Properties

Label 5.26
Level 5
Weight 26
Dimension 21
Nonzero newspaces 2
Newform subspaces 3
Sturm bound 52
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 5 \)
Weight: \( k \) = \( 26 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 3 \)
Sturm bound: \(52\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{26}(\Gamma_1(5))\).

Total New Old
Modular forms 27 23 4
Cusp forms 23 21 2
Eisenstein series 4 2 2

Trace form

\( 21 q - 4002 q^{2} - 172396 q^{3} + 16772604 q^{4} + 793683685 q^{5} + 12322944112 q^{6} + 6543128808 q^{7} - 101081972280 q^{8} - 1582903387079 q^{9} + 3165827140710 q^{10} - 28877086066308 q^{11} - 68422875582512 q^{12}+ \cdots - 52\!\cdots\!08 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{26}^{\mathrm{new}}(\Gamma_1(5))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
5.26.a \(\chi_{5}(1, \cdot)\) 5.26.a.a 4 1
5.26.a.b 5
5.26.b \(\chi_{5}(4, \cdot)\) 5.26.b.a 12 1

Decomposition of \(S_{26}^{\mathrm{old}}(\Gamma_1(5))\) into lower level spaces

\( S_{26}^{\mathrm{old}}(\Gamma_1(5)) \cong \) \(S_{26}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 2}\)