Properties

Label 4998.2.a.cp.1.3
Level $4998$
Weight $2$
Character 4998.1
Self dual yes
Analytic conductor $39.909$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4998,2,Mod(1,4998)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4998, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4998.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4998 = 2 \cdot 3 \cdot 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4998.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,4,4,2,4,0,4,4,2,10,4,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(39.9092309302\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.16448.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 7x^{2} + 8x + 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.87996\) of defining polynomial
Character \(\chi\) \(=\) 4998.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} +1.46575 q^{5} +1.00000 q^{6} +1.00000 q^{8} +1.00000 q^{9} +1.46575 q^{10} +2.22129 q^{11} +1.00000 q^{12} -2.29417 q^{13} +1.46575 q^{15} +1.00000 q^{16} +1.00000 q^{17} +1.00000 q^{18} -4.07288 q^{19} +1.46575 q^{20} +2.22129 q^{22} +2.65867 q^{23} +1.00000 q^{24} -2.85158 q^{25} -2.29417 q^{26} +1.00000 q^{27} +8.90131 q^{29} +1.46575 q^{30} +2.07288 q^{31} +1.00000 q^{32} +2.22129 q^{33} +1.00000 q^{34} +1.00000 q^{36} +0.364492 q^{37} -4.07288 q^{38} -2.29417 q^{39} +1.46575 q^{40} +7.83280 q^{41} -4.91271 q^{43} +2.22129 q^{44} +1.46575 q^{45} +2.65867 q^{46} +10.2186 q^{47} +1.00000 q^{48} -2.85158 q^{50} +1.00000 q^{51} -2.29417 q^{52} +4.09166 q^{53} +1.00000 q^{54} +3.25586 q^{55} -4.07288 q^{57} +8.90131 q^{58} +6.16976 q^{59} +1.46575 q^{60} +2.38584 q^{61} +2.07288 q^{62} +1.00000 q^{64} -3.36268 q^{65} +2.22129 q^{66} +1.28980 q^{67} +1.00000 q^{68} +2.65867 q^{69} +9.17414 q^{71} +1.00000 q^{72} +0.191107 q^{73} +0.364492 q^{74} -2.85158 q^{75} -4.07288 q^{76} -2.29417 q^{78} +8.99297 q^{79} +1.46575 q^{80} +1.00000 q^{81} +7.83280 q^{82} -16.2967 q^{83} +1.46575 q^{85} -4.91271 q^{86} +8.90131 q^{87} +2.22129 q^{88} -14.7831 q^{89} +1.46575 q^{90} +2.65867 q^{92} +2.07288 q^{93} +10.2186 q^{94} -5.96981 q^{95} +1.00000 q^{96} -12.5430 q^{97} +2.22129 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 4 q^{3} + 4 q^{4} + 2 q^{5} + 4 q^{6} + 4 q^{8} + 4 q^{9} + 2 q^{10} + 10 q^{11} + 4 q^{12} + 6 q^{13} + 2 q^{15} + 4 q^{16} + 4 q^{17} + 4 q^{18} + 2 q^{20} + 10 q^{22} + 4 q^{24} + 6 q^{25}+ \cdots + 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 1.00000 0.577350
\(4\) 1.00000 0.500000
\(5\) 1.46575 0.655502 0.327751 0.944764i \(-0.393709\pi\)
0.327751 + 0.944764i \(0.393709\pi\)
\(6\) 1.00000 0.408248
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) 1.00000 0.333333
\(10\) 1.46575 0.463510
\(11\) 2.22129 0.669746 0.334873 0.942263i \(-0.391307\pi\)
0.334873 + 0.942263i \(0.391307\pi\)
\(12\) 1.00000 0.288675
\(13\) −2.29417 −0.636289 −0.318145 0.948042i \(-0.603060\pi\)
−0.318145 + 0.948042i \(0.603060\pi\)
\(14\) 0 0
\(15\) 1.46575 0.378454
\(16\) 1.00000 0.250000
\(17\) 1.00000 0.242536
\(18\) 1.00000 0.235702
\(19\) −4.07288 −0.934383 −0.467191 0.884156i \(-0.654734\pi\)
−0.467191 + 0.884156i \(0.654734\pi\)
\(20\) 1.46575 0.327751
\(21\) 0 0
\(22\) 2.22129 0.473582
\(23\) 2.65867 0.554370 0.277185 0.960817i \(-0.410598\pi\)
0.277185 + 0.960817i \(0.410598\pi\)
\(24\) 1.00000 0.204124
\(25\) −2.85158 −0.570317
\(26\) −2.29417 −0.449925
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 8.90131 1.65293 0.826466 0.562987i \(-0.190348\pi\)
0.826466 + 0.562987i \(0.190348\pi\)
\(30\) 1.46575 0.267608
\(31\) 2.07288 0.372300 0.186150 0.982521i \(-0.440399\pi\)
0.186150 + 0.982521i \(0.440399\pi\)
\(32\) 1.00000 0.176777
\(33\) 2.22129 0.386678
\(34\) 1.00000 0.171499
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) 0.364492 0.0599221 0.0299610 0.999551i \(-0.490462\pi\)
0.0299610 + 0.999551i \(0.490462\pi\)
\(38\) −4.07288 −0.660708
\(39\) −2.29417 −0.367362
\(40\) 1.46575 0.231755
\(41\) 7.83280 1.22328 0.611639 0.791137i \(-0.290511\pi\)
0.611639 + 0.791137i \(0.290511\pi\)
\(42\) 0 0
\(43\) −4.91271 −0.749181 −0.374591 0.927190i \(-0.622217\pi\)
−0.374591 + 0.927190i \(0.622217\pi\)
\(44\) 2.22129 0.334873
\(45\) 1.46575 0.218501
\(46\) 2.65867 0.391999
\(47\) 10.2186 1.49054 0.745271 0.666762i \(-0.232320\pi\)
0.745271 + 0.666762i \(0.232320\pi\)
\(48\) 1.00000 0.144338
\(49\) 0 0
\(50\) −2.85158 −0.403275
\(51\) 1.00000 0.140028
\(52\) −2.29417 −0.318145
\(53\) 4.09166 0.562033 0.281017 0.959703i \(-0.409328\pi\)
0.281017 + 0.959703i \(0.409328\pi\)
\(54\) 1.00000 0.136083
\(55\) 3.25586 0.439020
\(56\) 0 0
\(57\) −4.07288 −0.539466
\(58\) 8.90131 1.16880
\(59\) 6.16976 0.803234 0.401617 0.915808i \(-0.368448\pi\)
0.401617 + 0.915808i \(0.368448\pi\)
\(60\) 1.46575 0.189227
\(61\) 2.38584 0.305475 0.152738 0.988267i \(-0.451191\pi\)
0.152738 + 0.988267i \(0.451191\pi\)
\(62\) 2.07288 0.263256
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −3.36268 −0.417089
\(66\) 2.22129 0.273422
\(67\) 1.28980 0.157574 0.0787871 0.996891i \(-0.474895\pi\)
0.0787871 + 0.996891i \(0.474895\pi\)
\(68\) 1.00000 0.121268
\(69\) 2.65867 0.320066
\(70\) 0 0
\(71\) 9.17414 1.08877 0.544385 0.838836i \(-0.316763\pi\)
0.544385 + 0.838836i \(0.316763\pi\)
\(72\) 1.00000 0.117851
\(73\) 0.191107 0.0223674 0.0111837 0.999937i \(-0.496440\pi\)
0.0111837 + 0.999937i \(0.496440\pi\)
\(74\) 0.364492 0.0423713
\(75\) −2.85158 −0.329273
\(76\) −4.07288 −0.467191
\(77\) 0 0
\(78\) −2.29417 −0.259764
\(79\) 8.99297 1.01179 0.505894 0.862596i \(-0.331163\pi\)
0.505894 + 0.862596i \(0.331163\pi\)
\(80\) 1.46575 0.163876
\(81\) 1.00000 0.111111
\(82\) 7.83280 0.864988
\(83\) −16.2967 −1.78880 −0.894400 0.447269i \(-0.852397\pi\)
−0.894400 + 0.447269i \(0.852397\pi\)
\(84\) 0 0
\(85\) 1.46575 0.158983
\(86\) −4.91271 −0.529751
\(87\) 8.90131 0.954320
\(88\) 2.22129 0.236791
\(89\) −14.7831 −1.56700 −0.783502 0.621390i \(-0.786568\pi\)
−0.783502 + 0.621390i \(0.786568\pi\)
\(90\) 1.46575 0.154503
\(91\) 0 0
\(92\) 2.65867 0.277185
\(93\) 2.07288 0.214948
\(94\) 10.2186 1.05397
\(95\) −5.96981 −0.612490
\(96\) 1.00000 0.102062
\(97\) −12.5430 −1.27355 −0.636774 0.771050i \(-0.719732\pi\)
−0.636774 + 0.771050i \(0.719732\pi\)
\(98\) 0 0
\(99\) 2.22129 0.223249
\(100\) −2.85158 −0.285158
\(101\) 0.925308 0.0920716 0.0460358 0.998940i \(-0.485341\pi\)
0.0460358 + 0.998940i \(0.485341\pi\)
\(102\) 1.00000 0.0990148
\(103\) −2.87996 −0.283771 −0.141885 0.989883i \(-0.545316\pi\)
−0.141885 + 0.989883i \(0.545316\pi\)
\(104\) −2.29417 −0.224962
\(105\) 0 0
\(106\) 4.09166 0.397417
\(107\) 17.5198 1.69371 0.846854 0.531826i \(-0.178494\pi\)
0.846854 + 0.531826i \(0.178494\pi\)
\(108\) 1.00000 0.0962250
\(109\) 5.04450 0.483176 0.241588 0.970379i \(-0.422332\pi\)
0.241588 + 0.970379i \(0.422332\pi\)
\(110\) 3.25586 0.310434
\(111\) 0.364492 0.0345960
\(112\) 0 0
\(113\) 7.29236 0.686008 0.343004 0.939334i \(-0.388556\pi\)
0.343004 + 0.939334i \(0.388556\pi\)
\(114\) −4.07288 −0.381460
\(115\) 3.89693 0.363391
\(116\) 8.90131 0.826466
\(117\) −2.29417 −0.212096
\(118\) 6.16976 0.567973
\(119\) 0 0
\(120\) 1.46575 0.133804
\(121\) −6.06585 −0.551441
\(122\) 2.38584 0.216004
\(123\) 7.83280 0.706260
\(124\) 2.07288 0.186150
\(125\) −11.5084 −1.02935
\(126\) 0 0
\(127\) 0.0567518 0.00503591 0.00251795 0.999997i \(-0.499199\pi\)
0.00251795 + 0.999997i \(0.499199\pi\)
\(128\) 1.00000 0.0883883
\(129\) −4.91271 −0.432540
\(130\) −3.36268 −0.294927
\(131\) −7.07725 −0.618343 −0.309171 0.951006i \(-0.600052\pi\)
−0.309171 + 0.951006i \(0.600052\pi\)
\(132\) 2.22129 0.193339
\(133\) 0 0
\(134\) 1.28980 0.111422
\(135\) 1.46575 0.126151
\(136\) 1.00000 0.0857493
\(137\) 1.79011 0.152939 0.0764697 0.997072i \(-0.475635\pi\)
0.0764697 + 0.997072i \(0.475635\pi\)
\(138\) 2.65867 0.226321
\(139\) −7.77508 −0.659474 −0.329737 0.944073i \(-0.606960\pi\)
−0.329737 + 0.944073i \(0.606960\pi\)
\(140\) 0 0
\(141\) 10.2186 0.860565
\(142\) 9.17414 0.769876
\(143\) −5.09604 −0.426152
\(144\) 1.00000 0.0833333
\(145\) 13.0471 1.08350
\(146\) 0.191107 0.0158161
\(147\) 0 0
\(148\) 0.364492 0.0299610
\(149\) −13.0283 −1.06732 −0.533659 0.845700i \(-0.679184\pi\)
−0.533659 + 0.845700i \(0.679184\pi\)
\(150\) −2.85158 −0.232831
\(151\) −14.1384 −1.15057 −0.575283 0.817955i \(-0.695108\pi\)
−0.575283 + 0.817955i \(0.695108\pi\)
\(152\) −4.07288 −0.330354
\(153\) 1.00000 0.0808452
\(154\) 0 0
\(155\) 3.03832 0.244044
\(156\) −2.29417 −0.183681
\(157\) 5.46309 0.436002 0.218001 0.975949i \(-0.430046\pi\)
0.218001 + 0.975949i \(0.430046\pi\)
\(158\) 8.99297 0.715442
\(159\) 4.09166 0.324490
\(160\) 1.46575 0.115877
\(161\) 0 0
\(162\) 1.00000 0.0785674
\(163\) 8.82586 0.691295 0.345648 0.938364i \(-0.387659\pi\)
0.345648 + 0.938364i \(0.387659\pi\)
\(164\) 7.83280 0.611639
\(165\) 3.25586 0.253468
\(166\) −16.2967 −1.26487
\(167\) −4.35831 −0.337256 −0.168628 0.985680i \(-0.553934\pi\)
−0.168628 + 0.985680i \(0.553934\pi\)
\(168\) 0 0
\(169\) −7.73676 −0.595136
\(170\) 1.46575 0.112418
\(171\) −4.07288 −0.311461
\(172\) −4.91271 −0.374591
\(173\) −4.04632 −0.307636 −0.153818 0.988099i \(-0.549157\pi\)
−0.153818 + 0.988099i \(0.549157\pi\)
\(174\) 8.90131 0.674806
\(175\) 0 0
\(176\) 2.22129 0.167436
\(177\) 6.16976 0.463748
\(178\) −14.7831 −1.10804
\(179\) −19.0471 −1.42364 −0.711822 0.702360i \(-0.752130\pi\)
−0.711822 + 0.702360i \(0.752130\pi\)
\(180\) 1.46575 0.109250
\(181\) −17.7952 −1.32271 −0.661355 0.750073i \(-0.730018\pi\)
−0.661355 + 0.750073i \(0.730018\pi\)
\(182\) 0 0
\(183\) 2.38584 0.176366
\(184\) 2.65867 0.195999
\(185\) 0.534253 0.0392790
\(186\) 2.07288 0.151991
\(187\) 2.22129 0.162437
\(188\) 10.2186 0.745271
\(189\) 0 0
\(190\) −5.96981 −0.433096
\(191\) 3.43918 0.248851 0.124425 0.992229i \(-0.460291\pi\)
0.124425 + 0.992229i \(0.460291\pi\)
\(192\) 1.00000 0.0721688
\(193\) 16.4779 1.18611 0.593053 0.805164i \(-0.297923\pi\)
0.593053 + 0.805164i \(0.297923\pi\)
\(194\) −12.5430 −0.900535
\(195\) −3.36268 −0.240807
\(196\) 0 0
\(197\) 14.0353 0.999975 0.499987 0.866033i \(-0.333338\pi\)
0.499987 + 0.866033i \(0.333338\pi\)
\(198\) 2.22129 0.157861
\(199\) 9.38659 0.665398 0.332699 0.943033i \(-0.392041\pi\)
0.332699 + 0.943033i \(0.392041\pi\)
\(200\) −2.85158 −0.201638
\(201\) 1.28980 0.0909755
\(202\) 0.925308 0.0651045
\(203\) 0 0
\(204\) 1.00000 0.0700140
\(205\) 11.4809 0.801861
\(206\) −2.87996 −0.200656
\(207\) 2.65867 0.184790
\(208\) −2.29417 −0.159072
\(209\) −9.04707 −0.625799
\(210\) 0 0
\(211\) −21.3163 −1.46747 −0.733736 0.679434i \(-0.762225\pi\)
−0.733736 + 0.679434i \(0.762225\pi\)
\(212\) 4.09166 0.281017
\(213\) 9.17414 0.628601
\(214\) 17.5198 1.19763
\(215\) −7.20079 −0.491090
\(216\) 1.00000 0.0680414
\(217\) 0 0
\(218\) 5.04450 0.341657
\(219\) 0.191107 0.0129138
\(220\) 3.25586 0.219510
\(221\) −2.29417 −0.154323
\(222\) 0.364492 0.0244631
\(223\) −18.1181 −1.21328 −0.606640 0.794977i \(-0.707483\pi\)
−0.606640 + 0.794977i \(0.707483\pi\)
\(224\) 0 0
\(225\) −2.85158 −0.190106
\(226\) 7.29236 0.485081
\(227\) 12.9706 0.860886 0.430443 0.902618i \(-0.358357\pi\)
0.430443 + 0.902618i \(0.358357\pi\)
\(228\) −4.07288 −0.269733
\(229\) −5.81402 −0.384201 −0.192101 0.981375i \(-0.561530\pi\)
−0.192101 + 0.981375i \(0.561530\pi\)
\(230\) 3.89693 0.256956
\(231\) 0 0
\(232\) 8.90131 0.584399
\(233\) 1.25329 0.0821060 0.0410530 0.999157i \(-0.486929\pi\)
0.0410530 + 0.999157i \(0.486929\pi\)
\(234\) −2.29417 −0.149975
\(235\) 14.9779 0.977053
\(236\) 6.16976 0.401617
\(237\) 8.99297 0.584156
\(238\) 0 0
\(239\) 13.0960 0.847112 0.423556 0.905870i \(-0.360782\pi\)
0.423556 + 0.905870i \(0.360782\pi\)
\(240\) 1.46575 0.0946136
\(241\) 15.6193 1.00613 0.503063 0.864250i \(-0.332206\pi\)
0.503063 + 0.864250i \(0.332206\pi\)
\(242\) −6.06585 −0.389928
\(243\) 1.00000 0.0641500
\(244\) 2.38584 0.152738
\(245\) 0 0
\(246\) 7.83280 0.499401
\(247\) 9.34390 0.594538
\(248\) 2.07288 0.131628
\(249\) −16.2967 −1.03276
\(250\) −11.5084 −0.727858
\(251\) −20.2967 −1.28112 −0.640559 0.767909i \(-0.721297\pi\)
−0.640559 + 0.767909i \(0.721297\pi\)
\(252\) 0 0
\(253\) 5.90568 0.371287
\(254\) 0.0567518 0.00356092
\(255\) 1.46575 0.0917887
\(256\) 1.00000 0.0625000
\(257\) −11.7058 −0.730189 −0.365095 0.930970i \(-0.618963\pi\)
−0.365095 + 0.930970i \(0.618963\pi\)
\(258\) −4.91271 −0.305852
\(259\) 0 0
\(260\) −3.36268 −0.208545
\(261\) 8.90131 0.550977
\(262\) −7.07725 −0.437234
\(263\) 5.01578 0.309286 0.154643 0.987970i \(-0.450577\pi\)
0.154643 + 0.987970i \(0.450577\pi\)
\(264\) 2.22129 0.136711
\(265\) 5.99734 0.368414
\(266\) 0 0
\(267\) −14.7831 −0.904710
\(268\) 1.28980 0.0787871
\(269\) 11.9057 0.725902 0.362951 0.931808i \(-0.381769\pi\)
0.362951 + 0.931808i \(0.381769\pi\)
\(270\) 1.46575 0.0892025
\(271\) 12.4941 0.758964 0.379482 0.925199i \(-0.376102\pi\)
0.379482 + 0.925199i \(0.376102\pi\)
\(272\) 1.00000 0.0606339
\(273\) 0 0
\(274\) 1.79011 0.108144
\(275\) −6.33421 −0.381967
\(276\) 2.65867 0.160033
\(277\) 7.58654 0.455831 0.227915 0.973681i \(-0.426809\pi\)
0.227915 + 0.973681i \(0.426809\pi\)
\(278\) −7.77508 −0.466318
\(279\) 2.07288 0.124100
\(280\) 0 0
\(281\) 3.99638 0.238404 0.119202 0.992870i \(-0.461966\pi\)
0.119202 + 0.992870i \(0.461966\pi\)
\(282\) 10.2186 0.608511
\(283\) −5.74476 −0.341491 −0.170745 0.985315i \(-0.554618\pi\)
−0.170745 + 0.985315i \(0.554618\pi\)
\(284\) 9.17414 0.544385
\(285\) −5.96981 −0.353621
\(286\) −5.09604 −0.301335
\(287\) 0 0
\(288\) 1.00000 0.0589256
\(289\) 1.00000 0.0588235
\(290\) 13.0471 0.766150
\(291\) −12.5430 −0.735284
\(292\) 0.191107 0.0111837
\(293\) −30.4805 −1.78069 −0.890344 0.455289i \(-0.849536\pi\)
−0.890344 + 0.455289i \(0.849536\pi\)
\(294\) 0 0
\(295\) 9.04331 0.526522
\(296\) 0.364492 0.0211857
\(297\) 2.22129 0.128893
\(298\) −13.0283 −0.754708
\(299\) −6.09944 −0.352740
\(300\) −2.85158 −0.164636
\(301\) 0 0
\(302\) −14.1384 −0.813572
\(303\) 0.925308 0.0531576
\(304\) −4.07288 −0.233596
\(305\) 3.49704 0.200240
\(306\) 1.00000 0.0571662
\(307\) 1.13763 0.0649279 0.0324640 0.999473i \(-0.489665\pi\)
0.0324640 + 0.999473i \(0.489665\pi\)
\(308\) 0 0
\(309\) −2.87996 −0.163835
\(310\) 3.03832 0.172565
\(311\) −9.39287 −0.532621 −0.266310 0.963887i \(-0.585805\pi\)
−0.266310 + 0.963887i \(0.585805\pi\)
\(312\) −2.29417 −0.129882
\(313\) 2.98825 0.168906 0.0844528 0.996427i \(-0.473086\pi\)
0.0844528 + 0.996427i \(0.473086\pi\)
\(314\) 5.46309 0.308300
\(315\) 0 0
\(316\) 8.99297 0.505894
\(317\) −10.6774 −0.599700 −0.299850 0.953986i \(-0.596937\pi\)
−0.299850 + 0.953986i \(0.596937\pi\)
\(318\) 4.09166 0.229449
\(319\) 19.7724 1.10704
\(320\) 1.46575 0.0819378
\(321\) 17.5198 0.977862
\(322\) 0 0
\(323\) −4.07288 −0.226621
\(324\) 1.00000 0.0555556
\(325\) 6.54203 0.362887
\(326\) 8.82586 0.488819
\(327\) 5.04450 0.278962
\(328\) 7.83280 0.432494
\(329\) 0 0
\(330\) 3.25586 0.179229
\(331\) 6.12698 0.336769 0.168385 0.985721i \(-0.446145\pi\)
0.168385 + 0.985721i \(0.446145\pi\)
\(332\) −16.2967 −0.894400
\(333\) 0.364492 0.0199740
\(334\) −4.35831 −0.238476
\(335\) 1.89052 0.103290
\(336\) 0 0
\(337\) −25.8114 −1.40603 −0.703017 0.711173i \(-0.748164\pi\)
−0.703017 + 0.711173i \(0.748164\pi\)
\(338\) −7.73676 −0.420824
\(339\) 7.29236 0.396067
\(340\) 1.46575 0.0794913
\(341\) 4.60448 0.249346
\(342\) −4.07288 −0.220236
\(343\) 0 0
\(344\) −4.91271 −0.264876
\(345\) 3.89693 0.209804
\(346\) −4.04632 −0.217531
\(347\) 20.6726 1.10977 0.554883 0.831929i \(-0.312763\pi\)
0.554883 + 0.831929i \(0.312763\pi\)
\(348\) 8.90131 0.477160
\(349\) −16.9715 −0.908465 −0.454233 0.890883i \(-0.650086\pi\)
−0.454233 + 0.890883i \(0.650086\pi\)
\(350\) 0 0
\(351\) −2.29417 −0.122454
\(352\) 2.22129 0.118395
\(353\) 33.5136 1.78375 0.891874 0.452285i \(-0.149391\pi\)
0.891874 + 0.452285i \(0.149391\pi\)
\(354\) 6.16976 0.327919
\(355\) 13.4470 0.713691
\(356\) −14.7831 −0.783502
\(357\) 0 0
\(358\) −19.0471 −1.00667
\(359\) 1.60373 0.0846414 0.0423207 0.999104i \(-0.486525\pi\)
0.0423207 + 0.999104i \(0.486525\pi\)
\(360\) 1.46575 0.0772517
\(361\) −2.41165 −0.126929
\(362\) −17.7952 −0.935297
\(363\) −6.06585 −0.318375
\(364\) 0 0
\(365\) 0.280115 0.0146619
\(366\) 2.38584 0.124710
\(367\) 4.97056 0.259461 0.129731 0.991549i \(-0.458589\pi\)
0.129731 + 0.991549i \(0.458589\pi\)
\(368\) 2.65867 0.138593
\(369\) 7.83280 0.407759
\(370\) 0.534253 0.0277745
\(371\) 0 0
\(372\) 2.07288 0.107474
\(373\) −6.07650 −0.314629 −0.157315 0.987549i \(-0.550284\pi\)
−0.157315 + 0.987549i \(0.550284\pi\)
\(374\) 2.22129 0.114860
\(375\) −11.5084 −0.594293
\(376\) 10.2186 0.526986
\(377\) −20.4212 −1.05174
\(378\) 0 0
\(379\) −29.8016 −1.53080 −0.765401 0.643553i \(-0.777460\pi\)
−0.765401 + 0.643553i \(0.777460\pi\)
\(380\) −5.96981 −0.306245
\(381\) 0.0567518 0.00290748
\(382\) 3.43918 0.175964
\(383\) −23.1841 −1.18465 −0.592325 0.805699i \(-0.701790\pi\)
−0.592325 + 0.805699i \(0.701790\pi\)
\(384\) 1.00000 0.0510310
\(385\) 0 0
\(386\) 16.4779 0.838703
\(387\) −4.91271 −0.249727
\(388\) −12.5430 −0.636774
\(389\) 0.837176 0.0424465 0.0212232 0.999775i \(-0.493244\pi\)
0.0212232 + 0.999775i \(0.493244\pi\)
\(390\) −3.36268 −0.170276
\(391\) 2.65867 0.134455
\(392\) 0 0
\(393\) −7.07725 −0.357000
\(394\) 14.0353 0.707089
\(395\) 13.1814 0.663229
\(396\) 2.22129 0.111624
\(397\) 2.88880 0.144985 0.0724924 0.997369i \(-0.476905\pi\)
0.0724924 + 0.997369i \(0.476905\pi\)
\(398\) 9.38659 0.470507
\(399\) 0 0
\(400\) −2.85158 −0.142579
\(401\) −20.3119 −1.01433 −0.507164 0.861850i \(-0.669306\pi\)
−0.507164 + 0.861850i \(0.669306\pi\)
\(402\) 1.28980 0.0643294
\(403\) −4.75555 −0.236891
\(404\) 0.925308 0.0460358
\(405\) 1.46575 0.0728336
\(406\) 0 0
\(407\) 0.809644 0.0401325
\(408\) 1.00000 0.0495074
\(409\) −10.7367 −0.530894 −0.265447 0.964125i \(-0.585520\pi\)
−0.265447 + 0.964125i \(0.585520\pi\)
\(410\) 11.4809 0.567002
\(411\) 1.79011 0.0882996
\(412\) −2.87996 −0.141885
\(413\) 0 0
\(414\) 2.65867 0.130666
\(415\) −23.8869 −1.17256
\(416\) −2.29417 −0.112481
\(417\) −7.77508 −0.380747
\(418\) −9.04707 −0.442506
\(419\) −5.90431 −0.288445 −0.144222 0.989545i \(-0.546068\pi\)
−0.144222 + 0.989545i \(0.546068\pi\)
\(420\) 0 0
\(421\) −30.6700 −1.49476 −0.747382 0.664395i \(-0.768689\pi\)
−0.747382 + 0.664395i \(0.768689\pi\)
\(422\) −21.3163 −1.03766
\(423\) 10.2186 0.496847
\(424\) 4.09166 0.198709
\(425\) −2.85158 −0.138322
\(426\) 9.17414 0.444488
\(427\) 0 0
\(428\) 17.5198 0.846854
\(429\) −5.09604 −0.246039
\(430\) −7.20079 −0.347253
\(431\) 24.7262 1.19102 0.595510 0.803348i \(-0.296950\pi\)
0.595510 + 0.803348i \(0.296950\pi\)
\(432\) 1.00000 0.0481125
\(433\) 18.8397 0.905380 0.452690 0.891668i \(-0.350464\pi\)
0.452690 + 0.891668i \(0.350464\pi\)
\(434\) 0 0
\(435\) 13.0471 0.625559
\(436\) 5.04450 0.241588
\(437\) −10.8284 −0.517994
\(438\) 0.191107 0.00913144
\(439\) 4.75555 0.226970 0.113485 0.993540i \(-0.463799\pi\)
0.113485 + 0.993540i \(0.463799\pi\)
\(440\) 3.25586 0.155217
\(441\) 0 0
\(442\) −2.29417 −0.109123
\(443\) 21.3386 1.01383 0.506913 0.861997i \(-0.330786\pi\)
0.506913 + 0.861997i \(0.330786\pi\)
\(444\) 0.364492 0.0172980
\(445\) −21.6683 −1.02717
\(446\) −18.1181 −0.857919
\(447\) −13.0283 −0.616217
\(448\) 0 0
\(449\) 1.11266 0.0525097 0.0262548 0.999655i \(-0.491642\pi\)
0.0262548 + 0.999655i \(0.491642\pi\)
\(450\) −2.85158 −0.134425
\(451\) 17.3990 0.819285
\(452\) 7.29236 0.343004
\(453\) −14.1384 −0.664279
\(454\) 12.9706 0.608739
\(455\) 0 0
\(456\) −4.07288 −0.190730
\(457\) 31.4568 1.47149 0.735744 0.677260i \(-0.236833\pi\)
0.735744 + 0.677260i \(0.236833\pi\)
\(458\) −5.81402 −0.271671
\(459\) 1.00000 0.0466760
\(460\) 3.89693 0.181695
\(461\) 1.60060 0.0745472 0.0372736 0.999305i \(-0.488133\pi\)
0.0372736 + 0.999305i \(0.488133\pi\)
\(462\) 0 0
\(463\) −29.5553 −1.37355 −0.686775 0.726870i \(-0.740974\pi\)
−0.686775 + 0.726870i \(0.740974\pi\)
\(464\) 8.90131 0.413233
\(465\) 3.03832 0.140899
\(466\) 1.25329 0.0580577
\(467\) −10.1470 −0.469545 −0.234772 0.972050i \(-0.575435\pi\)
−0.234772 + 0.972050i \(0.575435\pi\)
\(468\) −2.29417 −0.106048
\(469\) 0 0
\(470\) 14.9779 0.690881
\(471\) 5.46309 0.251726
\(472\) 6.16976 0.283986
\(473\) −10.9126 −0.501761
\(474\) 8.99297 0.413061
\(475\) 11.6142 0.532894
\(476\) 0 0
\(477\) 4.09166 0.187344
\(478\) 13.0960 0.598999
\(479\) 0.800895 0.0365938 0.0182969 0.999833i \(-0.494176\pi\)
0.0182969 + 0.999833i \(0.494176\pi\)
\(480\) 1.46575 0.0669019
\(481\) −0.836208 −0.0381278
\(482\) 15.6193 0.711439
\(483\) 0 0
\(484\) −6.06585 −0.275720
\(485\) −18.3849 −0.834814
\(486\) 1.00000 0.0453609
\(487\) 1.35018 0.0611823 0.0305912 0.999532i \(-0.490261\pi\)
0.0305912 + 0.999532i \(0.490261\pi\)
\(488\) 2.38584 0.108002
\(489\) 8.82586 0.399119
\(490\) 0 0
\(491\) −17.5360 −0.791387 −0.395694 0.918383i \(-0.629496\pi\)
−0.395694 + 0.918383i \(0.629496\pi\)
\(492\) 7.83280 0.353130
\(493\) 8.90131 0.400895
\(494\) 9.34390 0.420402
\(495\) 3.25586 0.146340
\(496\) 2.07288 0.0930750
\(497\) 0 0
\(498\) −16.2967 −0.730274
\(499\) 44.2529 1.98103 0.990516 0.137399i \(-0.0438744\pi\)
0.990516 + 0.137399i \(0.0438744\pi\)
\(500\) −11.5084 −0.514673
\(501\) −4.35831 −0.194715
\(502\) −20.2967 −0.905888
\(503\) −36.3255 −1.61967 −0.809836 0.586656i \(-0.800444\pi\)
−0.809836 + 0.586656i \(0.800444\pi\)
\(504\) 0 0
\(505\) 1.35627 0.0603532
\(506\) 5.90568 0.262540
\(507\) −7.73676 −0.343602
\(508\) 0.0567518 0.00251795
\(509\) 20.3531 0.902135 0.451067 0.892490i \(-0.351043\pi\)
0.451067 + 0.892490i \(0.351043\pi\)
\(510\) 1.46575 0.0649044
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) −4.07288 −0.179822
\(514\) −11.7058 −0.516322
\(515\) −4.22129 −0.186012
\(516\) −4.91271 −0.216270
\(517\) 22.6986 0.998284
\(518\) 0 0
\(519\) −4.04632 −0.177614
\(520\) −3.36268 −0.147463
\(521\) −19.8328 −0.868891 −0.434445 0.900698i \(-0.643056\pi\)
−0.434445 + 0.900698i \(0.643056\pi\)
\(522\) 8.90131 0.389600
\(523\) −5.90206 −0.258079 −0.129039 0.991639i \(-0.541189\pi\)
−0.129039 + 0.991639i \(0.541189\pi\)
\(524\) −7.07725 −0.309171
\(525\) 0 0
\(526\) 5.01578 0.218698
\(527\) 2.07288 0.0902961
\(528\) 2.22129 0.0966694
\(529\) −15.9315 −0.692674
\(530\) 5.99734 0.260508
\(531\) 6.16976 0.267745
\(532\) 0 0
\(533\) −17.9698 −0.778359
\(534\) −14.7831 −0.639726
\(535\) 25.6797 1.11023
\(536\) 1.28980 0.0557109
\(537\) −19.0471 −0.821942
\(538\) 11.9057 0.513290
\(539\) 0 0
\(540\) 1.46575 0.0630757
\(541\) −18.4639 −0.793827 −0.396913 0.917856i \(-0.629919\pi\)
−0.396913 + 0.917856i \(0.629919\pi\)
\(542\) 12.4941 0.536669
\(543\) −17.7952 −0.763667
\(544\) 1.00000 0.0428746
\(545\) 7.39397 0.316723
\(546\) 0 0
\(547\) −1.24701 −0.0533185 −0.0266593 0.999645i \(-0.508487\pi\)
−0.0266593 + 0.999645i \(0.508487\pi\)
\(548\) 1.79011 0.0764697
\(549\) 2.38584 0.101825
\(550\) −6.33421 −0.270092
\(551\) −36.2540 −1.54447
\(552\) 2.65867 0.113160
\(553\) 0 0
\(554\) 7.58654 0.322321
\(555\) 0.534253 0.0226778
\(556\) −7.77508 −0.329737
\(557\) −35.3775 −1.49899 −0.749497 0.662008i \(-0.769705\pi\)
−0.749497 + 0.662008i \(0.769705\pi\)
\(558\) 2.07288 0.0877520
\(559\) 11.2706 0.476696
\(560\) 0 0
\(561\) 2.22129 0.0937831
\(562\) 3.99638 0.168577
\(563\) 30.7304 1.29513 0.647566 0.762010i \(-0.275787\pi\)
0.647566 + 0.762010i \(0.275787\pi\)
\(564\) 10.2186 0.430282
\(565\) 10.6888 0.449680
\(566\) −5.74476 −0.241470
\(567\) 0 0
\(568\) 9.17414 0.384938
\(569\) −34.4249 −1.44317 −0.721584 0.692327i \(-0.756585\pi\)
−0.721584 + 0.692327i \(0.756585\pi\)
\(570\) −5.96981 −0.250048
\(571\) 35.6873 1.49347 0.746735 0.665122i \(-0.231621\pi\)
0.746735 + 0.665122i \(0.231621\pi\)
\(572\) −5.09604 −0.213076
\(573\) 3.43918 0.143674
\(574\) 0 0
\(575\) −7.58141 −0.316167
\(576\) 1.00000 0.0416667
\(577\) −1.16676 −0.0485727 −0.0242863 0.999705i \(-0.507731\pi\)
−0.0242863 + 0.999705i \(0.507731\pi\)
\(578\) 1.00000 0.0415945
\(579\) 16.4779 0.684798
\(580\) 13.0471 0.541750
\(581\) 0 0
\(582\) −12.5430 −0.519924
\(583\) 9.08879 0.376419
\(584\) 0.191107 0.00790806
\(585\) −3.36268 −0.139030
\(586\) −30.4805 −1.25914
\(587\) 22.3911 0.924178 0.462089 0.886834i \(-0.347100\pi\)
0.462089 + 0.886834i \(0.347100\pi\)
\(588\) 0 0
\(589\) −8.44259 −0.347871
\(590\) 9.04331 0.372307
\(591\) 14.0353 0.577336
\(592\) 0.364492 0.0149805
\(593\) 37.9467 1.55828 0.779142 0.626848i \(-0.215655\pi\)
0.779142 + 0.626848i \(0.215655\pi\)
\(594\) 2.22129 0.0911408
\(595\) 0 0
\(596\) −13.0283 −0.533659
\(597\) 9.38659 0.384167
\(598\) −6.09944 −0.249425
\(599\) −1.70679 −0.0697377 −0.0348688 0.999392i \(-0.511101\pi\)
−0.0348688 + 0.999392i \(0.511101\pi\)
\(600\) −2.85158 −0.116415
\(601\) 30.5830 1.24751 0.623754 0.781621i \(-0.285607\pi\)
0.623754 + 0.781621i \(0.285607\pi\)
\(602\) 0 0
\(603\) 1.28980 0.0525247
\(604\) −14.1384 −0.575283
\(605\) −8.89100 −0.361471
\(606\) 0.925308 0.0375881
\(607\) −9.33346 −0.378833 −0.189417 0.981897i \(-0.560660\pi\)
−0.189417 + 0.981897i \(0.560660\pi\)
\(608\) −4.07288 −0.165177
\(609\) 0 0
\(610\) 3.49704 0.141591
\(611\) −23.4433 −0.948416
\(612\) 1.00000 0.0404226
\(613\) −19.0347 −0.768804 −0.384402 0.923166i \(-0.625592\pi\)
−0.384402 + 0.923166i \(0.625592\pi\)
\(614\) 1.13763 0.0459110
\(615\) 11.4809 0.462955
\(616\) 0 0
\(617\) −5.50725 −0.221713 −0.110857 0.993836i \(-0.535359\pi\)
−0.110857 + 0.993836i \(0.535359\pi\)
\(618\) −2.87996 −0.115849
\(619\) −19.4407 −0.781387 −0.390694 0.920521i \(-0.627765\pi\)
−0.390694 + 0.920521i \(0.627765\pi\)
\(620\) 3.03832 0.122022
\(621\) 2.65867 0.106689
\(622\) −9.39287 −0.376620
\(623\) 0 0
\(624\) −2.29417 −0.0918405
\(625\) −2.61054 −0.104422
\(626\) 2.98825 0.119434
\(627\) −9.04707 −0.361305
\(628\) 5.46309 0.218001
\(629\) 0.364492 0.0145332
\(630\) 0 0
\(631\) −17.0735 −0.679685 −0.339843 0.940482i \(-0.610374\pi\)
−0.339843 + 0.940482i \(0.610374\pi\)
\(632\) 8.99297 0.357721
\(633\) −21.3163 −0.847246
\(634\) −10.6774 −0.424052
\(635\) 0.0831838 0.00330105
\(636\) 4.09166 0.162245
\(637\) 0 0
\(638\) 19.7724 0.782798
\(639\) 9.17414 0.362923
\(640\) 1.46575 0.0579387
\(641\) −15.7350 −0.621493 −0.310747 0.950493i \(-0.600579\pi\)
−0.310747 + 0.950493i \(0.600579\pi\)
\(642\) 17.5198 0.691453
\(643\) −21.3412 −0.841616 −0.420808 0.907150i \(-0.638253\pi\)
−0.420808 + 0.907150i \(0.638253\pi\)
\(644\) 0 0
\(645\) −7.20079 −0.283531
\(646\) −4.07288 −0.160245
\(647\) −47.9732 −1.88602 −0.943012 0.332760i \(-0.892020\pi\)
−0.943012 + 0.332760i \(0.892020\pi\)
\(648\) 1.00000 0.0392837
\(649\) 13.7049 0.537963
\(650\) 6.54203 0.256600
\(651\) 0 0
\(652\) 8.82586 0.345648
\(653\) −12.7290 −0.498124 −0.249062 0.968488i \(-0.580122\pi\)
−0.249062 + 0.968488i \(0.580122\pi\)
\(654\) 5.04450 0.197256
\(655\) −10.3735 −0.405325
\(656\) 7.83280 0.305820
\(657\) 0.191107 0.00745579
\(658\) 0 0
\(659\) 34.5132 1.34444 0.672222 0.740350i \(-0.265340\pi\)
0.672222 + 0.740350i \(0.265340\pi\)
\(660\) 3.25586 0.126734
\(661\) −32.0102 −1.24505 −0.622527 0.782598i \(-0.713894\pi\)
−0.622527 + 0.782598i \(0.713894\pi\)
\(662\) 6.12698 0.238132
\(663\) −2.29417 −0.0890984
\(664\) −16.2967 −0.632436
\(665\) 0 0
\(666\) 0.364492 0.0141238
\(667\) 23.6656 0.916336
\(668\) −4.35831 −0.168628
\(669\) −18.1181 −0.700488
\(670\) 1.89052 0.0730372
\(671\) 5.29965 0.204591
\(672\) 0 0
\(673\) 10.3358 0.398415 0.199207 0.979957i \(-0.436163\pi\)
0.199207 + 0.979957i \(0.436163\pi\)
\(674\) −25.8114 −0.994217
\(675\) −2.85158 −0.109758
\(676\) −7.73676 −0.297568
\(677\) −4.21824 −0.162120 −0.0810600 0.996709i \(-0.525831\pi\)
−0.0810600 + 0.996709i \(0.525831\pi\)
\(678\) 7.29236 0.280061
\(679\) 0 0
\(680\) 1.46575 0.0562088
\(681\) 12.9706 0.497033
\(682\) 4.60448 0.176315
\(683\) 35.6193 1.36293 0.681467 0.731849i \(-0.261342\pi\)
0.681467 + 0.731849i \(0.261342\pi\)
\(684\) −4.07288 −0.155730
\(685\) 2.62385 0.100252
\(686\) 0 0
\(687\) −5.81402 −0.221819
\(688\) −4.91271 −0.187295
\(689\) −9.38699 −0.357616
\(690\) 3.89693 0.148354
\(691\) −13.1264 −0.499350 −0.249675 0.968330i \(-0.580324\pi\)
−0.249675 + 0.968330i \(0.580324\pi\)
\(692\) −4.04632 −0.153818
\(693\) 0 0
\(694\) 20.6726 0.784722
\(695\) −11.3963 −0.432286
\(696\) 8.90131 0.337403
\(697\) 7.83280 0.296689
\(698\) −16.9715 −0.642382
\(699\) 1.25329 0.0474039
\(700\) 0 0
\(701\) −19.1139 −0.721920 −0.360960 0.932581i \(-0.617551\pi\)
−0.360960 + 0.932581i \(0.617551\pi\)
\(702\) −2.29417 −0.0865880
\(703\) −1.48453 −0.0559901
\(704\) 2.22129 0.0837182
\(705\) 14.9779 0.564102
\(706\) 33.5136 1.26130
\(707\) 0 0
\(708\) 6.16976 0.231874
\(709\) −43.0418 −1.61647 −0.808235 0.588860i \(-0.799577\pi\)
−0.808235 + 0.588860i \(0.799577\pi\)
\(710\) 13.4470 0.504656
\(711\) 8.99297 0.337263
\(712\) −14.7831 −0.554019
\(713\) 5.51109 0.206392
\(714\) 0 0
\(715\) −7.46950 −0.279344
\(716\) −19.0471 −0.711822
\(717\) 13.0960 0.489080
\(718\) 1.60373 0.0598505
\(719\) 30.4992 1.13743 0.568713 0.822536i \(-0.307441\pi\)
0.568713 + 0.822536i \(0.307441\pi\)
\(720\) 1.46575 0.0546252
\(721\) 0 0
\(722\) −2.41165 −0.0897524
\(723\) 15.6193 0.580888
\(724\) −17.7952 −0.661355
\(725\) −25.3828 −0.942695
\(726\) −6.06585 −0.225125
\(727\) 47.1215 1.74764 0.873821 0.486248i \(-0.161635\pi\)
0.873821 + 0.486248i \(0.161635\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0.280115 0.0103675
\(731\) −4.91271 −0.181703
\(732\) 2.38584 0.0881831
\(733\) −29.6317 −1.09447 −0.547235 0.836979i \(-0.684320\pi\)
−0.547235 + 0.836979i \(0.684320\pi\)
\(734\) 4.97056 0.183467
\(735\) 0 0
\(736\) 2.65867 0.0979997
\(737\) 2.86503 0.105535
\(738\) 7.83280 0.288329
\(739\) 8.36233 0.307613 0.153807 0.988101i \(-0.450847\pi\)
0.153807 + 0.988101i \(0.450847\pi\)
\(740\) 0.534253 0.0196395
\(741\) 9.34390 0.343257
\(742\) 0 0
\(743\) −19.2970 −0.707937 −0.353968 0.935257i \(-0.615168\pi\)
−0.353968 + 0.935257i \(0.615168\pi\)
\(744\) 2.07288 0.0759955
\(745\) −19.0962 −0.699630
\(746\) −6.07650 −0.222477
\(747\) −16.2967 −0.596266
\(748\) 2.22129 0.0812186
\(749\) 0 0
\(750\) −11.5084 −0.420229
\(751\) 0.0123721 0.000451465 0 0.000225733 1.00000i \(-0.499928\pi\)
0.000225733 1.00000i \(0.499928\pi\)
\(752\) 10.2186 0.372635
\(753\) −20.2967 −0.739654
\(754\) −20.4212 −0.743694
\(755\) −20.7233 −0.754198
\(756\) 0 0
\(757\) 49.0006 1.78096 0.890478 0.455027i \(-0.150370\pi\)
0.890478 + 0.455027i \(0.150370\pi\)
\(758\) −29.8016 −1.08244
\(759\) 5.90568 0.214363
\(760\) −5.96981 −0.216548
\(761\) 8.96278 0.324901 0.162450 0.986717i \(-0.448060\pi\)
0.162450 + 0.986717i \(0.448060\pi\)
\(762\) 0.0567518 0.00205590
\(763\) 0 0
\(764\) 3.43918 0.124425
\(765\) 1.46575 0.0529942
\(766\) −23.1841 −0.837675
\(767\) −14.1545 −0.511090
\(768\) 1.00000 0.0360844
\(769\) −15.9834 −0.576375 −0.288188 0.957574i \(-0.593053\pi\)
−0.288188 + 0.957574i \(0.593053\pi\)
\(770\) 0 0
\(771\) −11.7058 −0.421575
\(772\) 16.4779 0.593053
\(773\) 4.49372 0.161628 0.0808140 0.996729i \(-0.474248\pi\)
0.0808140 + 0.996729i \(0.474248\pi\)
\(774\) −4.91271 −0.176584
\(775\) −5.91099 −0.212329
\(776\) −12.5430 −0.450268
\(777\) 0 0
\(778\) 0.837176 0.0300142
\(779\) −31.9021 −1.14301
\(780\) −3.36268 −0.120403
\(781\) 20.3785 0.729199
\(782\) 2.65867 0.0950737
\(783\) 8.90131 0.318107
\(784\) 0 0
\(785\) 8.00751 0.285800
\(786\) −7.07725 −0.252437
\(787\) 50.2970 1.79290 0.896448 0.443149i \(-0.146139\pi\)
0.896448 + 0.443149i \(0.146139\pi\)
\(788\) 14.0353 0.499987
\(789\) 5.01578 0.178566
\(790\) 13.1814 0.468974
\(791\) 0 0
\(792\) 2.22129 0.0789303
\(793\) −5.47353 −0.194371
\(794\) 2.88880 0.102520
\(795\) 5.99734 0.212704
\(796\) 9.38659 0.332699
\(797\) 31.7551 1.12482 0.562412 0.826857i \(-0.309874\pi\)
0.562412 + 0.826857i \(0.309874\pi\)
\(798\) 0 0
\(799\) 10.2186 0.361509
\(800\) −2.85158 −0.100819
\(801\) −14.7831 −0.522334
\(802\) −20.3119 −0.717238
\(803\) 0.424505 0.0149805
\(804\) 1.28980 0.0454877
\(805\) 0 0
\(806\) −4.75555 −0.167507
\(807\) 11.9057 0.419100
\(808\) 0.925308 0.0325522
\(809\) 33.5812 1.18065 0.590327 0.807165i \(-0.298999\pi\)
0.590327 + 0.807165i \(0.298999\pi\)
\(810\) 1.46575 0.0515011
\(811\) 36.5039 1.28182 0.640912 0.767614i \(-0.278556\pi\)
0.640912 + 0.767614i \(0.278556\pi\)
\(812\) 0 0
\(813\) 12.4941 0.438188
\(814\) 0.809644 0.0283780
\(815\) 12.9365 0.453145
\(816\) 1.00000 0.0350070
\(817\) 20.0089 0.700022
\(818\) −10.7367 −0.375399
\(819\) 0 0
\(820\) 11.4809 0.400931
\(821\) −3.99624 −0.139470 −0.0697349 0.997566i \(-0.522215\pi\)
−0.0697349 + 0.997566i \(0.522215\pi\)
\(822\) 1.79011 0.0624372
\(823\) 27.2130 0.948585 0.474292 0.880367i \(-0.342704\pi\)
0.474292 + 0.880367i \(0.342704\pi\)
\(824\) −2.87996 −0.100328
\(825\) −6.33421 −0.220529
\(826\) 0 0
\(827\) 28.4289 0.988571 0.494285 0.869300i \(-0.335430\pi\)
0.494285 + 0.869300i \(0.335430\pi\)
\(828\) 2.65867 0.0923950
\(829\) −11.9562 −0.415254 −0.207627 0.978208i \(-0.566574\pi\)
−0.207627 + 0.978208i \(0.566574\pi\)
\(830\) −23.8869 −0.829126
\(831\) 7.58654 0.263174
\(832\) −2.29417 −0.0795362
\(833\) 0 0
\(834\) −7.77508 −0.269229
\(835\) −6.38817 −0.221072
\(836\) −9.04707 −0.312899
\(837\) 2.07288 0.0716492
\(838\) −5.90431 −0.203961
\(839\) −11.2714 −0.389133 −0.194566 0.980889i \(-0.562330\pi\)
−0.194566 + 0.980889i \(0.562330\pi\)
\(840\) 0 0
\(841\) 50.2333 1.73218
\(842\) −30.6700 −1.05696
\(843\) 3.99638 0.137643
\(844\) −21.3163 −0.733736
\(845\) −11.3401 −0.390113
\(846\) 10.2186 0.351324
\(847\) 0 0
\(848\) 4.09166 0.140508
\(849\) −5.74476 −0.197160
\(850\) −2.85158 −0.0978086
\(851\) 0.969062 0.0332190
\(852\) 9.17414 0.314301
\(853\) 19.6618 0.673209 0.336604 0.941646i \(-0.390721\pi\)
0.336604 + 0.941646i \(0.390721\pi\)
\(854\) 0 0
\(855\) −5.96981 −0.204163
\(856\) 17.5198 0.598816
\(857\) −35.7650 −1.22171 −0.610855 0.791742i \(-0.709174\pi\)
−0.610855 + 0.791742i \(0.709174\pi\)
\(858\) −5.09604 −0.173976
\(859\) 47.3423 1.61530 0.807650 0.589662i \(-0.200739\pi\)
0.807650 + 0.589662i \(0.200739\pi\)
\(860\) −7.20079 −0.245545
\(861\) 0 0
\(862\) 24.7262 0.842179
\(863\) −7.71833 −0.262735 −0.131368 0.991334i \(-0.541937\pi\)
−0.131368 + 0.991334i \(0.541937\pi\)
\(864\) 1.00000 0.0340207
\(865\) −5.93088 −0.201656
\(866\) 18.8397 0.640200
\(867\) 1.00000 0.0339618
\(868\) 0 0
\(869\) 19.9760 0.677641
\(870\) 13.0471 0.442337
\(871\) −2.95903 −0.100263
\(872\) 5.04450 0.170828
\(873\) −12.5430 −0.424516
\(874\) −10.8284 −0.366277
\(875\) 0 0
\(876\) 0.191107 0.00645691
\(877\) −45.7600 −1.54520 −0.772602 0.634891i \(-0.781045\pi\)
−0.772602 + 0.634891i \(0.781045\pi\)
\(878\) 4.75555 0.160492
\(879\) −30.4805 −1.02808
\(880\) 3.25586 0.109755
\(881\) −46.2699 −1.55887 −0.779437 0.626481i \(-0.784495\pi\)
−0.779437 + 0.626481i \(0.784495\pi\)
\(882\) 0 0
\(883\) −35.0771 −1.18044 −0.590219 0.807243i \(-0.700958\pi\)
−0.590219 + 0.807243i \(0.700958\pi\)
\(884\) −2.29417 −0.0771614
\(885\) 9.04331 0.303988
\(886\) 21.3386 0.716884
\(887\) −14.7381 −0.494858 −0.247429 0.968906i \(-0.579586\pi\)
−0.247429 + 0.968906i \(0.579586\pi\)
\(888\) 0.364492 0.0122315
\(889\) 0 0
\(890\) −21.6683 −0.726322
\(891\) 2.22129 0.0744162
\(892\) −18.1181 −0.606640
\(893\) −41.6193 −1.39274
\(894\) −13.0283 −0.435731
\(895\) −27.9182 −0.933202
\(896\) 0 0
\(897\) −6.09944 −0.203654
\(898\) 1.11266 0.0371299
\(899\) 18.4513 0.615387
\(900\) −2.85158 −0.0950528
\(901\) 4.09166 0.136313
\(902\) 17.3990 0.579322
\(903\) 0 0
\(904\) 7.29236 0.242540
\(905\) −26.0833 −0.867039
\(906\) −14.1384 −0.469716
\(907\) −52.4000 −1.73991 −0.869957 0.493128i \(-0.835854\pi\)
−0.869957 + 0.493128i \(0.835854\pi\)
\(908\) 12.9706 0.430443
\(909\) 0.925308 0.0306905
\(910\) 0 0
\(911\) −0.484088 −0.0160385 −0.00801927 0.999968i \(-0.502553\pi\)
−0.00801927 + 0.999968i \(0.502553\pi\)
\(912\) −4.07288 −0.134867
\(913\) −36.1999 −1.19804
\(914\) 31.4568 1.04050
\(915\) 3.49704 0.115608
\(916\) −5.81402 −0.192101
\(917\) 0 0
\(918\) 1.00000 0.0330049
\(919\) 17.4699 0.576279 0.288139 0.957588i \(-0.406963\pi\)
0.288139 + 0.957588i \(0.406963\pi\)
\(920\) 3.89693 0.128478
\(921\) 1.13763 0.0374862
\(922\) 1.60060 0.0527128
\(923\) −21.0471 −0.692773
\(924\) 0 0
\(925\) −1.03938 −0.0341746
\(926\) −29.5553 −0.971247
\(927\) −2.87996 −0.0945903
\(928\) 8.90131 0.292200
\(929\) 8.71811 0.286032 0.143016 0.989720i \(-0.454320\pi\)
0.143016 + 0.989720i \(0.454320\pi\)
\(930\) 3.03832 0.0996304
\(931\) 0 0
\(932\) 1.25329 0.0410530
\(933\) −9.39287 −0.307509
\(934\) −10.1470 −0.332018
\(935\) 3.25586 0.106478
\(936\) −2.29417 −0.0749874
\(937\) −52.3418 −1.70993 −0.854965 0.518685i \(-0.826422\pi\)
−0.854965 + 0.518685i \(0.826422\pi\)
\(938\) 0 0
\(939\) 2.98825 0.0975177
\(940\) 14.9779 0.488527
\(941\) 50.0112 1.63032 0.815160 0.579236i \(-0.196649\pi\)
0.815160 + 0.579236i \(0.196649\pi\)
\(942\) 5.46309 0.177997
\(943\) 20.8248 0.678149
\(944\) 6.16976 0.200809
\(945\) 0 0
\(946\) −10.9126 −0.354799
\(947\) −6.87474 −0.223399 −0.111700 0.993742i \(-0.535629\pi\)
−0.111700 + 0.993742i \(0.535629\pi\)
\(948\) 8.99297 0.292078
\(949\) −0.438433 −0.0142321
\(950\) 11.6142 0.376813
\(951\) −10.6774 −0.346237
\(952\) 0 0
\(953\) −0.103199 −0.00334296 −0.00167148 0.999999i \(-0.500532\pi\)
−0.00167148 + 0.999999i \(0.500532\pi\)
\(954\) 4.09166 0.132472
\(955\) 5.04097 0.163122
\(956\) 13.0960 0.423556
\(957\) 19.7724 0.639152
\(958\) 0.800895 0.0258757
\(959\) 0 0
\(960\) 1.46575 0.0473068
\(961\) −26.7032 −0.861393
\(962\) −0.836208 −0.0269604
\(963\) 17.5198 0.564569
\(964\) 15.6193 0.503063
\(965\) 24.1524 0.777495
\(966\) 0 0
\(967\) −16.3608 −0.526127 −0.263064 0.964779i \(-0.584733\pi\)
−0.263064 + 0.964779i \(0.584733\pi\)
\(968\) −6.06585 −0.194964
\(969\) −4.07288 −0.130840
\(970\) −18.3849 −0.590303
\(971\) −34.5368 −1.10834 −0.554170 0.832404i \(-0.686964\pi\)
−0.554170 + 0.832404i \(0.686964\pi\)
\(972\) 1.00000 0.0320750
\(973\) 0 0
\(974\) 1.35018 0.0432624
\(975\) 6.54203 0.209513
\(976\) 2.38584 0.0763688
\(977\) 17.9732 0.575015 0.287508 0.957778i \(-0.407173\pi\)
0.287508 + 0.957778i \(0.407173\pi\)
\(978\) 8.82586 0.282220
\(979\) −32.8376 −1.04949
\(980\) 0 0
\(981\) 5.04450 0.161059
\(982\) −17.5360 −0.559595
\(983\) −27.1304 −0.865325 −0.432662 0.901556i \(-0.642426\pi\)
−0.432662 + 0.901556i \(0.642426\pi\)
\(984\) 7.83280 0.249701
\(985\) 20.5722 0.655485
\(986\) 8.90131 0.283475
\(987\) 0 0
\(988\) 9.34390 0.297269
\(989\) −13.0613 −0.415324
\(990\) 3.25586 0.103478
\(991\) −41.3927 −1.31488 −0.657441 0.753506i \(-0.728361\pi\)
−0.657441 + 0.753506i \(0.728361\pi\)
\(992\) 2.07288 0.0658140
\(993\) 6.12698 0.194434
\(994\) 0 0
\(995\) 13.7584 0.436170
\(996\) −16.2967 −0.516382
\(997\) 15.4741 0.490069 0.245035 0.969514i \(-0.421201\pi\)
0.245035 + 0.969514i \(0.421201\pi\)
\(998\) 44.2529 1.40080
\(999\) 0.364492 0.0115320
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4998.2.a.cp.1.3 yes 4
7.6 odd 2 4998.2.a.co.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4998.2.a.co.1.2 4 7.6 odd 2
4998.2.a.cp.1.3 yes 4 1.1 even 1 trivial