Properties

Label 504.6.s.d.289.5
Level $504$
Weight $6$
Character 504.289
Analytic conductor $80.833$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [504,6,Mod(289,504)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("504.289"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(504, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 2])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 504.s (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0,0,0,31] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(80.8334451857\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 3 x^{9} - 119 x^{8} - 521 x^{7} - 898 x^{6} + 27806 x^{5} + 657990 x^{4} + 3648839 x^{3} + \cdots + 92895579 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{18}\cdot 3^{3}\cdot 7^{2} \)
Twist minimal: no (minimal twist has level 56)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 289.5
Root \(-5.12305 + 3.65205i\) of defining polynomial
Character \(\chi\) \(=\) 504.289
Dual form 504.6.s.d.361.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(40.3290 - 69.8518i) q^{5} +(-8.39664 - 129.370i) q^{7} +(-253.362 - 438.837i) q^{11} +391.283 q^{13} +(-449.706 - 778.913i) q^{17} +(-168.157 + 291.256i) q^{19} +(2436.06 - 4219.37i) q^{23} +(-1690.35 - 2927.78i) q^{25} -546.591 q^{29} +(-3049.51 - 5281.91i) q^{31} +(-9375.33 - 4630.82i) q^{35} +(-7404.84 + 12825.6i) q^{37} +9837.31 q^{41} +18661.0 q^{43} +(699.243 - 1211.12i) q^{47} +(-16666.0 + 2172.54i) q^{49} +(-9880.41 - 17113.4i) q^{53} -40871.4 q^{55} +(13585.4 + 23530.6i) q^{59} +(-7083.72 + 12269.4i) q^{61} +(15780.1 - 27331.9i) q^{65} +(25223.0 + 43687.6i) q^{67} +45279.2 q^{71} +(3783.41 + 6553.06i) q^{73} +(-54644.7 + 36462.2i) q^{77} +(-2414.96 + 4182.83i) q^{79} +14067.3 q^{83} -72544.7 q^{85} +(-44776.9 + 77555.9i) q^{89} +(-3285.47 - 50620.2i) q^{91} +(13563.2 + 23492.1i) q^{95} +7209.53 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 31 q^{5} - 92 q^{7} - 351 q^{11} - 108 q^{13} + 111 q^{17} - 1035 q^{19} + 3639 q^{23} - 1540 q^{25} + 1468 q^{29} - 7677 q^{31} - 19899 q^{35} - 13595 q^{37} - 10620 q^{41} + 1528 q^{43} + 6675 q^{47}+ \cdots + 270940 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/504\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(127\) \(253\) \(281\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 40.3290 69.8518i 0.721427 1.24955i −0.239001 0.971019i \(-0.576820\pi\)
0.960428 0.278528i \(-0.0898467\pi\)
\(6\) 0 0
\(7\) −8.39664 129.370i −0.0647680 0.997900i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −253.362 438.837i −0.631336 1.09351i −0.987279 0.158998i \(-0.949174\pi\)
0.355943 0.934508i \(-0.384160\pi\)
\(12\) 0 0
\(13\) 391.283 0.642145 0.321072 0.947055i \(-0.395957\pi\)
0.321072 + 0.947055i \(0.395957\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −449.706 778.913i −0.377404 0.653682i 0.613280 0.789866i \(-0.289850\pi\)
−0.990684 + 0.136183i \(0.956516\pi\)
\(18\) 0 0
\(19\) −168.157 + 291.256i −0.106864 + 0.185093i −0.914498 0.404590i \(-0.867414\pi\)
0.807634 + 0.589684i \(0.200748\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2436.06 4219.37i 0.960213 1.66314i 0.238252 0.971203i \(-0.423425\pi\)
0.721960 0.691934i \(-0.243241\pi\)
\(24\) 0 0
\(25\) −1690.35 2927.78i −0.540913 0.936889i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −546.591 −0.120689 −0.0603444 0.998178i \(-0.519220\pi\)
−0.0603444 + 0.998178i \(0.519220\pi\)
\(30\) 0 0
\(31\) −3049.51 5281.91i −0.569936 0.987158i −0.996572 0.0827346i \(-0.973635\pi\)
0.426636 0.904424i \(-0.359699\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −9375.33 4630.82i −1.29365 0.638981i
\(36\) 0 0
\(37\) −7404.84 + 12825.6i −0.889224 + 1.54018i −0.0484303 + 0.998827i \(0.515422\pi\)
−0.840794 + 0.541355i \(0.817911\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 9837.31 0.913938 0.456969 0.889483i \(-0.348935\pi\)
0.456969 + 0.889483i \(0.348935\pi\)
\(42\) 0 0
\(43\) 18661.0 1.53909 0.769546 0.638591i \(-0.220482\pi\)
0.769546 + 0.638591i \(0.220482\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 699.243 1211.12i 0.0461725 0.0799731i −0.842016 0.539453i \(-0.818631\pi\)
0.888188 + 0.459480i \(0.151964\pi\)
\(48\) 0 0
\(49\) −16666.0 + 2172.54i −0.991610 + 0.129264i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −9880.41 17113.4i −0.483154 0.836847i 0.516659 0.856191i \(-0.327175\pi\)
−0.999813 + 0.0193444i \(0.993842\pi\)
\(54\) 0 0
\(55\) −40871.4 −1.82185
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 13585.4 + 23530.6i 0.508092 + 0.880041i 0.999956 + 0.00936932i \(0.00298239\pi\)
−0.491864 + 0.870672i \(0.663684\pi\)
\(60\) 0 0
\(61\) −7083.72 + 12269.4i −0.243746 + 0.422180i −0.961778 0.273830i \(-0.911710\pi\)
0.718033 + 0.696009i \(0.245043\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 15780.1 27331.9i 0.463260 0.802391i
\(66\) 0 0
\(67\) 25223.0 + 43687.6i 0.686453 + 1.18897i 0.972978 + 0.230898i \(0.0741664\pi\)
−0.286525 + 0.958073i \(0.592500\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 45279.2 1.06599 0.532995 0.846118i \(-0.321066\pi\)
0.532995 + 0.846118i \(0.321066\pi\)
\(72\) 0 0
\(73\) 3783.41 + 6553.06i 0.0830953 + 0.143925i 0.904578 0.426308i \(-0.140186\pi\)
−0.821483 + 0.570233i \(0.806853\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −54644.7 + 36462.2i −1.05032 + 0.700834i
\(78\) 0 0
\(79\) −2414.96 + 4182.83i −0.0435353 + 0.0754054i −0.886972 0.461823i \(-0.847195\pi\)
0.843437 + 0.537229i \(0.180529\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 14067.3 0.224138 0.112069 0.993700i \(-0.464252\pi\)
0.112069 + 0.993700i \(0.464252\pi\)
\(84\) 0 0
\(85\) −72544.7 −1.08908
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −44776.9 + 77555.9i −0.599210 + 1.03786i 0.393727 + 0.919227i \(0.371185\pi\)
−0.992938 + 0.118636i \(0.962148\pi\)
\(90\) 0 0
\(91\) −3285.47 50620.2i −0.0415904 0.640797i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 13563.2 + 23492.1i 0.154189 + 0.267063i
\(96\) 0 0
\(97\) 7209.53 0.0777997 0.0388998 0.999243i \(-0.487615\pi\)
0.0388998 + 0.999243i \(0.487615\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −97609.2 169064.i −0.952110 1.64910i −0.740847 0.671674i \(-0.765576\pi\)
−0.211263 0.977429i \(-0.567758\pi\)
\(102\) 0 0
\(103\) 11816.8 20467.2i 0.109750 0.190093i −0.805919 0.592026i \(-0.798328\pi\)
0.915669 + 0.401933i \(0.131662\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −53546.1 + 92744.5i −0.452135 + 0.783121i −0.998518 0.0544144i \(-0.982671\pi\)
0.546383 + 0.837535i \(0.316004\pi\)
\(108\) 0 0
\(109\) −23110.7 40029.0i −0.186315 0.322707i 0.757704 0.652598i \(-0.226321\pi\)
−0.944019 + 0.329892i \(0.892988\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −55520.3 −0.409030 −0.204515 0.978863i \(-0.565562\pi\)
−0.204515 + 0.978863i \(0.565562\pi\)
\(114\) 0 0
\(115\) −196487. 340326.i −1.38545 2.39966i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −96991.7 + 64718.5i −0.627866 + 0.418949i
\(120\) 0 0
\(121\) −47859.5 + 82895.1i −0.297170 + 0.514713i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −20624.8 −0.118063
\(126\) 0 0
\(127\) −230185. −1.26639 −0.633195 0.773992i \(-0.718257\pi\)
−0.633195 + 0.773992i \(0.718257\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 99500.5 172340.i 0.506579 0.877420i −0.493392 0.869807i \(-0.664243\pi\)
0.999971 0.00761308i \(-0.00242334\pi\)
\(132\) 0 0
\(133\) 39091.6 + 19308.8i 0.191626 + 0.0946512i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 63765.5 + 110445.i 0.290258 + 0.502741i 0.973871 0.227104i \(-0.0729256\pi\)
−0.683613 + 0.729845i \(0.739592\pi\)
\(138\) 0 0
\(139\) 17259.8 0.0757703 0.0378851 0.999282i \(-0.487938\pi\)
0.0378851 + 0.999282i \(0.487938\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −99136.5 171709.i −0.405409 0.702189i
\(144\) 0 0
\(145\) −22043.4 + 38180.4i −0.0870682 + 0.150806i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −417.263 + 722.720i −0.00153973 + 0.00266689i −0.866794 0.498666i \(-0.833823\pi\)
0.865255 + 0.501333i \(0.167157\pi\)
\(150\) 0 0
\(151\) −20469.3 35453.9i −0.0730569 0.126538i 0.827183 0.561933i \(-0.189942\pi\)
−0.900240 + 0.435395i \(0.856609\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −491935. −1.64467
\(156\) 0 0
\(157\) −16444.1 28482.0i −0.0532428 0.0922193i 0.838176 0.545400i \(-0.183622\pi\)
−0.891418 + 0.453181i \(0.850289\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −566313. 279723.i −1.72184 0.850479i
\(162\) 0 0
\(163\) 35149.3 60880.4i 0.103621 0.179477i −0.809553 0.587047i \(-0.800290\pi\)
0.913174 + 0.407570i \(0.133624\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −227937. −0.632447 −0.316224 0.948685i \(-0.602415\pi\)
−0.316224 + 0.948685i \(0.602415\pi\)
\(168\) 0 0
\(169\) −218190. −0.587650
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −16895.1 + 29263.2i −0.0429186 + 0.0743372i −0.886687 0.462371i \(-0.846999\pi\)
0.843768 + 0.536708i \(0.180332\pi\)
\(174\) 0 0
\(175\) −364572. + 243264.i −0.899888 + 0.600458i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 307606. + 532789.i 0.717567 + 1.24286i 0.961961 + 0.273186i \(0.0880775\pi\)
−0.244394 + 0.969676i \(0.578589\pi\)
\(180\) 0 0
\(181\) −678787. −1.54006 −0.770029 0.638008i \(-0.779758\pi\)
−0.770029 + 0.638008i \(0.779758\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 597259. + 1.03448e6i 1.28302 + 2.22226i
\(186\) 0 0
\(187\) −227877. + 394695.i −0.476537 + 0.825386i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 327588. 567398.i 0.649747 1.12539i −0.333436 0.942773i \(-0.608208\pi\)
0.983183 0.182622i \(-0.0584584\pi\)
\(192\) 0 0
\(193\) 160230. + 277526.i 0.309635 + 0.536303i 0.978282 0.207276i \(-0.0664598\pi\)
−0.668648 + 0.743579i \(0.733126\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −202103. −0.371029 −0.185514 0.982642i \(-0.559395\pi\)
−0.185514 + 0.982642i \(0.559395\pi\)
\(198\) 0 0
\(199\) −319170. 552819.i −0.571333 0.989578i −0.996429 0.0844301i \(-0.973093\pi\)
0.425096 0.905148i \(-0.360240\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 4589.53 + 70712.2i 0.00781678 + 0.120435i
\(204\) 0 0
\(205\) 396729. 687154.i 0.659339 1.14201i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 170418. 0.269868
\(210\) 0 0
\(211\) −517370. −0.800010 −0.400005 0.916513i \(-0.630992\pi\)
−0.400005 + 0.916513i \(0.630992\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 752581. 1.30351e6i 1.11034 1.92317i
\(216\) 0 0
\(217\) −657713. + 438865.i −0.948172 + 0.632676i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −175962. 304776.i −0.242348 0.419759i
\(222\) 0 0
\(223\) 755836. 1.01781 0.508904 0.860824i \(-0.330051\pi\)
0.508904 + 0.860824i \(0.330051\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −440624. 763184.i −0.567550 0.983025i −0.996807 0.0798426i \(-0.974558\pi\)
0.429258 0.903182i \(-0.358775\pi\)
\(228\) 0 0
\(229\) 139756. 242065.i 0.176109 0.305031i −0.764435 0.644701i \(-0.776982\pi\)
0.940545 + 0.339670i \(0.110315\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −533391. + 923860.i −0.643659 + 1.11485i 0.340950 + 0.940081i \(0.389251\pi\)
−0.984609 + 0.174769i \(0.944082\pi\)
\(234\) 0 0
\(235\) −56399.5 97686.8i −0.0666201 0.115389i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 270341. 0.306138 0.153069 0.988215i \(-0.451084\pi\)
0.153069 + 0.988215i \(0.451084\pi\)
\(240\) 0 0
\(241\) 657034. + 1.13802e6i 0.728694 + 1.26214i 0.957435 + 0.288648i \(0.0932058\pi\)
−0.228741 + 0.973487i \(0.573461\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −520367. + 1.25177e6i −0.553853 + 1.33232i
\(246\) 0 0
\(247\) −65796.9 + 113964.i −0.0686220 + 0.118857i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 1.31291e6 1.31538 0.657690 0.753289i \(-0.271534\pi\)
0.657690 + 0.753289i \(0.271534\pi\)
\(252\) 0 0
\(253\) −2.46882e6 −2.42487
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 353720. 612661.i 0.334062 0.578612i −0.649242 0.760582i \(-0.724914\pi\)
0.983304 + 0.181970i \(0.0582472\pi\)
\(258\) 0 0
\(259\) 1.72141e6 + 850270.i 1.59454 + 0.787603i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −369721. 640376.i −0.329598 0.570881i 0.652834 0.757501i \(-0.273580\pi\)
−0.982432 + 0.186620i \(0.940247\pi\)
\(264\) 0 0
\(265\) −1.59387e6 −1.39424
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −619595. 1.07317e6i −0.522068 0.904249i −0.999670 0.0256724i \(-0.991827\pi\)
0.477602 0.878576i \(-0.341506\pi\)
\(270\) 0 0
\(271\) 257391. 445815.i 0.212898 0.368749i −0.739723 0.672912i \(-0.765043\pi\)
0.952620 + 0.304163i \(0.0983766\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −856544. + 1.48358e6i −0.682996 + 1.18298i
\(276\) 0 0
\(277\) 648520. + 1.12327e6i 0.507837 + 0.879599i 0.999959 + 0.00907261i \(0.00288794\pi\)
−0.492122 + 0.870526i \(0.663779\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −2.61884e6 −1.97853 −0.989265 0.146133i \(-0.953317\pi\)
−0.989265 + 0.146133i \(0.953317\pi\)
\(282\) 0 0
\(283\) −20922.9 36239.4i −0.0155294 0.0268977i 0.858156 0.513389i \(-0.171610\pi\)
−0.873686 + 0.486491i \(0.838277\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −82600.4 1.27265e6i −0.0591940 0.912019i
\(288\) 0 0
\(289\) 305458. 529069.i 0.215133 0.372621i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1.94837e6 1.32588 0.662938 0.748674i \(-0.269309\pi\)
0.662938 + 0.748674i \(0.269309\pi\)
\(294\) 0 0
\(295\) 2.19154e6 1.46620
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 953188. 1.65097e6i 0.616596 1.06798i
\(300\) 0 0
\(301\) −156690. 2.41417e6i −0.0996840 1.53586i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 571358. + 989622.i 0.351689 + 0.609143i
\(306\) 0 0
\(307\) −209113. −0.126630 −0.0633149 0.997994i \(-0.520167\pi\)
−0.0633149 + 0.997994i \(0.520167\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −46862.0 81167.3i −0.0274739 0.0475861i 0.851962 0.523604i \(-0.175413\pi\)
−0.879435 + 0.476018i \(0.842080\pi\)
\(312\) 0 0
\(313\) 250057. 433112.i 0.144271 0.249884i −0.784830 0.619711i \(-0.787250\pi\)
0.929101 + 0.369827i \(0.120583\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −737146. + 1.27677e6i −0.412007 + 0.713618i −0.995109 0.0987813i \(-0.968506\pi\)
0.583102 + 0.812399i \(0.301839\pi\)
\(318\) 0 0
\(319\) 138485. + 239864.i 0.0761952 + 0.131974i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 302484. 0.161323
\(324\) 0 0
\(325\) −661407. 1.14559e6i −0.347345 0.601618i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −162554. 80291.4i −0.0827957 0.0408958i
\(330\) 0 0
\(331\) 1.18818e6 2.05800e6i 0.596093 1.03246i −0.397299 0.917689i \(-0.630052\pi\)
0.993392 0.114774i \(-0.0366143\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 4.06888e6 1.98090
\(336\) 0 0
\(337\) 2.56857e6 1.23202 0.616008 0.787740i \(-0.288749\pi\)
0.616008 + 0.787740i \(0.288749\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −1.54526e6 + 2.67647e6i −0.719642 + 1.24646i
\(342\) 0 0
\(343\) 420999. + 2.13783e6i 0.193217 + 0.981156i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −306273. 530480.i −0.136548 0.236508i 0.789640 0.613571i \(-0.210267\pi\)
−0.926188 + 0.377063i \(0.876934\pi\)
\(348\) 0 0
\(349\) 3.83323e6 1.68462 0.842310 0.538994i \(-0.181195\pi\)
0.842310 + 0.538994i \(0.181195\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 1.42925e6 + 2.47554e6i 0.610481 + 1.05738i 0.991159 + 0.132676i \(0.0423570\pi\)
−0.380679 + 0.924707i \(0.624310\pi\)
\(354\) 0 0
\(355\) 1.82606e6 3.16284e6i 0.769034 1.33201i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 193874. 335800.i 0.0793933 0.137513i −0.823595 0.567178i \(-0.808035\pi\)
0.902988 + 0.429665i \(0.141368\pi\)
\(360\) 0 0
\(361\) 1.18150e6 + 2.04641e6i 0.477160 + 0.826466i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 610325. 0.239789
\(366\) 0 0
\(367\) −96154.9 166545.i −0.0372654 0.0645456i 0.846791 0.531926i \(-0.178531\pi\)
−0.884057 + 0.467380i \(0.845198\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −2.13099e6 + 1.42192e6i −0.803797 + 0.536340i
\(372\) 0 0
\(373\) 1.13262e6 1.96175e6i 0.421514 0.730083i −0.574574 0.818453i \(-0.694832\pi\)
0.996088 + 0.0883694i \(0.0281656\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −213872. −0.0774997
\(378\) 0 0
\(379\) 4.46258e6 1.59583 0.797917 0.602767i \(-0.205935\pi\)
0.797917 + 0.602767i \(0.205935\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −902218. + 1.56269e6i −0.314279 + 0.544346i −0.979284 0.202492i \(-0.935096\pi\)
0.665005 + 0.746839i \(0.268429\pi\)
\(384\) 0 0
\(385\) 343182. + 5.28752e6i 0.117998 + 1.81803i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 55455.6 + 96051.9i 0.0185811 + 0.0321834i 0.875166 0.483822i \(-0.160752\pi\)
−0.856585 + 0.516005i \(0.827418\pi\)
\(390\) 0 0
\(391\) −4.38203e6 −1.44955
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 194786. + 337379.i 0.0628151 + 0.108799i
\(396\) 0 0
\(397\) −2.74389e6 + 4.75256e6i −0.873758 + 1.51339i −0.0156779 + 0.999877i \(0.504991\pi\)
−0.858080 + 0.513516i \(0.828343\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 467219. 809247.i 0.145097 0.251316i −0.784312 0.620367i \(-0.786984\pi\)
0.929409 + 0.369051i \(0.120317\pi\)
\(402\) 0 0
\(403\) −1.19322e6 2.06672e6i −0.365982 0.633899i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 7.50443e6 2.24560
\(408\) 0 0
\(409\) 738463. + 1.27905e6i 0.218283 + 0.378078i 0.954283 0.298904i \(-0.0966210\pi\)
−0.736000 + 0.676981i \(0.763288\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 2.93007e6 1.95512e6i 0.845285 0.564024i
\(414\) 0 0
\(415\) 567320. 982627.i 0.161699 0.280071i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −2.66235e6 −0.740849 −0.370424 0.928863i \(-0.620788\pi\)
−0.370424 + 0.928863i \(0.620788\pi\)
\(420\) 0 0
\(421\) −1.02032e6 −0.280563 −0.140282 0.990112i \(-0.544801\pi\)
−0.140282 + 0.990112i \(0.544801\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −1.52032e6 + 2.63328e6i −0.408285 + 0.707170i
\(426\) 0 0
\(427\) 1.64676e6 + 813396.i 0.437080 + 0.215890i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −100134. 173436.i −0.0259649 0.0449725i 0.852751 0.522318i \(-0.174932\pi\)
−0.878716 + 0.477345i \(0.841599\pi\)
\(432\) 0 0
\(433\) 5.84752e6 1.49883 0.749415 0.662101i \(-0.230335\pi\)
0.749415 + 0.662101i \(0.230335\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 819278. + 1.41903e6i 0.205224 + 0.355458i
\(438\) 0 0
\(439\) −3.16278e6 + 5.47809e6i −0.783262 + 1.35665i 0.146769 + 0.989171i \(0.453112\pi\)
−0.930032 + 0.367479i \(0.880221\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 1.10193e6 1.90859e6i 0.266774 0.462066i −0.701253 0.712913i \(-0.747376\pi\)
0.968027 + 0.250846i \(0.0807089\pi\)
\(444\) 0 0
\(445\) 3.61162e6 + 6.25550e6i 0.864573 + 1.49748i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 2.66634e6 0.624166 0.312083 0.950055i \(-0.398973\pi\)
0.312083 + 0.950055i \(0.398973\pi\)
\(450\) 0 0
\(451\) −2.49241e6 4.31697e6i −0.577002 0.999397i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −3.66841e6 1.81196e6i −0.830710 0.410319i
\(456\) 0 0
\(457\) 3.04406e6 5.27247e6i 0.681809 1.18093i −0.292619 0.956229i \(-0.594527\pi\)
0.974428 0.224699i \(-0.0721400\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −381317. −0.0835668 −0.0417834 0.999127i \(-0.513304\pi\)
−0.0417834 + 0.999127i \(0.513304\pi\)
\(462\) 0 0
\(463\) −99697.8 −0.0216139 −0.0108069 0.999942i \(-0.503440\pi\)
−0.0108069 + 0.999942i \(0.503440\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 2.81889e6 4.88246e6i 0.598116 1.03597i −0.394983 0.918689i \(-0.629249\pi\)
0.993099 0.117279i \(-0.0374172\pi\)
\(468\) 0 0
\(469\) 5.44006e6 3.62993e6i 1.14201 0.762019i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −4.72801e6 8.18915e6i −0.971685 1.68301i
\(474\) 0 0
\(475\) 1.13698e6 0.231216
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −870394. 1.50757e6i −0.173331 0.300219i 0.766251 0.642541i \(-0.222120\pi\)
−0.939583 + 0.342322i \(0.888787\pi\)
\(480\) 0 0
\(481\) −2.89739e6 + 5.01843e6i −0.571011 + 0.989020i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 290753. 503599.i 0.0561268 0.0972144i
\(486\) 0 0
\(487\) −2.41235e6 4.17832e6i −0.460913 0.798324i 0.538094 0.842885i \(-0.319145\pi\)
−0.999007 + 0.0445607i \(0.985811\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 4.46085e6 0.835053 0.417527 0.908665i \(-0.362897\pi\)
0.417527 + 0.908665i \(0.362897\pi\)
\(492\) 0 0
\(493\) 245805. + 425746.i 0.0455484 + 0.0788921i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −380193. 5.85775e6i −0.0690420 1.06375i
\(498\) 0 0
\(499\) 370378. 641513.i 0.0665876 0.115333i −0.830810 0.556557i \(-0.812122\pi\)
0.897397 + 0.441224i \(0.145455\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 3.74899e6 0.660686 0.330343 0.943861i \(-0.392836\pi\)
0.330343 + 0.943861i \(0.392836\pi\)
\(504\) 0 0
\(505\) −1.57459e7 −2.74751
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −1.33228e6 + 2.30757e6i −0.227929 + 0.394785i −0.957194 0.289446i \(-0.906529\pi\)
0.729265 + 0.684231i \(0.239862\pi\)
\(510\) 0 0
\(511\) 815999. 544482.i 0.138241 0.0922426i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −953116. 1.65085e6i −0.158353 0.274276i
\(516\) 0 0
\(517\) −708647. −0.116601
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 416312. + 721073.i 0.0671930 + 0.116382i 0.897665 0.440679i \(-0.145262\pi\)
−0.830472 + 0.557061i \(0.811929\pi\)
\(522\) 0 0
\(523\) 936507. 1.62208e6i 0.149712 0.259309i −0.781409 0.624019i \(-0.785499\pi\)
0.931121 + 0.364710i \(0.118832\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −2.74277e6 + 4.75061e6i −0.430192 + 0.745114i
\(528\) 0 0
\(529\) −8.65056e6 1.49832e7i −1.34402 2.32791i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 3.84918e6 0.586881
\(534\) 0 0
\(535\) 4.31892e6 + 7.48058e6i 0.652364 + 1.12993i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 5.17593e6 + 6.76321e6i 0.767390 + 1.00272i
\(540\) 0 0
\(541\) −2.23793e6 + 3.87621e6i −0.328741 + 0.569395i −0.982262 0.187512i \(-0.939958\pi\)
0.653522 + 0.756908i \(0.273291\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −3.72813e6 −0.537650
\(546\) 0 0
\(547\) 6.12226e6 0.874869 0.437435 0.899250i \(-0.355887\pi\)
0.437435 + 0.899250i \(0.355887\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 91912.9 159198.i 0.0128973 0.0223387i
\(552\) 0 0
\(553\) 561409. + 277300.i 0.0780668 + 0.0385601i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −4.76272e6 8.24927e6i −0.650454 1.12662i −0.983013 0.183537i \(-0.941245\pi\)
0.332559 0.943083i \(-0.392088\pi\)
\(558\) 0 0
\(559\) 7.30176e6 0.988321
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 4.04958e6 + 7.01408e6i 0.538442 + 0.932609i 0.998988 + 0.0449731i \(0.0143202\pi\)
−0.460546 + 0.887636i \(0.652346\pi\)
\(564\) 0 0
\(565\) −2.23908e6 + 3.87819e6i −0.295085 + 0.511103i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −3.69587e6 + 6.40144e6i −0.478560 + 0.828890i −0.999698 0.0245827i \(-0.992174\pi\)
0.521138 + 0.853472i \(0.325508\pi\)
\(570\) 0 0
\(571\) −1.73172e6 2.99943e6i −0.222273 0.384989i 0.733225 0.679986i \(-0.238014\pi\)
−0.955498 + 0.294998i \(0.904681\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −1.64712e7 −2.07757
\(576\) 0 0
\(577\) −2.58289e6 4.47369e6i −0.322973 0.559405i 0.658127 0.752907i \(-0.271349\pi\)
−0.981100 + 0.193502i \(0.938015\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −118118. 1.81988e6i −0.0145170 0.223667i
\(582\) 0 0
\(583\) −5.00665e6 + 8.67177e6i −0.610065 + 1.05666i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −4.08305e6 −0.489090 −0.244545 0.969638i \(-0.578639\pi\)
−0.244545 + 0.969638i \(0.578639\pi\)
\(588\) 0 0
\(589\) 2.05118e6 0.243622
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −3.91092e6 + 6.77391e6i −0.456712 + 0.791048i −0.998785 0.0492833i \(-0.984306\pi\)
0.542073 + 0.840331i \(0.317640\pi\)
\(594\) 0 0
\(595\) 609132. + 9.38508e6i 0.0705373 + 1.08679i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −3.15891e6 5.47139e6i −0.359725 0.623061i 0.628190 0.778060i \(-0.283796\pi\)
−0.987915 + 0.154999i \(0.950463\pi\)
\(600\) 0 0
\(601\) −1.68407e6 −0.190184 −0.0950919 0.995468i \(-0.530315\pi\)
−0.0950919 + 0.995468i \(0.530315\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 3.86025e6 + 6.68615e6i 0.428773 + 0.742656i
\(606\) 0 0
\(607\) −2.72757e6 + 4.72429e6i −0.300472 + 0.520432i −0.976243 0.216679i \(-0.930477\pi\)
0.675771 + 0.737112i \(0.263811\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 273602. 473893.i 0.0296494 0.0513543i
\(612\) 0 0
\(613\) 4.06685e6 + 7.04399e6i 0.437127 + 0.757125i 0.997467 0.0711373i \(-0.0226629\pi\)
−0.560340 + 0.828263i \(0.689330\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −2.83775e6 −0.300097 −0.150048 0.988679i \(-0.547943\pi\)
−0.150048 + 0.988679i \(0.547943\pi\)
\(618\) 0 0
\(619\) −6.19545e6 1.07308e7i −0.649900 1.12566i −0.983146 0.182820i \(-0.941478\pi\)
0.333247 0.942840i \(-0.391856\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 1.04094e7 + 5.14157e6i 1.07449 + 0.530732i
\(624\) 0 0
\(625\) 4.45058e6 7.70863e6i 0.455739 0.789363i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1.33200e7 1.34239
\(630\) 0 0
\(631\) 3.25659e6 0.325604 0.162802 0.986659i \(-0.447947\pi\)
0.162802 + 0.986659i \(0.447947\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −9.28312e6 + 1.60788e7i −0.913608 + 1.58241i
\(636\) 0 0
\(637\) −6.52113e6 + 850079.i −0.636757 + 0.0830062i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 1.15075e6 + 1.99316e6i 0.110621 + 0.191601i 0.916021 0.401131i \(-0.131383\pi\)
−0.805400 + 0.592732i \(0.798049\pi\)
\(642\) 0 0
\(643\) −8.68991e6 −0.828872 −0.414436 0.910078i \(-0.636021\pi\)
−0.414436 + 0.910078i \(0.636021\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −1.14216e6 1.97828e6i −0.107267 0.185792i 0.807395 0.590011i \(-0.200877\pi\)
−0.914662 + 0.404219i \(0.867543\pi\)
\(648\) 0 0
\(649\) 6.88406e6 1.19235e7i 0.641554 1.11120i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1.08384e6 1.87726e6i 0.0994674 0.172283i −0.811997 0.583662i \(-0.801619\pi\)
0.911464 + 0.411379i \(0.134953\pi\)
\(654\) 0 0
\(655\) −8.02550e6 1.39006e7i −0.730919 1.26599i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −1.18596e7 −1.06380 −0.531898 0.846809i \(-0.678521\pi\)
−0.531898 + 0.846809i \(0.678521\pi\)
\(660\) 0 0
\(661\) −713359. 1.23557e6i −0.0635045 0.109993i 0.832525 0.553987i \(-0.186894\pi\)
−0.896030 + 0.443994i \(0.853561\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 2.92528e6 1.95192e6i 0.256515 0.171162i
\(666\) 0 0
\(667\) −1.33152e6 + 2.30627e6i −0.115887 + 0.200722i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 7.17899e6 0.615541
\(672\) 0 0
\(673\) −2.07459e7 −1.76561 −0.882806 0.469738i \(-0.844348\pi\)
−0.882806 + 0.469738i \(0.844348\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −6.42895e6 + 1.11353e7i −0.539098 + 0.933746i 0.459854 + 0.887994i \(0.347902\pi\)
−0.998953 + 0.0457516i \(0.985432\pi\)
\(678\) 0 0
\(679\) −60535.9 932695.i −0.00503893 0.0776363i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −9.64820e6 1.67112e7i −0.791397 1.37074i −0.925102 0.379719i \(-0.876021\pi\)
0.133705 0.991021i \(-0.457313\pi\)
\(684\) 0 0
\(685\) 1.02864e7 0.837599
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −3.86604e6 6.69618e6i −0.310255 0.537377i
\(690\) 0 0
\(691\) −9.14995e6 + 1.58482e7i −0.728993 + 1.26265i 0.228316 + 0.973587i \(0.426678\pi\)
−0.957309 + 0.289066i \(0.906655\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 696070. 1.20563e6i 0.0546627 0.0946786i
\(696\) 0 0
\(697\) −4.42389e6 7.66241e6i −0.344924 0.597425i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 1.61515e7 1.24142 0.620710 0.784040i \(-0.286844\pi\)
0.620710 + 0.784040i \(0.286844\pi\)
\(702\) 0 0
\(703\) −2.49035e6 4.31341e6i −0.190052 0.329179i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −2.10522e7 + 1.40472e7i −1.58397 + 1.05692i
\(708\) 0 0
\(709\) −749950. + 1.29895e6i −0.0560295 + 0.0970459i −0.892680 0.450692i \(-0.851177\pi\)
0.836650 + 0.547738i \(0.184511\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −2.97151e7 −2.18904
\(714\) 0 0
\(715\) −1.59923e7 −1.16989
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 8.78693e6 1.52194e7i 0.633892 1.09793i −0.352857 0.935677i \(-0.614790\pi\)
0.986749 0.162255i \(-0.0518768\pi\)
\(720\) 0 0
\(721\) −2.74706e6 1.35687e6i −0.196802 0.0972078i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 923931. + 1.60030e6i 0.0652822 + 0.113072i
\(726\) 0 0
\(727\) −2.16304e7 −1.51785 −0.758923 0.651180i \(-0.774274\pi\)
−0.758923 + 0.651180i \(0.774274\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −8.39198e6 1.45353e7i −0.580859 1.00608i
\(732\) 0 0
\(733\) 6.27682e6 1.08718e7i 0.431499 0.747378i −0.565504 0.824746i \(-0.691318\pi\)
0.997003 + 0.0773678i \(0.0246516\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.27811e7 2.21376e7i 0.866764 1.50128i
\(738\) 0 0
\(739\) 378866. + 656215.i 0.0255196 + 0.0442013i 0.878503 0.477737i \(-0.158543\pi\)
−0.852984 + 0.521938i \(0.825209\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −2.40878e7 −1.60075 −0.800377 0.599497i \(-0.795367\pi\)
−0.800377 + 0.599497i \(0.795367\pi\)
\(744\) 0 0
\(745\) 33655.6 + 58293.2i 0.00222160 + 0.00384793i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 1.24479e7 + 6.14849e6i 0.810760 + 0.400464i
\(750\) 0 0
\(751\) 6.88436e6 1.19241e7i 0.445414 0.771480i −0.552667 0.833402i \(-0.686390\pi\)
0.998081 + 0.0619225i \(0.0197232\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −3.30203e6 −0.210821
\(756\) 0 0
\(757\) 2.43930e7 1.54713 0.773564 0.633718i \(-0.218472\pi\)
0.773564 + 0.633718i \(0.218472\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1.28001e7 2.21704e7i 0.801220 1.38775i −0.117594 0.993062i \(-0.537518\pi\)
0.918814 0.394692i \(-0.129149\pi\)
\(762\) 0 0
\(763\) −4.98448e6 + 3.32594e6i −0.309962 + 0.206825i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 5.31574e6 + 9.20713e6i 0.326269 + 0.565114i
\(768\) 0 0
\(769\) 2.09807e7 1.27939 0.639697 0.768627i \(-0.279060\pi\)
0.639697 + 0.768627i \(0.279060\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −5.64645e6 9.77993e6i −0.339881 0.588691i 0.644529 0.764580i \(-0.277053\pi\)
−0.984410 + 0.175889i \(0.943720\pi\)
\(774\) 0 0
\(775\) −1.03095e7 + 1.78566e7i −0.616572 + 1.06793i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −1.65421e6 + 2.86518e6i −0.0976668 + 0.169164i
\(780\) 0 0
\(781\) −1.14721e7 1.98702e7i −0.672998 1.16567i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −2.65270e6 −0.153643
\(786\) 0 0
\(787\) 1.18585e7 + 2.05395e7i 0.682482 + 1.18209i 0.974221 + 0.225596i \(0.0724329\pi\)
−0.291739 + 0.956498i \(0.594234\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 466184. + 7.18264e6i 0.0264921 + 0.408172i
\(792\) 0 0
\(793\) −2.77174e6 + 4.80080e6i −0.156520 + 0.271101i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 2.73492e7 1.52510 0.762550 0.646929i \(-0.223947\pi\)
0.762550 + 0.646929i \(0.223947\pi\)
\(798\) 0 0
\(799\) −1.25781e6 −0.0697026
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 1.91715e6 3.32060e6i 0.104922 0.181730i
\(804\) 0 0
\(805\) −4.23780e7 + 2.82771e7i −2.30489 + 1.53796i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −5.46781e6 9.47052e6i −0.293726 0.508748i 0.680962 0.732319i \(-0.261562\pi\)
−0.974688 + 0.223571i \(0.928229\pi\)
\(810\) 0 0
\(811\) 3.14053e7 1.67668 0.838342 0.545144i \(-0.183525\pi\)
0.838342 + 0.545144i \(0.183525\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −2.83507e6 4.91049e6i −0.149510 0.258959i
\(816\) 0 0
\(817\) −3.13798e6 + 5.43514e6i −0.164473 + 0.284876i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1.56250e7 2.70634e7i 0.809028 1.40128i −0.104510 0.994524i \(-0.533327\pi\)
0.913538 0.406754i \(-0.133339\pi\)
\(822\) 0 0
\(823\) −1.83382e7 3.17627e7i −0.943749 1.63462i −0.758236 0.651980i \(-0.773939\pi\)
−0.185513 0.982642i \(-0.559395\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1.67620e7 0.852242 0.426121 0.904666i \(-0.359880\pi\)
0.426121 + 0.904666i \(0.359880\pi\)
\(828\) 0 0
\(829\) 595242. + 1.03099e6i 0.0300820 + 0.0521036i 0.880674 0.473722i \(-0.157090\pi\)
−0.850592 + 0.525826i \(0.823756\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 9.18701e6 + 1.20044e7i 0.458735 + 0.599413i
\(834\) 0 0
\(835\) −9.19248e6 + 1.59218e7i −0.456264 + 0.790273i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −8.21562e6 −0.402935 −0.201468 0.979495i \(-0.564571\pi\)
−0.201468 + 0.979495i \(0.564571\pi\)
\(840\) 0 0
\(841\) −2.02124e7 −0.985434
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −8.79939e6 + 1.52410e7i −0.423946 + 0.734297i
\(846\) 0 0
\(847\) 1.11260e7 + 5.49553e6i 0.532880 + 0.263209i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 3.60772e7 + 6.24875e7i 1.70769 + 2.95780i
\(852\) 0 0
\(853\) 2.55133e7 1.20059 0.600295 0.799779i \(-0.295050\pi\)
0.600295 + 0.799779i \(0.295050\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1.43863e7 2.49178e7i −0.669109 1.15893i −0.978154 0.207884i \(-0.933342\pi\)
0.309044 0.951048i \(-0.399991\pi\)
\(858\) 0 0
\(859\) −5.17972e6 + 8.97154e6i −0.239510 + 0.414843i −0.960574 0.278025i \(-0.910320\pi\)
0.721064 + 0.692869i \(0.243653\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 2.87161e6 4.97377e6i 0.131250 0.227331i −0.792909 0.609340i \(-0.791434\pi\)
0.924159 + 0.382009i \(0.124768\pi\)
\(864\) 0 0
\(865\) 1.36272e6 + 2.36031e6i 0.0619253 + 0.107258i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 2.44744e6 0.109942
\(870\) 0 0
\(871\) 9.86936e6 + 1.70942e7i 0.440802 + 0.763491i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 173179. + 2.66822e6i 0.00764671 + 0.117815i
\(876\) 0 0
\(877\) 1.80935e7 3.13389e7i 0.794372 1.37589i −0.128866 0.991662i \(-0.541134\pi\)
0.923237 0.384230i \(-0.125533\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 2.20285e7 0.956192 0.478096 0.878308i \(-0.341327\pi\)
0.478096 + 0.878308i \(0.341327\pi\)
\(882\) 0 0
\(883\) −3.82050e7 −1.64899 −0.824497 0.565867i \(-0.808542\pi\)
−0.824497 + 0.565867i \(0.808542\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −1.87196e7 + 3.24233e7i −0.798890 + 1.38372i 0.121449 + 0.992598i \(0.461246\pi\)
−0.920339 + 0.391121i \(0.872087\pi\)
\(888\) 0 0
\(889\) 1.93278e6 + 2.97789e7i 0.0820216 + 1.26373i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 235165. + 407317.i 0.00986832 + 0.0170924i
\(894\) 0 0
\(895\) 4.96218e7 2.07069
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1.66683e6 + 2.88704e6i 0.0687849 + 0.119139i
\(900\) 0 0
\(901\) −8.88655e6 + 1.53920e7i −0.364688 + 0.631658i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −2.73748e7 + 4.74145e7i −1.11104 + 1.92438i
\(906\) 0 0
\(907\) 1.19207e7 + 2.06473e7i 0.481154 + 0.833383i 0.999766 0.0216263i \(-0.00688439\pi\)
−0.518612 + 0.855010i \(0.673551\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −1.78434e7 −0.712332 −0.356166 0.934423i \(-0.615916\pi\)
−0.356166 + 0.934423i \(0.615916\pi\)
\(912\) 0 0
\(913\) −3.56413e6 6.17325e6i −0.141506 0.245096i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −2.31310e7 1.14253e7i −0.908388 0.448686i
\(918\) 0 0
\(919\) −8.21451e6 + 1.42280e7i −0.320843 + 0.555717i −0.980662 0.195708i \(-0.937300\pi\)
0.659819 + 0.751425i \(0.270633\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1.77170e7 0.684520
\(924\) 0 0
\(925\) 5.00672e7 1.92397
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −6.82722e6 + 1.18251e7i −0.259540 + 0.449537i −0.966119 0.258098i \(-0.916904\pi\)
0.706579 + 0.707635i \(0.250238\pi\)
\(930\) 0 0
\(931\) 2.16973e6 5.21940e6i 0.0820412 0.197354i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 1.83801e7 + 3.18353e7i 0.687573 + 1.19091i
\(936\) 0 0
\(937\) 3.81848e7 1.42083 0.710414 0.703784i \(-0.248508\pi\)
0.710414 + 0.703784i \(0.248508\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 3.51554e6 + 6.08909e6i 0.129425 + 0.224170i 0.923454 0.383709i \(-0.125354\pi\)
−0.794029 + 0.607880i \(0.792020\pi\)
\(942\) 0 0
\(943\) 2.39642e7 4.15073e7i 0.877575 1.52000i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1.10099e7 1.90698e7i 0.398942 0.690988i −0.594653 0.803982i \(-0.702711\pi\)
0.993596 + 0.112994i \(0.0360440\pi\)
\(948\) 0 0
\(949\) 1.48039e6 + 2.56410e6i 0.0533592 + 0.0924209i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −578419. −0.0206305 −0.0103153 0.999947i \(-0.503284\pi\)
−0.0103153 + 0.999947i \(0.503284\pi\)
\(954\) 0 0
\(955\) −2.64226e7 4.57652e7i −0.937489 1.62378i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1.37528e7 9.17668e6i 0.482886 0.322210i
\(960\) 0 0
\(961\) −4.28447e6 + 7.42093e6i −0.149654 + 0.259209i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 2.58476e7 0.893516
\(966\) 0 0
\(967\) 2.00036e7 0.687925 0.343963 0.938983i \(-0.388231\pi\)
0.343963 + 0.938983i \(0.388231\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 2.54560e7 4.40910e7i 0.866446 1.50073i 0.000840840 1.00000i \(-0.499732\pi\)
0.865605 0.500728i \(-0.166934\pi\)
\(972\) 0 0
\(973\) −144924. 2.23289e6i −0.00490749 0.0756112i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −8.69359e6 1.50577e7i −0.291382 0.504688i 0.682755 0.730648i \(-0.260782\pi\)
−0.974137 + 0.225959i \(0.927448\pi\)
\(978\) 0 0
\(979\) 4.53792e7 1.51321
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 5.54285e6 + 9.60050e6i 0.182957 + 0.316891i 0.942886 0.333115i \(-0.108100\pi\)
−0.759929 + 0.650006i \(0.774766\pi\)
\(984\) 0 0
\(985\) −8.15062e6 + 1.41173e7i −0.267670 + 0.463618i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 4.54593e7 7.87379e7i 1.47786 2.55972i
\(990\) 0 0
\(991\) −1.91462e7 3.31622e7i −0.619297 1.07265i −0.989614 0.143749i \(-0.954084\pi\)
0.370317 0.928905i \(-0.379249\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −5.14872e7 −1.64870
\(996\) 0 0
\(997\) −2.63586e7 4.56545e7i −0.839818 1.45461i −0.890047 0.455869i \(-0.849329\pi\)
0.0502293 0.998738i \(-0.484005\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 504.6.s.d.289.5 10
3.2 odd 2 56.6.i.a.9.1 10
7.4 even 3 inner 504.6.s.d.361.5 10
12.11 even 2 112.6.i.g.65.5 10
21.2 odd 6 392.6.a.l.1.5 5
21.5 even 6 392.6.a.i.1.1 5
21.11 odd 6 56.6.i.a.25.1 yes 10
21.17 even 6 392.6.i.p.361.5 10
21.20 even 2 392.6.i.p.177.5 10
84.11 even 6 112.6.i.g.81.5 10
84.23 even 6 784.6.a.bj.1.1 5
84.47 odd 6 784.6.a.bm.1.5 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
56.6.i.a.9.1 10 3.2 odd 2
56.6.i.a.25.1 yes 10 21.11 odd 6
112.6.i.g.65.5 10 12.11 even 2
112.6.i.g.81.5 10 84.11 even 6
392.6.a.i.1.1 5 21.5 even 6
392.6.a.l.1.5 5 21.2 odd 6
392.6.i.p.177.5 10 21.20 even 2
392.6.i.p.361.5 10 21.17 even 6
504.6.s.d.289.5 10 1.1 even 1 trivial
504.6.s.d.361.5 10 7.4 even 3 inner
784.6.a.bj.1.1 5 84.23 even 6
784.6.a.bm.1.5 5 84.47 odd 6