Properties

Label 501.2.a
Level $501$
Weight $2$
Character orbit 501.a
Rep. character $\chi_{501}(1,\cdot)$
Character field $\Q$
Dimension $27$
Newform subspaces $5$
Sturm bound $112$
Trace bound $2$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 501 = 3 \cdot 167 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 501.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(112\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(501))\).

Total New Old
Modular forms 58 27 31
Cusp forms 55 27 28
Eisenstein series 3 0 3

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(167\)FrickeDim.
\(+\)\(+\)\(+\)\(5\)
\(+\)\(-\)\(-\)\(9\)
\(-\)\(+\)\(-\)\(8\)
\(-\)\(-\)\(+\)\(5\)
Plus space\(+\)\(10\)
Minus space\(-\)\(17\)

Trace form

\( 27q - 3q^{2} - q^{3} + 25q^{4} - 6q^{5} + q^{6} - 8q^{7} - 15q^{8} + 27q^{9} + O(q^{10}) \) \( 27q - 3q^{2} - q^{3} + 25q^{4} - 6q^{5} + q^{6} - 8q^{7} - 15q^{8} + 27q^{9} - 2q^{10} + q^{12} - 2q^{13} + 8q^{14} + 2q^{15} + 33q^{16} - 2q^{17} - 3q^{18} + 4q^{19} - 6q^{20} - 8q^{21} - 8q^{23} - 3q^{24} + 9q^{25} + 22q^{26} - q^{27} - 20q^{28} - 10q^{29} + 10q^{30} - 8q^{31} - 23q^{32} - 4q^{33} + 2q^{34} - 4q^{35} + 25q^{36} - 14q^{37} + 20q^{38} + 2q^{39} + 42q^{40} + 10q^{41} - 4q^{42} + 16q^{43} - 6q^{45} + 8q^{46} + 12q^{47} + q^{48} + 11q^{49} - 13q^{50} + 2q^{51} - 26q^{52} + 2q^{53} + q^{54} + 24q^{55} - 4q^{56} - 12q^{57} - 46q^{58} + 32q^{59} + 6q^{60} + 2q^{61} - 20q^{62} - 8q^{63} + q^{64} - 16q^{65} - 20q^{66} - 8q^{67} + 46q^{68} + 4q^{69} - 8q^{70} + 36q^{71} - 15q^{72} - 34q^{73} - 6q^{74} - 7q^{75} - 20q^{76} - 2q^{78} + 24q^{79} - 42q^{80} + 27q^{81} + 38q^{82} + 36q^{83} - 16q^{84} - 24q^{85} - 76q^{86} + 10q^{87} - 4q^{88} - 6q^{89} - 2q^{90} - 8q^{91} - 60q^{92} - 32q^{93} - 8q^{94} + 32q^{95} + 25q^{96} - 46q^{97} - 59q^{98} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(501))\) into newform subspaces

Label Dim. \(A\) Field CM Traces A-L signs $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\) 3 167
501.2.a.a \(1\) \(4.001\) \(\Q\) None \(1\) \(-1\) \(-4\) \(4\) \(+\) \(-\) \(q+q^{2}-q^{3}-q^{4}-4q^{5}-q^{6}+4q^{7}+\cdots\)
501.2.a.b \(5\) \(4.001\) 5.5.36497.1 None \(-4\) \(5\) \(-9\) \(-4\) \(-\) \(-\) \(q+(-1+\beta _{3})q^{2}+q^{3}+(1+\beta _{1}-2\beta _{3}+\cdots)q^{4}+\cdots\)
501.2.a.c \(5\) \(4.001\) 5.5.38569.1 None \(0\) \(-5\) \(-1\) \(-4\) \(+\) \(+\) \(q-\beta _{1}q^{2}-q^{3}+(\beta _{2}+\beta _{3})q^{4}+(\beta _{1}+\beta _{4})q^{5}+\cdots\)
501.2.a.d \(8\) \(4.001\) \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None \(-3\) \(-8\) \(1\) \(0\) \(+\) \(-\) \(q-\beta _{3}q^{2}-q^{3}+(1-\beta _{2}+\beta _{5}+\beta _{6}+\cdots)q^{4}+\cdots\)
501.2.a.e \(8\) \(4.001\) \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None \(3\) \(8\) \(7\) \(-4\) \(-\) \(+\) \(q+\beta _{1}q^{2}+q^{3}+(1+\beta _{3}+\beta _{5}+\beta _{7})q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(501))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(501)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(167))\)\(^{\oplus 2}\)