Properties

Label 504.8.a.h.1.2
Level $504$
Weight $8$
Character 504.1
Self dual yes
Analytic conductor $157.442$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [504,8,Mod(1,504)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("504.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(504, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 504.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,0,0,-414] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(157.442052844\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4400x - 26848 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{5}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 168)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-6.16367\) of defining polynomial
Character \(\chi\) \(=\) 504.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-99.0180 q^{5} +343.000 q^{7} +3695.45 q^{11} +7236.44 q^{13} -18523.3 q^{17} -9508.41 q^{19} -70977.4 q^{23} -68320.4 q^{25} -43155.0 q^{29} -15305.4 q^{31} -33963.2 q^{35} +369151. q^{37} +26475.6 q^{41} +275186. q^{43} +114034. q^{47} +117649. q^{49} +347795. q^{53} -365916. q^{55} +238451. q^{59} +1.52156e6 q^{61} -716537. q^{65} +688978. q^{67} -4.42654e6 q^{71} -894592. q^{73} +1.26754e6 q^{77} +2.74442e6 q^{79} -5.51853e6 q^{83} +1.83414e6 q^{85} -4.73609e6 q^{89} +2.48210e6 q^{91} +941504. q^{95} +5.65023e6 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 414 q^{5} + 1029 q^{7} - 9552 q^{11} + 954 q^{13} + 30 q^{17} + 39588 q^{19} + 31164 q^{23} + 139581 q^{25} - 38898 q^{29} + 147888 q^{31} - 142002 q^{35} - 217662 q^{37} - 174594 q^{41} + 193644 q^{43}+ \cdots + 22816878 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −99.0180 −0.354257 −0.177129 0.984188i \(-0.556681\pi\)
−0.177129 + 0.984188i \(0.556681\pi\)
\(6\) 0 0
\(7\) 343.000 0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3695.45 0.837131 0.418566 0.908187i \(-0.362533\pi\)
0.418566 + 0.908187i \(0.362533\pi\)
\(12\) 0 0
\(13\) 7236.44 0.913530 0.456765 0.889587i \(-0.349008\pi\)
0.456765 + 0.889587i \(0.349008\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −18523.3 −0.914425 −0.457212 0.889358i \(-0.651152\pi\)
−0.457212 + 0.889358i \(0.651152\pi\)
\(18\) 0 0
\(19\) −9508.41 −0.318032 −0.159016 0.987276i \(-0.550832\pi\)
−0.159016 + 0.987276i \(0.550832\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −70977.4 −1.21639 −0.608195 0.793788i \(-0.708106\pi\)
−0.608195 + 0.793788i \(0.708106\pi\)
\(24\) 0 0
\(25\) −68320.4 −0.874502
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −43155.0 −0.328577 −0.164289 0.986412i \(-0.552533\pi\)
−0.164289 + 0.986412i \(0.552533\pi\)
\(30\) 0 0
\(31\) −15305.4 −0.0922736 −0.0461368 0.998935i \(-0.514691\pi\)
−0.0461368 + 0.998935i \(0.514691\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −33963.2 −0.133897
\(36\) 0 0
\(37\) 369151. 1.19811 0.599057 0.800706i \(-0.295542\pi\)
0.599057 + 0.800706i \(0.295542\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 26475.6 0.0599932 0.0299966 0.999550i \(-0.490450\pi\)
0.0299966 + 0.999550i \(0.490450\pi\)
\(42\) 0 0
\(43\) 275186. 0.527821 0.263910 0.964547i \(-0.414988\pi\)
0.263910 + 0.964547i \(0.414988\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 114034. 0.160210 0.0801051 0.996786i \(-0.474474\pi\)
0.0801051 + 0.996786i \(0.474474\pi\)
\(48\) 0 0
\(49\) 117649. 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 347795. 0.320891 0.160446 0.987045i \(-0.448707\pi\)
0.160446 + 0.987045i \(0.448707\pi\)
\(54\) 0 0
\(55\) −365916. −0.296560
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 238451. 0.151153 0.0755767 0.997140i \(-0.475920\pi\)
0.0755767 + 0.997140i \(0.475920\pi\)
\(60\) 0 0
\(61\) 1.52156e6 0.858289 0.429144 0.903236i \(-0.358815\pi\)
0.429144 + 0.903236i \(0.358815\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −716537. −0.323625
\(66\) 0 0
\(67\) 688978. 0.279862 0.139931 0.990161i \(-0.455312\pi\)
0.139931 + 0.990161i \(0.455312\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −4.42654e6 −1.46778 −0.733889 0.679269i \(-0.762297\pi\)
−0.733889 + 0.679269i \(0.762297\pi\)
\(72\) 0 0
\(73\) −894592. −0.269150 −0.134575 0.990903i \(-0.542967\pi\)
−0.134575 + 0.990903i \(0.542967\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.26754e6 0.316406
\(78\) 0 0
\(79\) 2.74442e6 0.626260 0.313130 0.949710i \(-0.398622\pi\)
0.313130 + 0.949710i \(0.398622\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −5.51853e6 −1.05938 −0.529688 0.848193i \(-0.677691\pi\)
−0.529688 + 0.848193i \(0.677691\pi\)
\(84\) 0 0
\(85\) 1.83414e6 0.323942
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −4.73609e6 −0.712122 −0.356061 0.934463i \(-0.615881\pi\)
−0.356061 + 0.934463i \(0.615881\pi\)
\(90\) 0 0
\(91\) 2.48210e6 0.345282
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 941504. 0.112665
\(96\) 0 0
\(97\) 5.65023e6 0.628586 0.314293 0.949326i \(-0.398233\pi\)
0.314293 + 0.949326i \(0.398233\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1.13470e7 −1.09587 −0.547933 0.836522i \(-0.684585\pi\)
−0.547933 + 0.836522i \(0.684585\pi\)
\(102\) 0 0
\(103\) −5.62575e6 −0.507283 −0.253642 0.967298i \(-0.581628\pi\)
−0.253642 + 0.967298i \(0.581628\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.43444e6 0.349941 0.174971 0.984574i \(-0.444017\pi\)
0.174971 + 0.984574i \(0.444017\pi\)
\(108\) 0 0
\(109\) 2.58869e7 1.91464 0.957319 0.289035i \(-0.0933343\pi\)
0.957319 + 0.289035i \(0.0933343\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1.92136e7 −1.25266 −0.626332 0.779556i \(-0.715445\pi\)
−0.626332 + 0.779556i \(0.715445\pi\)
\(114\) 0 0
\(115\) 7.02804e6 0.430915
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −6.35350e6 −0.345620
\(120\) 0 0
\(121\) −5.83079e6 −0.299212
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.45007e7 0.664056
\(126\) 0 0
\(127\) −4.22100e7 −1.82853 −0.914266 0.405114i \(-0.867232\pi\)
−0.914266 + 0.405114i \(0.867232\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1.21641e7 0.472749 0.236374 0.971662i \(-0.424041\pi\)
0.236374 + 0.971662i \(0.424041\pi\)
\(132\) 0 0
\(133\) −3.26138e6 −0.120205
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −3.12537e7 −1.03843 −0.519217 0.854642i \(-0.673776\pi\)
−0.519217 + 0.854642i \(0.673776\pi\)
\(138\) 0 0
\(139\) −3.56212e7 −1.12501 −0.562505 0.826794i \(-0.690162\pi\)
−0.562505 + 0.826794i \(0.690162\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2.67419e7 0.764745
\(144\) 0 0
\(145\) 4.27312e6 0.116401
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −4.44845e7 −1.10168 −0.550842 0.834610i \(-0.685693\pi\)
−0.550842 + 0.834610i \(0.685693\pi\)
\(150\) 0 0
\(151\) −1.58932e6 −0.0375657 −0.0187828 0.999824i \(-0.505979\pi\)
−0.0187828 + 0.999824i \(0.505979\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1.51551e6 0.0326886
\(156\) 0 0
\(157\) −7.40717e7 −1.52758 −0.763790 0.645465i \(-0.776664\pi\)
−0.763790 + 0.645465i \(0.776664\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −2.43452e7 −0.459752
\(162\) 0 0
\(163\) −4.14405e7 −0.749495 −0.374747 0.927127i \(-0.622271\pi\)
−0.374747 + 0.927127i \(0.622271\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 6.33911e7 1.05322 0.526612 0.850106i \(-0.323462\pi\)
0.526612 + 0.850106i \(0.323462\pi\)
\(168\) 0 0
\(169\) −1.03825e7 −0.165462
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 8.20895e7 1.20539 0.602693 0.797973i \(-0.294094\pi\)
0.602693 + 0.797973i \(0.294094\pi\)
\(174\) 0 0
\(175\) −2.34339e7 −0.330531
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 1.08169e8 1.40967 0.704833 0.709373i \(-0.251022\pi\)
0.704833 + 0.709373i \(0.251022\pi\)
\(180\) 0 0
\(181\) 4.64906e7 0.582760 0.291380 0.956607i \(-0.405886\pi\)
0.291380 + 0.956607i \(0.405886\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −3.65526e7 −0.424441
\(186\) 0 0
\(187\) −6.84521e7 −0.765493
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −8.40245e7 −0.872548 −0.436274 0.899814i \(-0.643702\pi\)
−0.436274 + 0.899814i \(0.643702\pi\)
\(192\) 0 0
\(193\) −4.46018e7 −0.446582 −0.223291 0.974752i \(-0.571680\pi\)
−0.223291 + 0.974752i \(0.571680\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3.04765e7 0.284010 0.142005 0.989866i \(-0.454645\pi\)
0.142005 + 0.989866i \(0.454645\pi\)
\(198\) 0 0
\(199\) −3.70526e7 −0.333298 −0.166649 0.986016i \(-0.553295\pi\)
−0.166649 + 0.986016i \(0.553295\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −1.48022e7 −0.124191
\(204\) 0 0
\(205\) −2.62156e6 −0.0212531
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −3.51379e7 −0.266234
\(210\) 0 0
\(211\) −1.38109e8 −1.01212 −0.506060 0.862498i \(-0.668899\pi\)
−0.506060 + 0.862498i \(0.668899\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −2.72484e7 −0.186985
\(216\) 0 0
\(217\) −5.24974e6 −0.0348761
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −1.34043e8 −0.835355
\(222\) 0 0
\(223\) −2.07529e8 −1.25317 −0.626586 0.779352i \(-0.715548\pi\)
−0.626586 + 0.779352i \(0.715548\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 7.24650e7 0.411185 0.205593 0.978638i \(-0.434088\pi\)
0.205593 + 0.978638i \(0.434088\pi\)
\(228\) 0 0
\(229\) −2.87710e8 −1.58318 −0.791590 0.611053i \(-0.790746\pi\)
−0.791590 + 0.611053i \(0.790746\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −9.01798e7 −0.467050 −0.233525 0.972351i \(-0.575026\pi\)
−0.233525 + 0.972351i \(0.575026\pi\)
\(234\) 0 0
\(235\) −1.12914e7 −0.0567557
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 2.72154e8 1.28950 0.644752 0.764392i \(-0.276961\pi\)
0.644752 + 0.764392i \(0.276961\pi\)
\(240\) 0 0
\(241\) −1.36758e7 −0.0629349 −0.0314675 0.999505i \(-0.510018\pi\)
−0.0314675 + 0.999505i \(0.510018\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1.16494e7 −0.0506082
\(246\) 0 0
\(247\) −6.88070e7 −0.290532
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −1.79647e8 −0.717072 −0.358536 0.933516i \(-0.616724\pi\)
−0.358536 + 0.933516i \(0.616724\pi\)
\(252\) 0 0
\(253\) −2.62294e8 −1.01828
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −2.08839e8 −0.767442 −0.383721 0.923449i \(-0.625358\pi\)
−0.383721 + 0.923449i \(0.625358\pi\)
\(258\) 0 0
\(259\) 1.26619e8 0.452845
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 419999. 0.00142365 0.000711825 1.00000i \(-0.499773\pi\)
0.000711825 1.00000i \(0.499773\pi\)
\(264\) 0 0
\(265\) −3.44380e7 −0.113678
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −2.26486e8 −0.709429 −0.354715 0.934975i \(-0.615422\pi\)
−0.354715 + 0.934975i \(0.615422\pi\)
\(270\) 0 0
\(271\) −2.36234e8 −0.721024 −0.360512 0.932755i \(-0.617398\pi\)
−0.360512 + 0.932755i \(0.617398\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −2.52475e8 −0.732072
\(276\) 0 0
\(277\) −3.22906e8 −0.912846 −0.456423 0.889763i \(-0.650870\pi\)
−0.456423 + 0.889763i \(0.650870\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −3.12684e8 −0.840684 −0.420342 0.907366i \(-0.638090\pi\)
−0.420342 + 0.907366i \(0.638090\pi\)
\(282\) 0 0
\(283\) 3.61865e8 0.949062 0.474531 0.880239i \(-0.342618\pi\)
0.474531 + 0.880239i \(0.342618\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 9.08113e6 0.0226753
\(288\) 0 0
\(289\) −6.72248e7 −0.163828
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −5.13942e8 −1.19365 −0.596826 0.802371i \(-0.703572\pi\)
−0.596826 + 0.802371i \(0.703572\pi\)
\(294\) 0 0
\(295\) −2.36110e7 −0.0535472
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −5.13623e8 −1.11121
\(300\) 0 0
\(301\) 9.43888e7 0.199498
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −1.50661e8 −0.304055
\(306\) 0 0
\(307\) −1.35306e8 −0.266890 −0.133445 0.991056i \(-0.542604\pi\)
−0.133445 + 0.991056i \(0.542604\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −4.15771e7 −0.0783778 −0.0391889 0.999232i \(-0.512477\pi\)
−0.0391889 + 0.999232i \(0.512477\pi\)
\(312\) 0 0
\(313\) 7.71847e8 1.42274 0.711370 0.702817i \(-0.248075\pi\)
0.711370 + 0.702817i \(0.248075\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −502888. −0.000886674 0 −0.000443337 1.00000i \(-0.500141\pi\)
−0.000443337 1.00000i \(0.500141\pi\)
\(318\) 0 0
\(319\) −1.59477e8 −0.275062
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1.76127e8 0.290816
\(324\) 0 0
\(325\) −4.94397e8 −0.798884
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 3.91135e7 0.0605538
\(330\) 0 0
\(331\) 2.31667e8 0.351129 0.175564 0.984468i \(-0.443825\pi\)
0.175564 + 0.984468i \(0.443825\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −6.82212e7 −0.0991432
\(336\) 0 0
\(337\) −2.52157e8 −0.358895 −0.179447 0.983768i \(-0.557431\pi\)
−0.179447 + 0.983768i \(0.557431\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −5.65602e7 −0.0772451
\(342\) 0 0
\(343\) 4.03536e7 0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −3.88142e8 −0.498698 −0.249349 0.968414i \(-0.580217\pi\)
−0.249349 + 0.968414i \(0.580217\pi\)
\(348\) 0 0
\(349\) 2.15716e8 0.271640 0.135820 0.990734i \(-0.456633\pi\)
0.135820 + 0.990734i \(0.456633\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 1.01922e9 1.23327 0.616635 0.787250i \(-0.288496\pi\)
0.616635 + 0.787250i \(0.288496\pi\)
\(354\) 0 0
\(355\) 4.38307e8 0.519972
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −7.53375e8 −0.859371 −0.429686 0.902979i \(-0.641376\pi\)
−0.429686 + 0.902979i \(0.641376\pi\)
\(360\) 0 0
\(361\) −8.03462e8 −0.898856
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 8.85807e7 0.0953485
\(366\) 0 0
\(367\) 1.07509e8 0.113531 0.0567654 0.998388i \(-0.481921\pi\)
0.0567654 + 0.998388i \(0.481921\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 1.19294e8 0.121285
\(372\) 0 0
\(373\) −8.64265e8 −0.862315 −0.431157 0.902277i \(-0.641895\pi\)
−0.431157 + 0.902277i \(0.641895\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −3.12288e8 −0.300165
\(378\) 0 0
\(379\) −5.55521e8 −0.524159 −0.262080 0.965046i \(-0.584408\pi\)
−0.262080 + 0.965046i \(0.584408\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 8.64373e8 0.786150 0.393075 0.919506i \(-0.371411\pi\)
0.393075 + 0.919506i \(0.371411\pi\)
\(384\) 0 0
\(385\) −1.25509e8 −0.112089
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −5.29805e8 −0.456344 −0.228172 0.973621i \(-0.573275\pi\)
−0.228172 + 0.973621i \(0.573275\pi\)
\(390\) 0 0
\(391\) 1.31474e9 1.11230
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −2.71746e8 −0.221857
\(396\) 0 0
\(397\) 1.08934e7 0.00873768 0.00436884 0.999990i \(-0.498609\pi\)
0.00436884 + 0.999990i \(0.498609\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −7.35030e8 −0.569245 −0.284623 0.958640i \(-0.591868\pi\)
−0.284623 + 0.958640i \(0.591868\pi\)
\(402\) 0 0
\(403\) −1.10756e8 −0.0842947
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.36418e9 1.00298
\(408\) 0 0
\(409\) −2.64878e9 −1.91432 −0.957160 0.289558i \(-0.906492\pi\)
−0.957160 + 0.289558i \(0.906492\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 8.17888e7 0.0571306
\(414\) 0 0
\(415\) 5.46433e8 0.375292
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −1.02562e9 −0.681140 −0.340570 0.940219i \(-0.610620\pi\)
−0.340570 + 0.940219i \(0.610620\pi\)
\(420\) 0 0
\(421\) −2.18207e9 −1.42522 −0.712608 0.701563i \(-0.752486\pi\)
−0.712608 + 0.701563i \(0.752486\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1.26552e9 0.799666
\(426\) 0 0
\(427\) 5.21894e8 0.324403
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 2.96388e9 1.78316 0.891578 0.452866i \(-0.149599\pi\)
0.891578 + 0.452866i \(0.149599\pi\)
\(432\) 0 0
\(433\) −6.91187e8 −0.409155 −0.204578 0.978850i \(-0.565582\pi\)
−0.204578 + 0.978850i \(0.565582\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 6.74882e8 0.386850
\(438\) 0 0
\(439\) 9.87163e8 0.556882 0.278441 0.960453i \(-0.410182\pi\)
0.278441 + 0.960453i \(0.410182\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 2.74519e9 1.50024 0.750118 0.661304i \(-0.229997\pi\)
0.750118 + 0.661304i \(0.229997\pi\)
\(444\) 0 0
\(445\) 4.68958e8 0.252275
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 4.80638e8 0.250585 0.125293 0.992120i \(-0.460013\pi\)
0.125293 + 0.992120i \(0.460013\pi\)
\(450\) 0 0
\(451\) 9.78394e7 0.0502222
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −2.45772e8 −0.122319
\(456\) 0 0
\(457\) −8.43345e8 −0.413332 −0.206666 0.978412i \(-0.566261\pi\)
−0.206666 + 0.978412i \(0.566261\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −2.31800e9 −1.10195 −0.550973 0.834523i \(-0.685743\pi\)
−0.550973 + 0.834523i \(0.685743\pi\)
\(462\) 0 0
\(463\) −8.07564e8 −0.378132 −0.189066 0.981964i \(-0.560546\pi\)
−0.189066 + 0.981964i \(0.560546\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −3.95717e9 −1.79794 −0.898970 0.438011i \(-0.855683\pi\)
−0.898970 + 0.438011i \(0.855683\pi\)
\(468\) 0 0
\(469\) 2.36320e8 0.105778
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 1.01694e9 0.441855
\(474\) 0 0
\(475\) 6.49619e8 0.278119
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 3.24574e9 1.34940 0.674698 0.738094i \(-0.264274\pi\)
0.674698 + 0.738094i \(0.264274\pi\)
\(480\) 0 0
\(481\) 2.67134e9 1.09451
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −5.59474e8 −0.222681
\(486\) 0 0
\(487\) −1.11073e9 −0.435769 −0.217885 0.975975i \(-0.569916\pi\)
−0.217885 + 0.975975i \(0.569916\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 3.46672e9 1.32170 0.660851 0.750517i \(-0.270195\pi\)
0.660851 + 0.750517i \(0.270195\pi\)
\(492\) 0 0
\(493\) 7.99374e8 0.300459
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −1.51830e9 −0.554768
\(498\) 0 0
\(499\) 2.69715e9 0.971746 0.485873 0.874029i \(-0.338502\pi\)
0.485873 + 0.874029i \(0.338502\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 1.75257e9 0.614027 0.307014 0.951705i \(-0.400670\pi\)
0.307014 + 0.951705i \(0.400670\pi\)
\(504\) 0 0
\(505\) 1.12356e9 0.388219
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −3.25027e9 −1.09247 −0.546233 0.837634i \(-0.683939\pi\)
−0.546233 + 0.837634i \(0.683939\pi\)
\(510\) 0 0
\(511\) −3.06845e8 −0.101729
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 5.57051e8 0.179709
\(516\) 0 0
\(517\) 4.21406e8 0.134117
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 1.74813e9 0.541554 0.270777 0.962642i \(-0.412719\pi\)
0.270777 + 0.962642i \(0.412719\pi\)
\(522\) 0 0
\(523\) 5.96418e9 1.82304 0.911518 0.411261i \(-0.134912\pi\)
0.911518 + 0.411261i \(0.134912\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2.83506e8 0.0843773
\(528\) 0 0
\(529\) 1.63296e9 0.479602
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1.91589e8 0.0548057
\(534\) 0 0
\(535\) −4.39089e8 −0.123969
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 4.34767e8 0.119590
\(540\) 0 0
\(541\) 4.42149e9 1.20054 0.600272 0.799796i \(-0.295059\pi\)
0.600272 + 0.799796i \(0.295059\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −2.56326e9 −0.678275
\(546\) 0 0
\(547\) −3.66088e9 −0.956380 −0.478190 0.878256i \(-0.658707\pi\)
−0.478190 + 0.878256i \(0.658707\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 4.10335e8 0.104498
\(552\) 0 0
\(553\) 9.41334e8 0.236704
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 4.16407e9 1.02100 0.510499 0.859878i \(-0.329461\pi\)
0.510499 + 0.859878i \(0.329461\pi\)
\(558\) 0 0
\(559\) 1.99137e9 0.482180
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 1.88169e9 0.444394 0.222197 0.975002i \(-0.428677\pi\)
0.222197 + 0.975002i \(0.428677\pi\)
\(564\) 0 0
\(565\) 1.90249e9 0.443766
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −7.84632e9 −1.78556 −0.892778 0.450497i \(-0.851247\pi\)
−0.892778 + 0.450497i \(0.851247\pi\)
\(570\) 0 0
\(571\) 3.53026e9 0.793562 0.396781 0.917913i \(-0.370127\pi\)
0.396781 + 0.917913i \(0.370127\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 4.84921e9 1.06373
\(576\) 0 0
\(577\) −1.30432e9 −0.282663 −0.141331 0.989962i \(-0.545138\pi\)
−0.141331 + 0.989962i \(0.545138\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −1.89285e9 −0.400406
\(582\) 0 0
\(583\) 1.28526e9 0.268628
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1.96984e9 0.401973 0.200986 0.979594i \(-0.435585\pi\)
0.200986 + 0.979594i \(0.435585\pi\)
\(588\) 0 0
\(589\) 1.45530e8 0.0293459
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −6.32425e9 −1.24542 −0.622712 0.782451i \(-0.713969\pi\)
−0.622712 + 0.782451i \(0.713969\pi\)
\(594\) 0 0
\(595\) 6.29111e8 0.122438
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 3.45689e9 0.657191 0.328596 0.944471i \(-0.393425\pi\)
0.328596 + 0.944471i \(0.393425\pi\)
\(600\) 0 0
\(601\) 7.76561e9 1.45920 0.729600 0.683874i \(-0.239706\pi\)
0.729600 + 0.683874i \(0.239706\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 5.77353e8 0.105998
\(606\) 0 0
\(607\) −1.59452e9 −0.289381 −0.144691 0.989477i \(-0.546219\pi\)
−0.144691 + 0.989477i \(0.546219\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 8.25197e8 0.146357
\(612\) 0 0
\(613\) 9.11892e8 0.159894 0.0799469 0.996799i \(-0.474525\pi\)
0.0799469 + 0.996799i \(0.474525\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 5.96004e9 1.02153 0.510765 0.859720i \(-0.329362\pi\)
0.510765 + 0.859720i \(0.329362\pi\)
\(618\) 0 0
\(619\) 1.13437e10 1.92237 0.961185 0.275905i \(-0.0889774\pi\)
0.961185 + 0.275905i \(0.0889774\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −1.62448e9 −0.269157
\(624\) 0 0
\(625\) 3.90170e9 0.639255
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −6.83791e9 −1.09559
\(630\) 0 0
\(631\) −7.83067e9 −1.24078 −0.620392 0.784292i \(-0.713026\pi\)
−0.620392 + 0.784292i \(0.713026\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 4.17955e9 0.647771
\(636\) 0 0
\(637\) 8.51360e8 0.130504
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −5.57392e9 −0.835906 −0.417953 0.908469i \(-0.637252\pi\)
−0.417953 + 0.908469i \(0.637252\pi\)
\(642\) 0 0
\(643\) 1.15645e10 1.71549 0.857744 0.514077i \(-0.171866\pi\)
0.857744 + 0.514077i \(0.171866\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 3.85801e9 0.560013 0.280007 0.959998i \(-0.409663\pi\)
0.280007 + 0.959998i \(0.409663\pi\)
\(648\) 0 0
\(649\) 8.81186e8 0.126535
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −6.73377e9 −0.946373 −0.473187 0.880962i \(-0.656896\pi\)
−0.473187 + 0.880962i \(0.656896\pi\)
\(654\) 0 0
\(655\) −1.20446e9 −0.167475
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 2.72188e9 0.370485 0.185242 0.982693i \(-0.440693\pi\)
0.185242 + 0.982693i \(0.440693\pi\)
\(660\) 0 0
\(661\) −3.23681e9 −0.435925 −0.217962 0.975957i \(-0.569941\pi\)
−0.217962 + 0.975957i \(0.569941\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 3.22936e8 0.0425834
\(666\) 0 0
\(667\) 3.06303e9 0.399678
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 5.62284e9 0.718500
\(672\) 0 0
\(673\) −1.04198e10 −1.31768 −0.658838 0.752285i \(-0.728952\pi\)
−0.658838 + 0.752285i \(0.728952\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −8.01041e9 −0.992189 −0.496094 0.868269i \(-0.665233\pi\)
−0.496094 + 0.868269i \(0.665233\pi\)
\(678\) 0 0
\(679\) 1.93803e9 0.237583
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −7.15349e9 −0.859104 −0.429552 0.903042i \(-0.641328\pi\)
−0.429552 + 0.903042i \(0.641328\pi\)
\(684\) 0 0
\(685\) 3.09467e9 0.367873
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 2.51680e9 0.293144
\(690\) 0 0
\(691\) 1.25797e10 1.45043 0.725216 0.688521i \(-0.241740\pi\)
0.725216 + 0.688521i \(0.241740\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 3.52713e9 0.398543
\(696\) 0 0
\(697\) −4.90416e8 −0.0548593
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 2.83761e9 0.311128 0.155564 0.987826i \(-0.450281\pi\)
0.155564 + 0.987826i \(0.450281\pi\)
\(702\) 0 0
\(703\) −3.51004e9 −0.381038
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −3.89203e9 −0.414198
\(708\) 0 0
\(709\) 1.32544e10 1.39668 0.698341 0.715765i \(-0.253922\pi\)
0.698341 + 0.715765i \(0.253922\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1.08633e9 0.112241
\(714\) 0 0
\(715\) −2.64793e9 −0.270917
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 5.30334e9 0.532107 0.266053 0.963958i \(-0.414280\pi\)
0.266053 + 0.963958i \(0.414280\pi\)
\(720\) 0 0
\(721\) −1.92963e9 −0.191735
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 2.94837e9 0.287342
\(726\) 0 0
\(727\) −1.14181e10 −1.10210 −0.551052 0.834471i \(-0.685774\pi\)
−0.551052 + 0.834471i \(0.685774\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −5.09736e9 −0.482652
\(732\) 0 0
\(733\) −1.12247e10 −1.05271 −0.526355 0.850265i \(-0.676442\pi\)
−0.526355 + 0.850265i \(0.676442\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 2.54609e9 0.234281
\(738\) 0 0
\(739\) −1.91114e10 −1.74196 −0.870980 0.491319i \(-0.836515\pi\)
−0.870980 + 0.491319i \(0.836515\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1.48601e10 1.32911 0.664554 0.747241i \(-0.268622\pi\)
0.664554 + 0.747241i \(0.268622\pi\)
\(744\) 0 0
\(745\) 4.40477e9 0.390280
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 1.52101e9 0.132265
\(750\) 0 0
\(751\) −2.11232e10 −1.81978 −0.909892 0.414846i \(-0.863835\pi\)
−0.909892 + 0.414846i \(0.863835\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 1.57371e8 0.0133079
\(756\) 0 0
\(757\) −1.24838e10 −1.04595 −0.522977 0.852347i \(-0.675179\pi\)
−0.522977 + 0.852347i \(0.675179\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1.10735e10 0.910836 0.455418 0.890278i \(-0.349490\pi\)
0.455418 + 0.890278i \(0.349490\pi\)
\(762\) 0 0
\(763\) 8.87919e9 0.723665
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.72554e9 0.138083
\(768\) 0 0
\(769\) −1.71862e9 −0.136282 −0.0681409 0.997676i \(-0.521707\pi\)
−0.0681409 + 0.997676i \(0.521707\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 6.13658e8 0.0477857 0.0238929 0.999715i \(-0.492394\pi\)
0.0238929 + 0.999715i \(0.492394\pi\)
\(774\) 0 0
\(775\) 1.04567e9 0.0806934
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −2.51741e8 −0.0190798
\(780\) 0 0
\(781\) −1.63581e10 −1.22872
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 7.33443e9 0.541156
\(786\) 0 0
\(787\) −1.38237e10 −1.01091 −0.505455 0.862853i \(-0.668675\pi\)
−0.505455 + 0.862853i \(0.668675\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −6.59028e9 −0.473463
\(792\) 0 0
\(793\) 1.10106e10 0.784073
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −2.37930e9 −0.166474 −0.0832368 0.996530i \(-0.526526\pi\)
−0.0832368 + 0.996530i \(0.526526\pi\)
\(798\) 0 0
\(799\) −2.11228e9 −0.146500
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −3.30592e9 −0.225314
\(804\) 0 0
\(805\) 2.41062e9 0.162871
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 4.24121e8 0.0281624 0.0140812 0.999901i \(-0.495518\pi\)
0.0140812 + 0.999901i \(0.495518\pi\)
\(810\) 0 0
\(811\) 7.61503e9 0.501301 0.250651 0.968078i \(-0.419355\pi\)
0.250651 + 0.968078i \(0.419355\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 4.10336e9 0.265514
\(816\) 0 0
\(817\) −2.61658e9 −0.167864
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 8.22147e9 0.518500 0.259250 0.965810i \(-0.416525\pi\)
0.259250 + 0.965810i \(0.416525\pi\)
\(822\) 0 0
\(823\) 5.71466e9 0.357348 0.178674 0.983908i \(-0.442819\pi\)
0.178674 + 0.983908i \(0.442819\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −9.12989e9 −0.561302 −0.280651 0.959810i \(-0.590550\pi\)
−0.280651 + 0.959810i \(0.590550\pi\)
\(828\) 0 0
\(829\) −6.93786e9 −0.422946 −0.211473 0.977384i \(-0.567826\pi\)
−0.211473 + 0.977384i \(0.567826\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −2.17925e9 −0.130632
\(834\) 0 0
\(835\) −6.27686e9 −0.373113
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −5.69445e9 −0.332878 −0.166439 0.986052i \(-0.553227\pi\)
−0.166439 + 0.986052i \(0.553227\pi\)
\(840\) 0 0
\(841\) −1.53875e10 −0.892037
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1.02805e9 0.0586162
\(846\) 0 0
\(847\) −1.99996e9 −0.113091
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −2.62014e10 −1.45737
\(852\) 0 0
\(853\) −2.87194e10 −1.58436 −0.792180 0.610288i \(-0.791054\pi\)
−0.792180 + 0.610288i \(0.791054\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1.23544e10 0.670483 0.335241 0.942132i \(-0.391182\pi\)
0.335241 + 0.942132i \(0.391182\pi\)
\(858\) 0 0
\(859\) 5.46709e9 0.294293 0.147146 0.989115i \(-0.452991\pi\)
0.147146 + 0.989115i \(0.452991\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 2.03580e10 1.07820 0.539098 0.842243i \(-0.318765\pi\)
0.539098 + 0.842243i \(0.318765\pi\)
\(864\) 0 0
\(865\) −8.12834e9 −0.427017
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1.01419e10 0.524262
\(870\) 0 0
\(871\) 4.98575e9 0.255662
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 4.97375e9 0.250990
\(876\) 0 0
\(877\) 3.28998e10 1.64700 0.823502 0.567313i \(-0.192017\pi\)
0.823502 + 0.567313i \(0.192017\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −3.29513e10 −1.62352 −0.811759 0.583992i \(-0.801490\pi\)
−0.811759 + 0.583992i \(0.801490\pi\)
\(882\) 0 0
\(883\) 9.84034e9 0.481003 0.240501 0.970649i \(-0.422688\pi\)
0.240501 + 0.970649i \(0.422688\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −3.83050e10 −1.84299 −0.921494 0.388392i \(-0.873031\pi\)
−0.921494 + 0.388392i \(0.873031\pi\)
\(888\) 0 0
\(889\) −1.44780e10 −0.691120
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −1.08428e9 −0.0509519
\(894\) 0 0
\(895\) −1.07106e10 −0.499385
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 6.60502e8 0.0303190
\(900\) 0 0
\(901\) −6.44232e9 −0.293431
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −4.60340e9 −0.206447
\(906\) 0 0
\(907\) 6.85297e9 0.304967 0.152484 0.988306i \(-0.451273\pi\)
0.152484 + 0.988306i \(0.451273\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −1.68852e9 −0.0739933 −0.0369966 0.999315i \(-0.511779\pi\)
−0.0369966 + 0.999315i \(0.511779\pi\)
\(912\) 0 0
\(913\) −2.03935e10 −0.886836
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 4.17229e9 0.178682
\(918\) 0 0
\(919\) 8.49261e9 0.360942 0.180471 0.983580i \(-0.442238\pi\)
0.180471 + 0.983580i \(0.442238\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −3.20324e10 −1.34086
\(924\) 0 0
\(925\) −2.52206e10 −1.04775
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1.01380e10 0.414854 0.207427 0.978251i \(-0.433491\pi\)
0.207427 + 0.978251i \(0.433491\pi\)
\(930\) 0 0
\(931\) −1.11865e9 −0.0454331
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 6.77799e9 0.271182
\(936\) 0 0
\(937\) 2.73102e10 1.08452 0.542258 0.840212i \(-0.317569\pi\)
0.542258 + 0.840212i \(0.317569\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1.11756e10 0.437229 0.218614 0.975811i \(-0.429846\pi\)
0.218614 + 0.975811i \(0.429846\pi\)
\(942\) 0 0
\(943\) −1.87917e9 −0.0729751
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1.14842e10 −0.439416 −0.219708 0.975566i \(-0.570510\pi\)
−0.219708 + 0.975566i \(0.570510\pi\)
\(948\) 0 0
\(949\) −6.47366e9 −0.245877
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −3.24527e10 −1.21458 −0.607289 0.794481i \(-0.707743\pi\)
−0.607289 + 0.794481i \(0.707743\pi\)
\(954\) 0 0
\(955\) 8.31994e9 0.309107
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −1.07200e10 −0.392491
\(960\) 0 0
\(961\) −2.72784e10 −0.991486
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 4.41638e9 0.158205
\(966\) 0 0
\(967\) −1.48412e10 −0.527807 −0.263903 0.964549i \(-0.585010\pi\)
−0.263903 + 0.964549i \(0.585010\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −5.11293e10 −1.79227 −0.896134 0.443784i \(-0.853636\pi\)
−0.896134 + 0.443784i \(0.853636\pi\)
\(972\) 0 0
\(973\) −1.22181e10 −0.425214
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 3.72350e10 1.27738 0.638691 0.769464i \(-0.279476\pi\)
0.638691 + 0.769464i \(0.279476\pi\)
\(978\) 0 0
\(979\) −1.75020e10 −0.596140
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −2.51039e10 −0.842953 −0.421476 0.906839i \(-0.638488\pi\)
−0.421476 + 0.906839i \(0.638488\pi\)
\(984\) 0 0
\(985\) −3.01773e9 −0.100613
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −1.95320e10 −0.642036
\(990\) 0 0
\(991\) 9.08794e9 0.296625 0.148312 0.988941i \(-0.452616\pi\)
0.148312 + 0.988941i \(0.452616\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 3.66887e9 0.118073
\(996\) 0 0
\(997\) 3.04492e10 0.973068 0.486534 0.873662i \(-0.338261\pi\)
0.486534 + 0.873662i \(0.338261\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 504.8.a.h.1.2 3
3.2 odd 2 168.8.a.i.1.2 3
12.11 even 2 336.8.a.t.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.8.a.i.1.2 3 3.2 odd 2
336.8.a.t.1.2 3 12.11 even 2
504.8.a.h.1.2 3 1.1 even 1 trivial