Properties

Label 504.2.q
Level $504$
Weight $2$
Character orbit 504.q
Rep. character $\chi_{504}(25,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $48$
Newform subspaces $4$
Sturm bound $192$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 504.q (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 63 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 4 \)
Sturm bound: \(192\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(504, [\chi])\).

Total New Old
Modular forms 208 48 160
Cusp forms 176 48 128
Eisenstein series 32 0 32

Trace form

\( 48 q + 4 q^{5} + 4 q^{9} - 8 q^{15} + 8 q^{17} - 4 q^{23} - 24 q^{25} - 6 q^{27} - 6 q^{29} - 12 q^{31} + 8 q^{33} + 12 q^{35} - 26 q^{39} + 18 q^{41} + 6 q^{43} - 2 q^{45} - 12 q^{47} - 6 q^{49} + 36 q^{51}+ \cdots - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(504, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
504.2.q.a 504.q 63.h $2$ $4.024$ \(\Q(\sqrt{-3}) \) None 504.2.q.a \(0\) \(0\) \(-1\) \(4\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-2\zeta_{6})q^{3}-\zeta_{6}q^{5}+(3-2\zeta_{6})q^{7}+\cdots\)
504.2.q.b 504.q 63.h $2$ $4.024$ \(\Q(\sqrt{-3}) \) None 504.2.q.b \(0\) \(0\) \(1\) \(-4\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+2\zeta_{6})q^{3}+\zeta_{6}q^{5}+(-1-2\zeta_{6})q^{7}+\cdots\)
504.2.q.c 504.q 63.h $22$ $4.024$ None 504.2.q.c \(0\) \(-2\) \(1\) \(5\) $\mathrm{SU}(2)[C_{3}]$
504.2.q.d 504.q 63.h $22$ $4.024$ None 504.2.q.d \(0\) \(2\) \(3\) \(-5\) $\mathrm{SU}(2)[C_{3}]$

Decomposition of \(S_{2}^{\mathrm{old}}(504, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(504, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(252, [\chi])\)\(^{\oplus 2}\)