Defining parameters
| Level: | \( N \) | \(=\) | \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 504.q (of order \(3\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 63 \) |
| Character field: | \(\Q(\zeta_{3})\) | ||
| Newform subspaces: | \( 4 \) | ||
| Sturm bound: | \(192\) | ||
| Trace bound: | \(5\) | ||
| Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(504, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 208 | 48 | 160 |
| Cusp forms | 176 | 48 | 128 |
| Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(504, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 504.2.q.a | $2$ | $4.024$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(0\) | \(-1\) | \(4\) | \(q+(1-2\zeta_{6})q^{3}-\zeta_{6}q^{5}+(3-2\zeta_{6})q^{7}+\cdots\) |
| 504.2.q.b | $2$ | $4.024$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(0\) | \(1\) | \(-4\) | \(q+(-1+2\zeta_{6})q^{3}+\zeta_{6}q^{5}+(-1-2\zeta_{6})q^{7}+\cdots\) |
| 504.2.q.c | $22$ | $4.024$ | None | \(0\) | \(-2\) | \(1\) | \(5\) | ||
| 504.2.q.d | $22$ | $4.024$ | None | \(0\) | \(2\) | \(3\) | \(-5\) | ||
Decomposition of \(S_{2}^{\mathrm{old}}(504, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(504, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(252, [\chi])\)\(^{\oplus 2}\)