Properties

Label 504.3.cu
Level $504$
Weight $3$
Character orbit 504.cu
Rep. character $\chi_{504}(233,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $32$
Newform subspaces $2$
Sturm bound $288$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 504.cu (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 21 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 2 \)
Sturm bound: \(288\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(504, [\chi])\).

Total New Old
Modular forms 416 32 384
Cusp forms 352 32 320
Eisenstein series 64 0 64

Trace form

\( 32 q - 24 q^{7} + 16 q^{13} - 32 q^{19} + 88 q^{25} - 24 q^{31} - 56 q^{37} + 96 q^{43} + 16 q^{49} + 208 q^{55} + 112 q^{61} + 176 q^{67} + 312 q^{73} + 72 q^{79} - 608 q^{85} - 368 q^{91} + 80 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(504, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
504.3.cu.a 504.cu 21.h $16$ $13.733$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 504.3.cu.a \(0\) \(0\) \(0\) \(-24\) $\mathrm{SU}(2)[C_{6}]$ \(q+(\beta _{4}+\beta _{6})q^{5}+(-2+\beta _{1}+\beta _{3}+\beta _{15})q^{7}+\cdots\)
504.3.cu.b 504.cu 21.h $16$ $13.733$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 504.3.cu.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta _{6}q^{5}+(-1-\beta _{4}-\beta _{9}-\beta _{11})q^{7}+\cdots\)

Decomposition of \(S_{3}^{\mathrm{old}}(504, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(504, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(168, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(252, [\chi])\)\(^{\oplus 2}\)