Defining parameters
| Level: | \( N \) | \(=\) | \( 5 \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 5.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 1 \) | ||
| Sturm bound: | \(2\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(5))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 3 | 1 | 2 |
| Cusp forms | 1 | 1 | 0 |
| Eisenstein series | 2 | 0 | 2 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(5\) | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||
| \(+\) | \(2\) | \(1\) | \(1\) | \(1\) | \(1\) | \(0\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(1\) | \(0\) | \(1\) | \(0\) | \(0\) | \(0\) | \(1\) | \(0\) | \(1\) | |||
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 5 | |||||||
| 5.4.a.a | $1$ | $0.295$ | \(\Q\) | None | \(-4\) | \(2\) | \(-5\) | \(6\) | $+$ | \(q-4q^{2}+2q^{3}+8q^{4}-5q^{5}-8q^{6}+\cdots\) | |