Properties

Label 5.4.a
Level $5$
Weight $4$
Character orbit 5.a
Rep. character $\chi_{5}(1,\cdot)$
Character field $\Q$
Dimension $1$
Newform subspaces $1$
Sturm bound $2$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 5.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(2\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(5))\).

Total New Old
Modular forms 3 1 2
Cusp forms 1 1 0
Eisenstein series 2 0 2

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(5\)Dim
\(+\)\(1\)

Trace form

\( q - 4 q^{2} + 2 q^{3} + 8 q^{4} - 5 q^{5} - 8 q^{6} + 6 q^{7} - 23 q^{9} + 20 q^{10} + 32 q^{11} + 16 q^{12} - 38 q^{13} - 24 q^{14} - 10 q^{15} - 64 q^{16} + 26 q^{17} + 92 q^{18} + 100 q^{19} - 40 q^{20}+ \cdots - 736 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 5
5.4.a.a 5.a 1.a $1$ $0.295$ \(\Q\) None 5.4.a.a \(-4\) \(2\) \(-5\) \(6\) $+$ $\mathrm{SU}(2)$ \(q-4q^{2}+2q^{3}+8q^{4}-5q^{5}-8q^{6}+\cdots\)