153 0.120400
\(486\) 0 0
\(487\) 23.5959i 1.06923i −0.845095 0.534617i \(-0.820456\pi\)
0.845095 0.534617i \(-0.179544\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 20.6515i 0.931991i 0.884787 + 0.465995i \(0.154304\pi\)
−0.884787 + 0.465995i \(0.845696\pi\)
\(492\) 0 0
\(493\) 47.5959i 2.14361i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −6.44949 15.7980i −0.289299 0.708635i
\(498\) 0 0
\(499\) 5.30306i 0.237398i −0.992930 0.118699i \(-0.962128\pi\)
0.992930 0.118699i \(-0.0378723\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −43.5959 −1.94385 −0.971923 0.235299i \(-0.924393\pi\)
−0.971923 + 0.235299i \(0.924393\pi\)
\(504\) 0 0
\(505\) 8.89898 0.395999
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 4.89898i 0.217143i −0.994089 0.108572i \(-0.965372\pi\)
0.994089 0.108572i \(-0.0346277\pi\)
\(510\) 0 0
\(511\) 5.34847 + 13.1010i 0.236602 + 0.579555i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 8.89898i 0.392136i
\(516\) 0 0
\(517\) 26.6969i 1.17413i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 3.10102i 0.135858i 0.997690 + 0.0679291i \(0.0216392\pi\)
−0.997690 + 0.0679291i \(0.978361\pi\)
\(522\) 0 0
\(523\) −27.1010 −1.18504 −0.592522 0.805554i \(-0.701868\pi\)
−0.592522 + 0.805554i \(0.701868\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 58.2929i 2.53928i
\(528\) 0 0
\(529\) 19.0000 0.826087
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 4.00000 0.173259
\(534\) 0 0
\(535\) 15.7980 0.683005
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 12.0000 + 12.2474i 0.516877 + 0.527535i
\(540\) 0 0
\(541\) −25.5959 −1.10045 −0.550227 0.835015i \(-0.685459\pi\)
−0.550227 + 0.835015i \(0.685459\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 13.7980i 0.591040i
\(546\) 0 0
\(547\) 6.40408i 0.273819i −0.990584 0.136909i \(-0.956283\pi\)
0.990584 0.136909i \(-0.0437169\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 30.6969 1.30773
\(552\) 0 0
\(553\) −9.79796 24.0000i −0.416652 1.02058i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 10.4495 0.442759 0.221380 0.975188i \(-0.428944\pi\)
0.221380 + 0.975188i \(0.428944\pi\)
\(558\) 0 0
\(559\) −35.5959 −1.50555
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 4.00000 0.168580 0.0842900 0.996441i \(-0.473138\pi\)
0.0842900 + 0.996441i \(0.473138\pi\)
\(564\) 0 0
\(565\) 3.34847i 0.140871i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 11.7980 0.494596 0.247298 0.968939i \(-0.420457\pi\)
0.247298 + 0.968939i \(0.420457\pi\)
\(570\) 0 0
\(571\) 28.0000i 1.17176i 0.810397 + 0.585882i \(0.199252\pi\)
−0.810397 + 0.585882i \(0.800748\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 2.00000i 0.0834058i
\(576\) 0 0
\(577\) 23.5505i 0.980421i 0.871604 + 0.490210i \(0.163080\pi\)
−0.871604 + 0.490210i \(0.836920\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −7.10102 + 2.89898i −0.294600 + 0.120270i
\(582\) 0 0
\(583\) 25.5959i 1.06007i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −43.1918 −1.78272 −0.891359 0.453298i \(-0.850247\pi\)
−0.891359 + 0.453298i \(0.850247\pi\)
\(588\) 0 0
\(589\) −37.5959 −1.54911
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 20.2020i 0.829598i −0.909913 0.414799i \(-0.863852\pi\)
0.909913 0.414799i \(-0.136148\pi\)
\(594\) 0 0
\(595\) −16.8990 + 6.89898i −0.692791 + 0.282831i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 22.0454i 0.900751i −0.892839 0.450375i \(-0.851290\pi\)
0.892839 0.450375i \(-0.148710\pi\)
\(600\) 0 0
\(601\) 20.8990i 0.852487i 0.904608 + 0.426244i \(0.140163\pi\)
−0.904608 + 0.426244i \(0.859837\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 5.00000i 0.203279i
\(606\) 0 0
\(607\) −15.5959 −0.633019 −0.316509 0.948589i \(-0.602511\pi\)
−0.316509 + 0.948589i \(0.602511\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 48.4949i 1.96189i
\(612\) 0 0
\(613\) 31.7980 1.28431 0.642154 0.766576i \(-0.278041\pi\)
0.642154 + 0.766576i \(0.278041\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −31.8434 −1.28197 −0.640983 0.767555i \(-0.721473\pi\)
−0.640983 + 0.767555i \(0.721473\pi\)
\(618\) 0 0
\(619\) −12.0454 −0.484146 −0.242073 0.970258i \(-0.577827\pi\)
−0.242073 + 0.970258i \(0.577827\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −15.7980 38.6969i −0.632932 1.55036i
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 47.5959i 1.89777i
\(630\) 0 0
\(631\) 49.3939i 1.96634i −0.182695 0.983170i \(-0.558482\pi\)
0.182695 0.983170i \(-0.441518\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 1.79796 0.0713498
\(636\) 0 0
\(637\) −21.7980 22.2474i −0.863667 0.881476i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −12.6969 −0.501499 −0.250749 0.968052i \(-0.580677\pi\)
−0.250749 + 0.968052i \(0.580677\pi\)
\(642\) 0 0
\(643\) 28.8990 1.13966 0.569832 0.821761i \(-0.307008\pi\)
0.569832 + 0.821761i \(0.307008\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −27.5959 −1.08491 −0.542454 0.840086i \(-0.682505\pi\)
−0.542454 + 0.840086i \(0.682505\pi\)
\(648\) 0 0
\(649\) 12.0000i 0.471041i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −9.14643 −0.357927 −0.178964 0.983856i \(-0.557274\pi\)
−0.178964 + 0.983856i \(0.557274\pi\)
\(654\) 0 0
\(655\) 18.6969i 0.730550i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 24.2474i 0.944546i −0.881452 0.472273i \(-0.843434\pi\)
0.881452 0.472273i \(-0.156566\pi\)
\(660\) 0 0
\(661\) 35.1010i 1.36527i 0.730759 + 0.682636i \(0.239166\pi\)
−0.730759 + 0.682636i \(0.760834\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 4.44949 + 10.8990i 0.172544 + 0.422644i
\(666\) 0 0
\(667\) 13.7980i 0.534259i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 31.5959 1.21975
\(672\) 0 0
\(673\) 3.30306 0.127324 0.0636618 0.997972i \(-0.479722\pi\)
0.0636618 + 0.997972i \(0.479722\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 8.69694i 0.334250i 0.985936 + 0.167125i \(0.0534484\pi\)
−0.985936 + 0.167125i \(0.946552\pi\)
\(678\) 0 0
\(679\) −2.65153 6.49490i −0.101756 0.249251i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 29.1010i 1.11352i −0.830674 0.556760i \(-0.812044\pi\)
0.830674 0.556760i \(-0.187956\pi\)
\(684\) 0 0
\(685\) 21.1464i 0.807963i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 46.4949i 1.77131i
\(690\) 0 0
\(691\) −23.5505 −0.895904 −0.447952 0.894058i \(-0.647846\pi\)
−0.447952 + 0.894058i \(0.647846\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 7.55051i 0.286407i
\(696\) 0 0
\(697\) −6.20204 −0.234919
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 12.6969 0.479557 0.239778 0.970828i \(-0.422925\pi\)
0.239778 + 0.970828i \(0.422925\pi\)
\(702\) 0 0
\(703\) 30.6969 1.15776
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −8.89898 21.7980i −0.334681 0.819797i
\(708\) 0 0
\(709\) 35.7980 1.34442 0.672210 0.740360i \(-0.265345\pi\)
0.672210 + 0.740360i \(0.265345\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 16.8990i 0.632872i
\(714\) 0 0
\(715\) 10.8990i 0.407599i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −31.1010 −1.15987 −0.579936 0.814662i \(-0.696923\pi\)
−0.579936 + 0.814662i \(0.696923\pi\)
\(720\) 0 0
\(721\) 21.7980 8.89898i 0.811798 0.331415i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −6.89898 −0.256222
\(726\) 0 0
\(727\) 6.20204 0.230021 0.115010 0.993364i \(-0.463310\pi\)
0.115010 + 0.993364i \(0.463310\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 55.1918 2.04134
\(732\) 0 0
\(733\) 2.65153i 0.0979365i 0.998800 + 0.0489683i \(0.0155933\pi\)
−0.998800 + 0.0489683i \(0.984407\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −38.6969 −1.42542
\(738\) 0 0
\(739\) 47.5959i 1.75084i 0.483359 + 0.875422i \(0.339416\pi\)
−0.483359 + 0.875422i \(0.660584\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 20.2929i 0.744473i −0.928138 0.372236i \(-0.878591\pi\)
0.928138 0.372236i \(-0.121409\pi\)
\(744\) 0 0
\(745\) 3.79796i 0.139146i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −15.7980 38.6969i −0.577245 1.41396i
\(750\) 0 0
\(751\) 48.8990i 1.78435i 0.451691 + 0.892175i \(0.350821\pi\)
−0.451691 + 0.892175i \(0.649179\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 8.89898 0.323867
\(756\) 0 0
\(757\) 48.6969 1.76992 0.884960 0.465667i \(-0.154185\pi\)
0.884960 + 0.465667i \(0.154185\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 27.7980i 1.00768i −0.863798 0.503838i \(-0.831921\pi\)
0.863798 0.503838i \(-0.168079\pi\)
\(762\) 0 0
\(763\) 33.7980 13.7980i 1.22357 0.499520i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 21.7980i 0.787079i
\(768\) 0 0
\(769\) 8.49490i 0.306334i −0.988200 0.153167i \(-0.951053\pi\)
0.988200 0.153167i \(-0.0489472\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 43.3939i 1.56077i 0.625300 + 0.780385i \(0.284977\pi\)
−0.625300 + 0.780385i \(0.715023\pi\)
\(774\) 0 0
\(775\) 8.44949 0.303515
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 4.00000i 0.143315i
\(780\) 0 0
\(781\) −15.7980 −0.565295
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 17.3485 0.619193
\(786\) 0 0
\(787\) −18.6969 −0.666474 −0.333237 0.942843i \(-0.608141\pi\)
−0.333237 + 0.942843i \(0.608141\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −8.20204 + 3.34847i −0.291631 + 0.119058i
\(792\) 0 0
\(793\) −57.3939 −2.03812
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 15.7980i 0.559592i 0.960059 + 0.279796i \(0.0902669\pi\)
−0.960059 + 0.279796i \(0.909733\pi\)
\(798\) 0 0
\(799\) 75.1918i 2.66010i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 13.1010 0.462325
\(804\) 0 0
\(805\) 4.89898 2.00000i 0.172666 0.0704907i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 34.8990 1.22698 0.613491 0.789701i \(-0.289765\pi\)
0.613491 + 0.789701i \(0.289765\pi\)
\(810\) 0 0
\(811\) 35.1464 1.23416 0.617079 0.786901i \(-0.288316\pi\)
0.617079 + 0.786901i \(0.288316\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 23.5959 0.826529
\(816\) 0 0
\(817\) 35.5959i 1.24534i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 6.49490 0.226673 0.113337 0.993557i \(-0.463846\pi\)
0.113337 + 0.993557i \(0.463846\pi\)
\(822\) 0 0
\(823\) 45.3939i 1.58233i −0.611602 0.791166i \(-0.709475\pi\)
0.611602 0.791166i \(-0.290525\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 43.3939i 1.50895i 0.656327 + 0.754476i \(0.272109\pi\)
−0.656327 + 0.754476i \(0.727891\pi\)
\(828\) 0 0
\(829\) 5.39388i 0.187337i −0.995603 0.0936685i \(-0.970141\pi\)
0.995603 0.0936685i \(-0.0298594\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 33.7980 + 34.4949i 1.17103 + 1.19518i
\(834\) 0 0
\(835\) 8.00000i 0.276851i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 53.7980 1.85731 0.928656 0.370942i \(-0.120965\pi\)
0.928656 + 0.370942i \(0.120965\pi\)
\(840\) 0 0
\(841\) 18.5959 0.641239
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 6.79796i 0.233857i
\(846\) 0 0
\(847\) −12.2474 + 5.00000i −0.420827 + 0.171802i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 13.7980i 0.472988i
\(852\) 0 0
\(853\) 36.0454i 1.23417i −0.786896 0.617086i \(-0.788313\pi\)
0.786896 0.617086i \(-0.211687\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 6.00000i 0.204956i 0.994735 + 0.102478i \(0.0326771\pi\)
−0.994735 + 0.102478i \(0.967323\pi\)
\(858\) 0 0
\(859\) 35.5505 1.21297 0.606484 0.795096i \(-0.292579\pi\)
0.606484 + 0.795096i \(0.292579\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 31.3939i 1.06866i 0.845276 + 0.534330i \(0.179436\pi\)
−0.845276 + 0.534330i \(0.820564\pi\)
\(864\) 0 0
\(865\) −3.79796 −0.129134
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −24.0000 −0.814144
\(870\) 0 0
\(871\) 70.2929 2.38178
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −1.00000 2.44949i −0.0338062 0.0828079i
\(876\) 0 0
\(877\) −13.5959 −0.459102 −0.229551 0.973297i \(-0.573726\pi\)
−0.229551 + 0.973297i \(0.573726\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 8.20204i 0.276334i −0.990409 0.138167i \(-0.955879\pi\)
0.990409 0.138167i \(-0.0441210\pi\)
\(882\) 0 0
\(883\) 0.202041i 0.00679922i 0.999994 + 0.00339961i \(0.00108213\pi\)
−0.999994 + 0.00339961i \(0.998918\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −12.2929 −0.412754 −0.206377 0.978473i \(-0.566167\pi\)
−0.206377 + 0.978473i \(0.566167\pi\)
\(888\) 0 0
\(889\) −1.79796 4.40408i −0.0603016 0.147708i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −48.4949 −1.62282
\(894\) 0 0
\(895\) 0.247449 0.00827130
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −58.2929 −1.94418
\(900\) 0 0
\(901\) 72.0908i 2.40169i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 13.7980 0.458660
\(906\) 0 0
\(907\) 1.59592i 0.0529916i −0.999649 0.0264958i \(-0.991565\pi\)
0.999649 0.0264958i \(-0.00843486\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 32.6515i 1.08179i 0.841089 + 0.540897i \(0.181915\pi\)
−0.841089 + 0.540897i \(0.818085\pi\)
\(912\) 0 0
\(913\) 7.10102i 0.235009i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −45.7980 + 18.6969i −1.51238 + 0.617427i
\(918\) 0 0
\(919\) 28.4949i 0.939960i −0.882677 0.469980i \(-0.844261\pi\)
0.882677 0.469980i \(-0.155739\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 28.6969 0.944571
\(924\) 0 0
\(925\) −6.89898 −0.226837
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 30.0000i 0.984268i −0.870519 0.492134i \(-0.836217\pi\)
0.870519 0.492134i \(-0.163783\pi\)
\(930\) 0 0
\(931\) 22.2474 21.7980i 0.729131 0.714399i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 16.8990i 0.552656i
\(936\) 0 0
\(937\) 18.2474i 0.596118i 0.954547 + 0.298059i \(0.0963392\pi\)
−0.954547 + 0.298059i \(0.903661\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 30.0000i 0.977972i 0.872292 + 0.488986i \(0.162633\pi\)
−0.872292 + 0.488986i \(0.837367\pi\)
\(942\) 0 0
\(943\) 1.79796 0.0585496
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 4.69694i 0.152630i −0.997084 0.0763150i \(-0.975685\pi\)
0.997084 0.0763150i \(-0.0243155\pi\)
\(948\) 0 0
\(949\) −23.7980 −0.772514
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0.247449 0.00801565 0.00400783 0.999992i \(-0.498724\pi\)
0.00400783 + 0.999992i \(0.498724\pi\)
\(954\) 0 0
\(955\) 10.4495 0.338138
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 51.7980 21.1464i 1.67264 0.682854i
\(960\) 0 0
\(961\) 40.3939 1.30303
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 12.6969i 0.408729i
\(966\) 0 0
\(967\) 31.3939i 1.00956i −0.863248 0.504780i \(-0.831574\pi\)
0.863248 0.504780i \(-0.168426\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 39.1918 1.25773 0.628863 0.777516i \(-0.283521\pi\)
0.628863 + 0.777516i \(0.283521\pi\)
\(972\) 0 0
\(973\) 18.4949 7.55051i 0.592919 0.242058i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −16.6515 −0.532730 −0.266365 0.963872i \(-0.585823\pi\)
−0.266365 + 0.963872i \(0.585823\pi\)
\(978\) 0 0
\(979\) −38.6969 −1.23676
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 30.8990 0.985524 0.492762 0.870164i \(-0.335987\pi\)
0.492762 + 0.870164i \(0.335987\pi\)
\(984\) 0 0
\(985\) 0.247449i 0.00788437i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −16.0000 −0.508770
\(990\) 0 0
\(991\) 22.6969i 0.720992i −0.932761 0.360496i \(-0.882607\pi\)
0.932761 0.360496i \(-0.117393\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 4.44949i 0.141058i
\(996\) 0 0
\(997\) 11.9546i 0.378606i 0.981919 + 0.189303i \(0.0606228\pi\)
−0.981919 + 0.189303i \(0.939377\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5040.2.d.b.4591.1 4
3.2 odd 2 1680.2.d.b.1231.3 yes 4
4.3 odd 2 5040.2.d.a.4591.2 4
7.6 odd 2 5040.2.d.a.4591.4 4
12.11 even 2 1680.2.d.a.1231.4 yes 4
21.20 even 2 1680.2.d.a.1231.2 4
28.27 even 2 inner 5040.2.d.b.4591.3 4
84.83 odd 2 1680.2.d.b.1231.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1680.2.d.a.1231.2 4 21.20 even 2
1680.2.d.a.1231.4 yes 4 12.11 even 2
1680.2.d.b.1231.1 yes 4 84.83 odd 2
1680.2.d.b.1231.3 yes 4 3.2 odd 2
5040.2.d.a.4591.2 4 4.3 odd 2
5040.2.d.a.4591.4 4 7.6 odd 2
5040.2.d.b.4591.1 4 1.1 even 1 trivial
5040.2.d.b.4591.3 4 28.27 even 2 inner