Properties

Label 495.6.a.c.1.1
Level $495$
Weight $6$
Character 495.1
Self dual yes
Analytic conductor $79.390$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [495,6,Mod(1,495)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(495, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("495.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 495 = 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 495.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(79.3899908074\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.788.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 7x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 165)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.87740\) of defining polynomial
Character \(\chi\) \(=\) 495.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-6.55890 q^{2} +11.0192 q^{4} -25.0000 q^{5} +146.487 q^{7} +137.611 q^{8} +O(q^{10})\) \(q-6.55890 q^{2} +11.0192 q^{4} -25.0000 q^{5} +146.487 q^{7} +137.611 q^{8} +163.973 q^{10} +121.000 q^{11} +170.238 q^{13} -960.792 q^{14} -1255.19 q^{16} -1564.81 q^{17} +569.786 q^{19} -275.481 q^{20} -793.627 q^{22} -3153.25 q^{23} +625.000 q^{25} -1116.57 q^{26} +1614.17 q^{28} -3982.58 q^{29} +2990.78 q^{31} +3829.14 q^{32} +10263.5 q^{34} -3662.17 q^{35} +7858.92 q^{37} -3737.17 q^{38} -3440.27 q^{40} +5206.60 q^{41} +13874.3 q^{43} +1333.33 q^{44} +20681.9 q^{46} -6852.01 q^{47} +4651.35 q^{49} -4099.32 q^{50} +1875.89 q^{52} +3834.15 q^{53} -3025.00 q^{55} +20158.2 q^{56} +26121.4 q^{58} -9649.38 q^{59} -21131.8 q^{61} -19616.2 q^{62} +15051.2 q^{64} -4255.95 q^{65} -43499.9 q^{67} -17243.0 q^{68} +24019.8 q^{70} +52607.2 q^{71} -64367.9 q^{73} -51545.9 q^{74} +6278.61 q^{76} +17724.9 q^{77} +28935.7 q^{79} +31379.8 q^{80} -34149.6 q^{82} +4648.64 q^{83} +39120.3 q^{85} -91000.1 q^{86} +16650.9 q^{88} +103458. q^{89} +24937.6 q^{91} -34746.4 q^{92} +44941.6 q^{94} -14244.7 q^{95} +75809.5 q^{97} -30507.8 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 2 q^{2} - 20 q^{4} - 75 q^{5} + 152 q^{7} + 24 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 3 q - 2 q^{2} - 20 q^{4} - 75 q^{5} + 152 q^{7} + 24 q^{8} + 50 q^{10} + 363 q^{11} - 546 q^{13} + 8 q^{14} - 1360 q^{16} + 314 q^{17} + 1808 q^{19} + 500 q^{20} - 242 q^{22} - 4288 q^{23} + 1875 q^{25} - 812 q^{26} + 5888 q^{28} - 5582 q^{29} + 6328 q^{31} + 736 q^{32} + 11596 q^{34} - 3800 q^{35} + 16866 q^{37} - 9584 q^{38} - 600 q^{40} - 23282 q^{41} + 20572 q^{43} - 2420 q^{44} + 16592 q^{46} - 3432 q^{47} + 11531 q^{49} - 1250 q^{50} + 21816 q^{52} - 16138 q^{53} - 9075 q^{55} - 15648 q^{56} + 17460 q^{58} - 21972 q^{59} + 8322 q^{61} - 5056 q^{62} + 22208 q^{64} + 13650 q^{65} - 84332 q^{67} - 59832 q^{68} - 200 q^{70} - 50528 q^{71} - 53838 q^{73} - 79212 q^{74} - 52448 q^{76} + 18392 q^{77} + 6364 q^{79} + 34000 q^{80} - 68020 q^{82} - 96272 q^{83} - 7850 q^{85} - 143152 q^{86} + 2904 q^{88} + 38938 q^{89} + 104968 q^{91} - 24000 q^{92} + 49088 q^{94} - 45200 q^{95} - 103242 q^{97} - 9554 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −6.55890 −1.15946 −0.579731 0.814808i \(-0.696842\pi\)
−0.579731 + 0.814808i \(0.696842\pi\)
\(3\) 0 0
\(4\) 11.0192 0.344351
\(5\) −25.0000 −0.447214
\(6\) 0 0
\(7\) 146.487 1.12993 0.564967 0.825113i \(-0.308889\pi\)
0.564967 + 0.825113i \(0.308889\pi\)
\(8\) 137.611 0.760200
\(9\) 0 0
\(10\) 163.973 0.518527
\(11\) 121.000 0.301511
\(12\) 0 0
\(13\) 170.238 0.279382 0.139691 0.990195i \(-0.455389\pi\)
0.139691 + 0.990195i \(0.455389\pi\)
\(14\) −960.792 −1.31012
\(15\) 0 0
\(16\) −1255.19 −1.22577
\(17\) −1564.81 −1.31323 −0.656614 0.754227i \(-0.728012\pi\)
−0.656614 + 0.754227i \(0.728012\pi\)
\(18\) 0 0
\(19\) 569.786 0.362100 0.181050 0.983474i \(-0.442050\pi\)
0.181050 + 0.983474i \(0.442050\pi\)
\(20\) −275.481 −0.153998
\(21\) 0 0
\(22\) −793.627 −0.349591
\(23\) −3153.25 −1.24291 −0.621454 0.783451i \(-0.713458\pi\)
−0.621454 + 0.783451i \(0.713458\pi\)
\(24\) 0 0
\(25\) 625.000 0.200000
\(26\) −1116.57 −0.323932
\(27\) 0 0
\(28\) 1614.17 0.389094
\(29\) −3982.58 −0.879366 −0.439683 0.898153i \(-0.644909\pi\)
−0.439683 + 0.898153i \(0.644909\pi\)
\(30\) 0 0
\(31\) 2990.78 0.558959 0.279480 0.960152i \(-0.409838\pi\)
0.279480 + 0.960152i \(0.409838\pi\)
\(32\) 3829.14 0.661037
\(33\) 0 0
\(34\) 10263.5 1.52264
\(35\) −3662.17 −0.505322
\(36\) 0 0
\(37\) 7858.92 0.943753 0.471877 0.881665i \(-0.343577\pi\)
0.471877 + 0.881665i \(0.343577\pi\)
\(38\) −3737.17 −0.419841
\(39\) 0 0
\(40\) −3440.27 −0.339972
\(41\) 5206.60 0.483721 0.241860 0.970311i \(-0.422242\pi\)
0.241860 + 0.970311i \(0.422242\pi\)
\(42\) 0 0
\(43\) 13874.3 1.14430 0.572149 0.820149i \(-0.306110\pi\)
0.572149 + 0.820149i \(0.306110\pi\)
\(44\) 1333.33 0.103826
\(45\) 0 0
\(46\) 20681.9 1.44110
\(47\) −6852.01 −0.452453 −0.226226 0.974075i \(-0.572639\pi\)
−0.226226 + 0.974075i \(0.572639\pi\)
\(48\) 0 0
\(49\) 4651.35 0.276751
\(50\) −4099.32 −0.231892
\(51\) 0 0
\(52\) 1875.89 0.0962054
\(53\) 3834.15 0.187490 0.0937452 0.995596i \(-0.470116\pi\)
0.0937452 + 0.995596i \(0.470116\pi\)
\(54\) 0 0
\(55\) −3025.00 −0.134840
\(56\) 20158.2 0.858976
\(57\) 0 0
\(58\) 26121.4 1.01959
\(59\) −9649.38 −0.360885 −0.180443 0.983586i \(-0.557753\pi\)
−0.180443 + 0.983586i \(0.557753\pi\)
\(60\) 0 0
\(61\) −21131.8 −0.727128 −0.363564 0.931569i \(-0.618440\pi\)
−0.363564 + 0.931569i \(0.618440\pi\)
\(62\) −19616.2 −0.648092
\(63\) 0 0
\(64\) 15051.2 0.459326
\(65\) −4255.95 −0.124943
\(66\) 0 0
\(67\) −43499.9 −1.18386 −0.591931 0.805989i \(-0.701634\pi\)
−0.591931 + 0.805989i \(0.701634\pi\)
\(68\) −17243.0 −0.452211
\(69\) 0 0
\(70\) 24019.8 0.585901
\(71\) 52607.2 1.23851 0.619255 0.785190i \(-0.287435\pi\)
0.619255 + 0.785190i \(0.287435\pi\)
\(72\) 0 0
\(73\) −64367.9 −1.41372 −0.706858 0.707355i \(-0.749888\pi\)
−0.706858 + 0.707355i \(0.749888\pi\)
\(74\) −51545.9 −1.09425
\(75\) 0 0
\(76\) 6278.61 0.124689
\(77\) 17724.9 0.340688
\(78\) 0 0
\(79\) 28935.7 0.521635 0.260817 0.965388i \(-0.416008\pi\)
0.260817 + 0.965388i \(0.416008\pi\)
\(80\) 31379.8 0.548183
\(81\) 0 0
\(82\) −34149.6 −0.560855
\(83\) 4648.64 0.0740681 0.0370340 0.999314i \(-0.488209\pi\)
0.0370340 + 0.999314i \(0.488209\pi\)
\(84\) 0 0
\(85\) 39120.3 0.587293
\(86\) −91000.1 −1.32677
\(87\) 0 0
\(88\) 16650.9 0.229209
\(89\) 103458. 1.38448 0.692242 0.721666i \(-0.256623\pi\)
0.692242 + 0.721666i \(0.256623\pi\)
\(90\) 0 0
\(91\) 24937.6 0.315683
\(92\) −34746.4 −0.427996
\(93\) 0 0
\(94\) 44941.6 0.524601
\(95\) −14244.7 −0.161936
\(96\) 0 0
\(97\) 75809.5 0.818077 0.409039 0.912517i \(-0.365864\pi\)
0.409039 + 0.912517i \(0.365864\pi\)
\(98\) −30507.8 −0.320882
\(99\) 0 0
\(100\) 6887.02 0.0688702
\(101\) −35023.6 −0.341631 −0.170816 0.985303i \(-0.554640\pi\)
−0.170816 + 0.985303i \(0.554640\pi\)
\(102\) 0 0
\(103\) 16965.7 0.157572 0.0787859 0.996892i \(-0.474896\pi\)
0.0787859 + 0.996892i \(0.474896\pi\)
\(104\) 23426.6 0.212386
\(105\) 0 0
\(106\) −25147.8 −0.217388
\(107\) −12190.4 −0.102934 −0.0514671 0.998675i \(-0.516390\pi\)
−0.0514671 + 0.998675i \(0.516390\pi\)
\(108\) 0 0
\(109\) 12138.7 0.0978606 0.0489303 0.998802i \(-0.484419\pi\)
0.0489303 + 0.998802i \(0.484419\pi\)
\(110\) 19840.7 0.156342
\(111\) 0 0
\(112\) −183869. −1.38504
\(113\) −204649. −1.50770 −0.753848 0.657048i \(-0.771805\pi\)
−0.753848 + 0.657048i \(0.771805\pi\)
\(114\) 0 0
\(115\) 78831.2 0.555845
\(116\) −43885.0 −0.302810
\(117\) 0 0
\(118\) 63289.3 0.418433
\(119\) −229224. −1.48386
\(120\) 0 0
\(121\) 14641.0 0.0909091
\(122\) 138601. 0.843077
\(123\) 0 0
\(124\) 32956.1 0.192478
\(125\) −15625.0 −0.0894427
\(126\) 0 0
\(127\) −112241. −0.617506 −0.308753 0.951142i \(-0.599912\pi\)
−0.308753 + 0.951142i \(0.599912\pi\)
\(128\) −221252. −1.19361
\(129\) 0 0
\(130\) 27914.4 0.144867
\(131\) 11679.0 0.0594602 0.0297301 0.999558i \(-0.490535\pi\)
0.0297301 + 0.999558i \(0.490535\pi\)
\(132\) 0 0
\(133\) 83466.1 0.409149
\(134\) 285311. 1.37264
\(135\) 0 0
\(136\) −215335. −0.998315
\(137\) 384935. 1.75221 0.876105 0.482121i \(-0.160133\pi\)
0.876105 + 0.482121i \(0.160133\pi\)
\(138\) 0 0
\(139\) −310605. −1.36355 −0.681775 0.731562i \(-0.738792\pi\)
−0.681775 + 0.731562i \(0.738792\pi\)
\(140\) −40354.3 −0.174008
\(141\) 0 0
\(142\) −345046. −1.43600
\(143\) 20598.8 0.0842368
\(144\) 0 0
\(145\) 99564.5 0.393264
\(146\) 422183. 1.63915
\(147\) 0 0
\(148\) 86599.2 0.324982
\(149\) −285203. −1.05242 −0.526209 0.850355i \(-0.676387\pi\)
−0.526209 + 0.850355i \(0.676387\pi\)
\(150\) 0 0
\(151\) −522357. −1.86434 −0.932170 0.362020i \(-0.882087\pi\)
−0.932170 + 0.362020i \(0.882087\pi\)
\(152\) 78408.8 0.275268
\(153\) 0 0
\(154\) −116256. −0.395015
\(155\) −74769.5 −0.249974
\(156\) 0 0
\(157\) −2221.66 −0.00719330 −0.00359665 0.999994i \(-0.501145\pi\)
−0.00359665 + 0.999994i \(0.501145\pi\)
\(158\) −189787. −0.604816
\(159\) 0 0
\(160\) −95728.4 −0.295625
\(161\) −461909. −1.40440
\(162\) 0 0
\(163\) 250146. 0.737436 0.368718 0.929541i \(-0.379797\pi\)
0.368718 + 0.929541i \(0.379797\pi\)
\(164\) 57372.7 0.166570
\(165\) 0 0
\(166\) −30490.0 −0.0858791
\(167\) 42083.4 0.116767 0.0583834 0.998294i \(-0.481405\pi\)
0.0583834 + 0.998294i \(0.481405\pi\)
\(168\) 0 0
\(169\) −342312. −0.921946
\(170\) −256586. −0.680944
\(171\) 0 0
\(172\) 152884. 0.394040
\(173\) 117206. 0.297737 0.148869 0.988857i \(-0.452437\pi\)
0.148869 + 0.988857i \(0.452437\pi\)
\(174\) 0 0
\(175\) 91554.2 0.225987
\(176\) −151878. −0.369585
\(177\) 0 0
\(178\) −678569. −1.60526
\(179\) −582985. −1.35996 −0.679978 0.733233i \(-0.738011\pi\)
−0.679978 + 0.733233i \(0.738011\pi\)
\(180\) 0 0
\(181\) 235291. 0.533837 0.266919 0.963719i \(-0.413994\pi\)
0.266919 + 0.963719i \(0.413994\pi\)
\(182\) −163563. −0.366022
\(183\) 0 0
\(184\) −433921. −0.944858
\(185\) −196473. −0.422059
\(186\) 0 0
\(187\) −189342. −0.395953
\(188\) −75503.8 −0.155802
\(189\) 0 0
\(190\) 93429.4 0.187758
\(191\) −591788. −1.17377 −0.586885 0.809670i \(-0.699646\pi\)
−0.586885 + 0.809670i \(0.699646\pi\)
\(192\) 0 0
\(193\) −540825. −1.04511 −0.522557 0.852605i \(-0.675022\pi\)
−0.522557 + 0.852605i \(0.675022\pi\)
\(194\) −497227. −0.948529
\(195\) 0 0
\(196\) 51254.3 0.0952994
\(197\) −481711. −0.884344 −0.442172 0.896930i \(-0.645792\pi\)
−0.442172 + 0.896930i \(0.645792\pi\)
\(198\) 0 0
\(199\) −1.01427e6 −1.81560 −0.907801 0.419401i \(-0.862240\pi\)
−0.907801 + 0.419401i \(0.862240\pi\)
\(200\) 86006.8 0.152040
\(201\) 0 0
\(202\) 229717. 0.396108
\(203\) −583395. −0.993625
\(204\) 0 0
\(205\) −130165. −0.216326
\(206\) −111276. −0.182699
\(207\) 0 0
\(208\) −213681. −0.342459
\(209\) 68944.2 0.109177
\(210\) 0 0
\(211\) 619718. 0.958270 0.479135 0.877741i \(-0.340950\pi\)
0.479135 + 0.877741i \(0.340950\pi\)
\(212\) 42249.3 0.0645625
\(213\) 0 0
\(214\) 79955.8 0.119348
\(215\) −346857. −0.511746
\(216\) 0 0
\(217\) 438109. 0.631587
\(218\) −79616.9 −0.113466
\(219\) 0 0
\(220\) −33333.2 −0.0464323
\(221\) −266391. −0.366892
\(222\) 0 0
\(223\) 894252. 1.20420 0.602099 0.798422i \(-0.294331\pi\)
0.602099 + 0.798422i \(0.294331\pi\)
\(224\) 560918. 0.746928
\(225\) 0 0
\(226\) 1.34227e6 1.74812
\(227\) −851468. −1.09674 −0.548370 0.836236i \(-0.684751\pi\)
−0.548370 + 0.836236i \(0.684751\pi\)
\(228\) 0 0
\(229\) 137840. 0.173695 0.0868475 0.996222i \(-0.472321\pi\)
0.0868475 + 0.996222i \(0.472321\pi\)
\(230\) −517047. −0.644481
\(231\) 0 0
\(232\) −548046. −0.668494
\(233\) 1.31590e6 1.58793 0.793965 0.607963i \(-0.208013\pi\)
0.793965 + 0.607963i \(0.208013\pi\)
\(234\) 0 0
\(235\) 171300. 0.202343
\(236\) −106329. −0.124271
\(237\) 0 0
\(238\) 1.50346e6 1.72048
\(239\) −1.11778e6 −1.26579 −0.632896 0.774237i \(-0.718134\pi\)
−0.632896 + 0.774237i \(0.718134\pi\)
\(240\) 0 0
\(241\) −471581. −0.523015 −0.261507 0.965201i \(-0.584220\pi\)
−0.261507 + 0.965201i \(0.584220\pi\)
\(242\) −96028.9 −0.105406
\(243\) 0 0
\(244\) −232856. −0.250387
\(245\) −116284. −0.123767
\(246\) 0 0
\(247\) 96999.3 0.101164
\(248\) 411564. 0.424921
\(249\) 0 0
\(250\) 102483. 0.103705
\(251\) −1.76541e6 −1.76873 −0.884363 0.466799i \(-0.845407\pi\)
−0.884363 + 0.466799i \(0.845407\pi\)
\(252\) 0 0
\(253\) −381543. −0.374751
\(254\) 736176. 0.715974
\(255\) 0 0
\(256\) 969531. 0.924617
\(257\) 19920.1 0.0188130 0.00940652 0.999956i \(-0.497006\pi\)
0.00940652 + 0.999956i \(0.497006\pi\)
\(258\) 0 0
\(259\) 1.15123e6 1.06638
\(260\) −46897.3 −0.0430244
\(261\) 0 0
\(262\) −76601.2 −0.0689418
\(263\) 2.18348e6 1.94652 0.973262 0.229697i \(-0.0737734\pi\)
0.973262 + 0.229697i \(0.0737734\pi\)
\(264\) 0 0
\(265\) −95853.7 −0.0838483
\(266\) −547446. −0.474392
\(267\) 0 0
\(268\) −479335. −0.407664
\(269\) −839300. −0.707190 −0.353595 0.935399i \(-0.615041\pi\)
−0.353595 + 0.935399i \(0.615041\pi\)
\(270\) 0 0
\(271\) 1.42641e6 1.17984 0.589918 0.807463i \(-0.299160\pi\)
0.589918 + 0.807463i \(0.299160\pi\)
\(272\) 1.96414e6 1.60972
\(273\) 0 0
\(274\) −2.52475e6 −2.03162
\(275\) 75625.0 0.0603023
\(276\) 0 0
\(277\) −1.30448e6 −1.02150 −0.510749 0.859730i \(-0.670632\pi\)
−0.510749 + 0.859730i \(0.670632\pi\)
\(278\) 2.03723e6 1.58098
\(279\) 0 0
\(280\) −503954. −0.384146
\(281\) 580646. 0.438678 0.219339 0.975649i \(-0.429610\pi\)
0.219339 + 0.975649i \(0.429610\pi\)
\(282\) 0 0
\(283\) −601974. −0.446799 −0.223399 0.974727i \(-0.571715\pi\)
−0.223399 + 0.974727i \(0.571715\pi\)
\(284\) 579691. 0.426482
\(285\) 0 0
\(286\) −135106. −0.0976693
\(287\) 762698. 0.546572
\(288\) 0 0
\(289\) 1.02878e6 0.724567
\(290\) −653034. −0.455975
\(291\) 0 0
\(292\) −709285. −0.486815
\(293\) 2.40993e6 1.63996 0.819982 0.572389i \(-0.193983\pi\)
0.819982 + 0.572389i \(0.193983\pi\)
\(294\) 0 0
\(295\) 241234. 0.161393
\(296\) 1.08147e6 0.717441
\(297\) 0 0
\(298\) 1.87062e6 1.22024
\(299\) −536803. −0.347246
\(300\) 0 0
\(301\) 2.03240e6 1.29298
\(302\) 3.42609e6 2.16163
\(303\) 0 0
\(304\) −715191. −0.443852
\(305\) 528294. 0.325182
\(306\) 0 0
\(307\) −1.83380e6 −1.11047 −0.555235 0.831694i \(-0.687371\pi\)
−0.555235 + 0.831694i \(0.687371\pi\)
\(308\) 195315. 0.117316
\(309\) 0 0
\(310\) 490406. 0.289835
\(311\) −2.27507e6 −1.33381 −0.666906 0.745142i \(-0.732382\pi\)
−0.666906 + 0.745142i \(0.732382\pi\)
\(312\) 0 0
\(313\) 159585. 0.0920728 0.0460364 0.998940i \(-0.485341\pi\)
0.0460364 + 0.998940i \(0.485341\pi\)
\(314\) 14571.6 0.00834035
\(315\) 0 0
\(316\) 318849. 0.179625
\(317\) 1.24338e6 0.694955 0.347477 0.937688i \(-0.387038\pi\)
0.347477 + 0.937688i \(0.387038\pi\)
\(318\) 0 0
\(319\) −481892. −0.265139
\(320\) −376280. −0.205417
\(321\) 0 0
\(322\) 3.02962e6 1.62835
\(323\) −891609. −0.475519
\(324\) 0 0
\(325\) 106399. 0.0558764
\(326\) −1.64068e6 −0.855029
\(327\) 0 0
\(328\) 716485. 0.367724
\(329\) −1.00373e6 −0.511242
\(330\) 0 0
\(331\) −958448. −0.480838 −0.240419 0.970669i \(-0.577285\pi\)
−0.240419 + 0.970669i \(0.577285\pi\)
\(332\) 51224.5 0.0255054
\(333\) 0 0
\(334\) −276021. −0.135387
\(335\) 1.08750e6 0.529439
\(336\) 0 0
\(337\) −1.51074e6 −0.724626 −0.362313 0.932056i \(-0.618013\pi\)
−0.362313 + 0.932056i \(0.618013\pi\)
\(338\) 2.24519e6 1.06896
\(339\) 0 0
\(340\) 431076. 0.202235
\(341\) 361884. 0.168533
\(342\) 0 0
\(343\) −1.78064e6 −0.817224
\(344\) 1.90925e6 0.869896
\(345\) 0 0
\(346\) −768741. −0.345215
\(347\) 1.93847e6 0.864243 0.432122 0.901815i \(-0.357765\pi\)
0.432122 + 0.901815i \(0.357765\pi\)
\(348\) 0 0
\(349\) −1.62462e6 −0.713985 −0.356992 0.934107i \(-0.616198\pi\)
−0.356992 + 0.934107i \(0.616198\pi\)
\(350\) −600495. −0.262023
\(351\) 0 0
\(352\) 463325. 0.199310
\(353\) 23347.5 0.00997249 0.00498624 0.999988i \(-0.498413\pi\)
0.00498624 + 0.999988i \(0.498413\pi\)
\(354\) 0 0
\(355\) −1.31518e6 −0.553878
\(356\) 1.14002e6 0.476748
\(357\) 0 0
\(358\) 3.82374e6 1.57682
\(359\) −3.63918e6 −1.49028 −0.745139 0.666909i \(-0.767617\pi\)
−0.745139 + 0.666909i \(0.767617\pi\)
\(360\) 0 0
\(361\) −2.15144e6 −0.868884
\(362\) −1.54325e6 −0.618964
\(363\) 0 0
\(364\) 274793. 0.108706
\(365\) 1.60920e6 0.632233
\(366\) 0 0
\(367\) 2.24713e6 0.870890 0.435445 0.900215i \(-0.356591\pi\)
0.435445 + 0.900215i \(0.356591\pi\)
\(368\) 3.95793e6 1.52352
\(369\) 0 0
\(370\) 1.28865e6 0.489362
\(371\) 561651. 0.211852
\(372\) 0 0
\(373\) 3.82745e6 1.42442 0.712208 0.701968i \(-0.247695\pi\)
0.712208 + 0.701968i \(0.247695\pi\)
\(374\) 1.24188e6 0.459092
\(375\) 0 0
\(376\) −942910. −0.343954
\(377\) −677986. −0.245679
\(378\) 0 0
\(379\) −4.26443e6 −1.52498 −0.762489 0.647002i \(-0.776023\pi\)
−0.762489 + 0.647002i \(0.776023\pi\)
\(380\) −156965. −0.0557628
\(381\) 0 0
\(382\) 3.88148e6 1.36094
\(383\) −2.40920e6 −0.839221 −0.419611 0.907704i \(-0.637833\pi\)
−0.419611 + 0.907704i \(0.637833\pi\)
\(384\) 0 0
\(385\) −443122. −0.152360
\(386\) 3.54722e6 1.21177
\(387\) 0 0
\(388\) 835362. 0.281706
\(389\) −3.73204e6 −1.25047 −0.625233 0.780438i \(-0.714996\pi\)
−0.625233 + 0.780438i \(0.714996\pi\)
\(390\) 0 0
\(391\) 4.93424e6 1.63222
\(392\) 640077. 0.210386
\(393\) 0 0
\(394\) 3.15950e6 1.02536
\(395\) −723393. −0.233282
\(396\) 0 0
\(397\) −4.89288e6 −1.55808 −0.779038 0.626977i \(-0.784292\pi\)
−0.779038 + 0.626977i \(0.784292\pi\)
\(398\) 6.65250e6 2.10512
\(399\) 0 0
\(400\) −784495. −0.245155
\(401\) 3.93524e6 1.22211 0.611055 0.791588i \(-0.290745\pi\)
0.611055 + 0.791588i \(0.290745\pi\)
\(402\) 0 0
\(403\) 509144. 0.156163
\(404\) −385933. −0.117641
\(405\) 0 0
\(406\) 3.82643e6 1.15207
\(407\) 950929. 0.284552
\(408\) 0 0
\(409\) 657037. 0.194215 0.0971073 0.995274i \(-0.469041\pi\)
0.0971073 + 0.995274i \(0.469041\pi\)
\(410\) 853740. 0.250822
\(411\) 0 0
\(412\) 186949. 0.0542600
\(413\) −1.41351e6 −0.407777
\(414\) 0 0
\(415\) −116216. −0.0331243
\(416\) 651864. 0.184682
\(417\) 0 0
\(418\) −452198. −0.126587
\(419\) −4.38504e6 −1.22022 −0.610110 0.792317i \(-0.708875\pi\)
−0.610110 + 0.792317i \(0.708875\pi\)
\(420\) 0 0
\(421\) 2.34058e6 0.643604 0.321802 0.946807i \(-0.395711\pi\)
0.321802 + 0.946807i \(0.395711\pi\)
\(422\) −4.06467e6 −1.11108
\(423\) 0 0
\(424\) 527620. 0.142530
\(425\) −978008. −0.262646
\(426\) 0 0
\(427\) −3.09552e6 −0.821607
\(428\) −134329. −0.0354455
\(429\) 0 0
\(430\) 2.27500e6 0.593350
\(431\) 2.18215e6 0.565838 0.282919 0.959144i \(-0.408697\pi\)
0.282919 + 0.959144i \(0.408697\pi\)
\(432\) 0 0
\(433\) −3.61080e6 −0.925515 −0.462757 0.886485i \(-0.653140\pi\)
−0.462757 + 0.886485i \(0.653140\pi\)
\(434\) −2.87352e6 −0.732301
\(435\) 0 0
\(436\) 133760. 0.0336984
\(437\) −1.79668e6 −0.450056
\(438\) 0 0
\(439\) 6.48191e6 1.60525 0.802624 0.596486i \(-0.203437\pi\)
0.802624 + 0.596486i \(0.203437\pi\)
\(440\) −416273. −0.102505
\(441\) 0 0
\(442\) 1.74723e6 0.425397
\(443\) 6.81523e6 1.64995 0.824976 0.565167i \(-0.191188\pi\)
0.824976 + 0.565167i \(0.191188\pi\)
\(444\) 0 0
\(445\) −2.58644e6 −0.619160
\(446\) −5.86531e6 −1.39622
\(447\) 0 0
\(448\) 2.20480e6 0.519008
\(449\) 2.98356e6 0.698423 0.349211 0.937044i \(-0.386449\pi\)
0.349211 + 0.937044i \(0.386449\pi\)
\(450\) 0 0
\(451\) 629999. 0.145847
\(452\) −2.25508e6 −0.519177
\(453\) 0 0
\(454\) 5.58469e6 1.27163
\(455\) −623440. −0.141178
\(456\) 0 0
\(457\) −6.11184e6 −1.36893 −0.684466 0.729045i \(-0.739964\pi\)
−0.684466 + 0.729045i \(0.739964\pi\)
\(458\) −904081. −0.201393
\(459\) 0 0
\(460\) 868659. 0.191406
\(461\) 3.41772e6 0.749003 0.374502 0.927226i \(-0.377814\pi\)
0.374502 + 0.927226i \(0.377814\pi\)
\(462\) 0 0
\(463\) −4.60011e6 −0.997277 −0.498639 0.866810i \(-0.666166\pi\)
−0.498639 + 0.866810i \(0.666166\pi\)
\(464\) 4.99890e6 1.07790
\(465\) 0 0
\(466\) −8.63083e6 −1.84114
\(467\) −5.03617e6 −1.06858 −0.534291 0.845301i \(-0.679421\pi\)
−0.534291 + 0.845301i \(0.679421\pi\)
\(468\) 0 0
\(469\) −6.37215e6 −1.33769
\(470\) −1.12354e6 −0.234609
\(471\) 0 0
\(472\) −1.32786e6 −0.274345
\(473\) 1.67879e6 0.345019
\(474\) 0 0
\(475\) 356117. 0.0724199
\(476\) −2.52587e6 −0.510969
\(477\) 0 0
\(478\) 7.33142e6 1.46764
\(479\) 2.82760e6 0.563091 0.281545 0.959548i \(-0.409153\pi\)
0.281545 + 0.959548i \(0.409153\pi\)
\(480\) 0 0
\(481\) 1.33789e6 0.263668
\(482\) 3.09306e6 0.606416
\(483\) 0 0
\(484\) 161333. 0.0313046
\(485\) −1.89524e6 −0.365855
\(486\) 0 0
\(487\) −5.68931e6 −1.08702 −0.543510 0.839403i \(-0.682905\pi\)
−0.543510 + 0.839403i \(0.682905\pi\)
\(488\) −2.90796e6 −0.552763
\(489\) 0 0
\(490\) 762695. 0.143503
\(491\) −3.23715e6 −0.605981 −0.302990 0.952994i \(-0.597985\pi\)
−0.302990 + 0.952994i \(0.597985\pi\)
\(492\) 0 0
\(493\) 6.23199e6 1.15481
\(494\) −636209. −0.117296
\(495\) 0 0
\(496\) −3.75400e6 −0.685157
\(497\) 7.70626e6 1.39943
\(498\) 0 0
\(499\) −5.08564e6 −0.914312 −0.457156 0.889386i \(-0.651132\pi\)
−0.457156 + 0.889386i \(0.651132\pi\)
\(500\) −172175. −0.0307997
\(501\) 0 0
\(502\) 1.15791e7 2.05077
\(503\) −9.02252e6 −1.59004 −0.795019 0.606584i \(-0.792539\pi\)
−0.795019 + 0.606584i \(0.792539\pi\)
\(504\) 0 0
\(505\) 875591. 0.152782
\(506\) 2.50251e6 0.434509
\(507\) 0 0
\(508\) −1.23681e6 −0.212639
\(509\) −8.98909e6 −1.53788 −0.768938 0.639323i \(-0.779215\pi\)
−0.768938 + 0.639323i \(0.779215\pi\)
\(510\) 0 0
\(511\) −9.42904e6 −1.59741
\(512\) 720997. 0.121551
\(513\) 0 0
\(514\) −130654. −0.0218130
\(515\) −424143. −0.0704683
\(516\) 0 0
\(517\) −829093. −0.136420
\(518\) −7.55079e6 −1.23643
\(519\) 0 0
\(520\) −585665. −0.0949819
\(521\) 1.11219e7 1.79508 0.897539 0.440936i \(-0.145353\pi\)
0.897539 + 0.440936i \(0.145353\pi\)
\(522\) 0 0
\(523\) 3.67510e6 0.587510 0.293755 0.955881i \(-0.405095\pi\)
0.293755 + 0.955881i \(0.405095\pi\)
\(524\) 128693. 0.0204752
\(525\) 0 0
\(526\) −1.43212e7 −2.25692
\(527\) −4.68001e6 −0.734040
\(528\) 0 0
\(529\) 3.50664e6 0.544818
\(530\) 628695. 0.0972188
\(531\) 0 0
\(532\) 919733. 0.140891
\(533\) 886361. 0.135143
\(534\) 0 0
\(535\) 304761. 0.0460335
\(536\) −5.98605e6 −0.899971
\(537\) 0 0
\(538\) 5.50489e6 0.819960
\(539\) 562814. 0.0834436
\(540\) 0 0
\(541\) −4.31097e6 −0.633260 −0.316630 0.948549i \(-0.602551\pi\)
−0.316630 + 0.948549i \(0.602551\pi\)
\(542\) −9.35569e6 −1.36797
\(543\) 0 0
\(544\) −5.99188e6 −0.868092
\(545\) −303469. −0.0437646
\(546\) 0 0
\(547\) −1.80626e6 −0.258114 −0.129057 0.991637i \(-0.541195\pi\)
−0.129057 + 0.991637i \(0.541195\pi\)
\(548\) 4.24169e6 0.603375
\(549\) 0 0
\(550\) −496017. −0.0699182
\(551\) −2.26922e6 −0.318418
\(552\) 0 0
\(553\) 4.23870e6 0.589413
\(554\) 8.55595e6 1.18439
\(555\) 0 0
\(556\) −3.42262e6 −0.469540
\(557\) −8.42670e6 −1.15085 −0.575426 0.817854i \(-0.695164\pi\)
−0.575426 + 0.817854i \(0.695164\pi\)
\(558\) 0 0
\(559\) 2.36193e6 0.319696
\(560\) 4.59672e6 0.619410
\(561\) 0 0
\(562\) −3.80840e6 −0.508630
\(563\) 9.19966e6 1.22321 0.611605 0.791163i \(-0.290524\pi\)
0.611605 + 0.791163i \(0.290524\pi\)
\(564\) 0 0
\(565\) 5.11623e6 0.674262
\(566\) 3.94829e6 0.518046
\(567\) 0 0
\(568\) 7.23932e6 0.941515
\(569\) −5.18644e6 −0.671566 −0.335783 0.941939i \(-0.609001\pi\)
−0.335783 + 0.941939i \(0.609001\pi\)
\(570\) 0 0
\(571\) −3.29390e6 −0.422786 −0.211393 0.977401i \(-0.567800\pi\)
−0.211393 + 0.977401i \(0.567800\pi\)
\(572\) 226983. 0.0290070
\(573\) 0 0
\(574\) −5.00246e6 −0.633730
\(575\) −1.97078e6 −0.248581
\(576\) 0 0
\(577\) −1.02043e7 −1.27598 −0.637989 0.770046i \(-0.720233\pi\)
−0.637989 + 0.770046i \(0.720233\pi\)
\(578\) −6.74768e6 −0.840107
\(579\) 0 0
\(580\) 1.09712e6 0.135421
\(581\) 680965. 0.0836921
\(582\) 0 0
\(583\) 463932. 0.0565305
\(584\) −8.85773e6 −1.07471
\(585\) 0 0
\(586\) −1.58065e7 −1.90148
\(587\) 1.33951e7 1.60454 0.802272 0.596958i \(-0.203624\pi\)
0.802272 + 0.596958i \(0.203624\pi\)
\(588\) 0 0
\(589\) 1.70411e6 0.202399
\(590\) −1.58223e6 −0.187129
\(591\) 0 0
\(592\) −9.86445e6 −1.15683
\(593\) −3.76550e6 −0.439730 −0.219865 0.975530i \(-0.570562\pi\)
−0.219865 + 0.975530i \(0.570562\pi\)
\(594\) 0 0
\(595\) 5.73061e6 0.663603
\(596\) −3.14272e6 −0.362401
\(597\) 0 0
\(598\) 3.52084e6 0.402618
\(599\) −1.21252e6 −0.138077 −0.0690384 0.997614i \(-0.521993\pi\)
−0.0690384 + 0.997614i \(0.521993\pi\)
\(600\) 0 0
\(601\) −7.81714e6 −0.882799 −0.441399 0.897311i \(-0.645518\pi\)
−0.441399 + 0.897311i \(0.645518\pi\)
\(602\) −1.33303e7 −1.49916
\(603\) 0 0
\(604\) −5.75597e6 −0.641987
\(605\) −366025. −0.0406558
\(606\) 0 0
\(607\) 5.43853e6 0.599114 0.299557 0.954078i \(-0.403161\pi\)
0.299557 + 0.954078i \(0.403161\pi\)
\(608\) 2.18179e6 0.239361
\(609\) 0 0
\(610\) −3.46503e6 −0.377036
\(611\) −1.16647e6 −0.126407
\(612\) 0 0
\(613\) 1.70637e7 1.83409 0.917045 0.398783i \(-0.130567\pi\)
0.917045 + 0.398783i \(0.130567\pi\)
\(614\) 1.20277e7 1.28755
\(615\) 0 0
\(616\) 2.43914e6 0.258991
\(617\) −7.80667e6 −0.825568 −0.412784 0.910829i \(-0.635444\pi\)
−0.412784 + 0.910829i \(0.635444\pi\)
\(618\) 0 0
\(619\) 7.31658e6 0.767506 0.383753 0.923436i \(-0.374631\pi\)
0.383753 + 0.923436i \(0.374631\pi\)
\(620\) −823902. −0.0860788
\(621\) 0 0
\(622\) 1.49220e7 1.54650
\(623\) 1.51552e7 1.56438
\(624\) 0 0
\(625\) 390625. 0.0400000
\(626\) −1.04670e6 −0.106755
\(627\) 0 0
\(628\) −24481.0 −0.00247702
\(629\) −1.22977e7 −1.23936
\(630\) 0 0
\(631\) −1.18729e7 −1.18709 −0.593543 0.804802i \(-0.702271\pi\)
−0.593543 + 0.804802i \(0.702271\pi\)
\(632\) 3.98187e6 0.396547
\(633\) 0 0
\(634\) −8.15523e6 −0.805773
\(635\) 2.80602e6 0.276157
\(636\) 0 0
\(637\) 791837. 0.0773192
\(638\) 3.16068e6 0.307418
\(639\) 0 0
\(640\) 5.53129e6 0.533798
\(641\) 1.85963e7 1.78764 0.893821 0.448424i \(-0.148015\pi\)
0.893821 + 0.448424i \(0.148015\pi\)
\(642\) 0 0
\(643\) −1.18028e7 −1.12579 −0.562894 0.826529i \(-0.690312\pi\)
−0.562894 + 0.826529i \(0.690312\pi\)
\(644\) −5.08988e6 −0.483608
\(645\) 0 0
\(646\) 5.84798e6 0.551346
\(647\) −2.05252e7 −1.92764 −0.963821 0.266551i \(-0.914116\pi\)
−0.963821 + 0.266551i \(0.914116\pi\)
\(648\) 0 0
\(649\) −1.16757e6 −0.108811
\(650\) −697859. −0.0647865
\(651\) 0 0
\(652\) 2.75642e6 0.253937
\(653\) 5.78511e6 0.530919 0.265460 0.964122i \(-0.414476\pi\)
0.265460 + 0.964122i \(0.414476\pi\)
\(654\) 0 0
\(655\) −291974. −0.0265914
\(656\) −6.53528e6 −0.592932
\(657\) 0 0
\(658\) 6.58335e6 0.592765
\(659\) −1.88598e7 −1.69170 −0.845852 0.533418i \(-0.820907\pi\)
−0.845852 + 0.533418i \(0.820907\pi\)
\(660\) 0 0
\(661\) −1.12652e7 −1.00285 −0.501426 0.865201i \(-0.667191\pi\)
−0.501426 + 0.865201i \(0.667191\pi\)
\(662\) 6.28637e6 0.557513
\(663\) 0 0
\(664\) 639704. 0.0563065
\(665\) −2.08665e6 −0.182977
\(666\) 0 0
\(667\) 1.25581e7 1.09297
\(668\) 463727. 0.0402088
\(669\) 0 0
\(670\) −7.13279e6 −0.613864
\(671\) −2.55694e6 −0.219237
\(672\) 0 0
\(673\) 1.51301e7 1.28767 0.643833 0.765166i \(-0.277343\pi\)
0.643833 + 0.765166i \(0.277343\pi\)
\(674\) 9.90878e6 0.840176
\(675\) 0 0
\(676\) −3.77201e6 −0.317473
\(677\) 1.12001e7 0.939187 0.469593 0.882883i \(-0.344401\pi\)
0.469593 + 0.882883i \(0.344401\pi\)
\(678\) 0 0
\(679\) 1.11051e7 0.924373
\(680\) 5.38338e6 0.446460
\(681\) 0 0
\(682\) −2.37356e6 −0.195407
\(683\) −2.12907e7 −1.74638 −0.873190 0.487379i \(-0.837953\pi\)
−0.873190 + 0.487379i \(0.837953\pi\)
\(684\) 0 0
\(685\) −9.62338e6 −0.783612
\(686\) 1.16791e7 0.947539
\(687\) 0 0
\(688\) −1.74149e7 −1.40265
\(689\) 652717. 0.0523814
\(690\) 0 0
\(691\) 1.77648e6 0.141536 0.0707678 0.997493i \(-0.477455\pi\)
0.0707678 + 0.997493i \(0.477455\pi\)
\(692\) 1.29152e6 0.102526
\(693\) 0 0
\(694\) −1.27143e7 −1.00206
\(695\) 7.76512e6 0.609798
\(696\) 0 0
\(697\) −8.14735e6 −0.635235
\(698\) 1.06557e7 0.827838
\(699\) 0 0
\(700\) 1.00886e6 0.0778188
\(701\) −94420.1 −0.00725720 −0.00362860 0.999993i \(-0.501155\pi\)
−0.00362860 + 0.999993i \(0.501155\pi\)
\(702\) 0 0
\(703\) 4.47791e6 0.341733
\(704\) 1.82120e6 0.138492
\(705\) 0 0
\(706\) −153134. −0.0115627
\(707\) −5.13050e6 −0.386021
\(708\) 0 0
\(709\) −1.46333e7 −1.09327 −0.546633 0.837372i \(-0.684091\pi\)
−0.546633 + 0.837372i \(0.684091\pi\)
\(710\) 8.62614e6 0.642201
\(711\) 0 0
\(712\) 1.42369e7 1.05248
\(713\) −9.43067e6 −0.694734
\(714\) 0 0
\(715\) −514970. −0.0376718
\(716\) −6.42405e6 −0.468302
\(717\) 0 0
\(718\) 2.38690e7 1.72792
\(719\) −1.15215e7 −0.831161 −0.415580 0.909556i \(-0.636422\pi\)
−0.415580 + 0.909556i \(0.636422\pi\)
\(720\) 0 0
\(721\) 2.48525e6 0.178046
\(722\) 1.41111e7 1.00744
\(723\) 0 0
\(724\) 2.59273e6 0.183827
\(725\) −2.48911e6 −0.175873
\(726\) 0 0
\(727\) 1.73993e7 1.22095 0.610473 0.792037i \(-0.290979\pi\)
0.610473 + 0.792037i \(0.290979\pi\)
\(728\) 3.43168e6 0.239982
\(729\) 0 0
\(730\) −1.05546e7 −0.733050
\(731\) −2.17107e7 −1.50272
\(732\) 0 0
\(733\) −1.21356e7 −0.834262 −0.417131 0.908846i \(-0.636964\pi\)
−0.417131 + 0.908846i \(0.636964\pi\)
\(734\) −1.47387e7 −1.00976
\(735\) 0 0
\(736\) −1.20742e7 −0.821608
\(737\) −5.26348e6 −0.356948
\(738\) 0 0
\(739\) 1.30600e7 0.879692 0.439846 0.898073i \(-0.355033\pi\)
0.439846 + 0.898073i \(0.355033\pi\)
\(740\) −2.16498e6 −0.145337
\(741\) 0 0
\(742\) −3.68382e6 −0.245634
\(743\) 2.36143e6 0.156929 0.0784644 0.996917i \(-0.474998\pi\)
0.0784644 + 0.996917i \(0.474998\pi\)
\(744\) 0 0
\(745\) 7.13008e6 0.470656
\(746\) −2.51038e7 −1.65156
\(747\) 0 0
\(748\) −2.08641e6 −0.136347
\(749\) −1.78574e6 −0.116309
\(750\) 0 0
\(751\) 4.12172e6 0.266673 0.133336 0.991071i \(-0.457431\pi\)
0.133336 + 0.991071i \(0.457431\pi\)
\(752\) 8.60058e6 0.554604
\(753\) 0 0
\(754\) 4.44685e6 0.284855
\(755\) 1.30589e7 0.833759
\(756\) 0 0
\(757\) 4.12364e6 0.261542 0.130771 0.991413i \(-0.458255\pi\)
0.130771 + 0.991413i \(0.458255\pi\)
\(758\) 2.79700e7 1.76815
\(759\) 0 0
\(760\) −1.96022e6 −0.123104
\(761\) 2.08230e7 1.30341 0.651706 0.758472i \(-0.274054\pi\)
0.651706 + 0.758472i \(0.274054\pi\)
\(762\) 0 0
\(763\) 1.77817e6 0.110576
\(764\) −6.52105e6 −0.404189
\(765\) 0 0
\(766\) 1.58017e7 0.973045
\(767\) −1.64269e6 −0.100825
\(768\) 0 0
\(769\) 1.58156e7 0.964427 0.482213 0.876054i \(-0.339833\pi\)
0.482213 + 0.876054i \(0.339833\pi\)
\(770\) 2.90640e6 0.176656
\(771\) 0 0
\(772\) −5.95947e6 −0.359886
\(773\) 2.58350e6 0.155510 0.0777552 0.996972i \(-0.475225\pi\)
0.0777552 + 0.996972i \(0.475225\pi\)
\(774\) 0 0
\(775\) 1.86924e6 0.111792
\(776\) 1.04322e7 0.621902
\(777\) 0 0
\(778\) 2.44781e7 1.44987
\(779\) 2.96665e6 0.175155
\(780\) 0 0
\(781\) 6.36547e6 0.373425
\(782\) −3.23632e7 −1.89250
\(783\) 0 0
\(784\) −5.83834e6 −0.339234
\(785\) 55541.5 0.00321694
\(786\) 0 0
\(787\) −5.64885e6 −0.325105 −0.162552 0.986700i \(-0.551973\pi\)
−0.162552 + 0.986700i \(0.551973\pi\)
\(788\) −5.30809e6 −0.304525
\(789\) 0 0
\(790\) 4.74467e6 0.270482
\(791\) −2.99784e7 −1.70360
\(792\) 0 0
\(793\) −3.59743e6 −0.203146
\(794\) 3.20920e7 1.80653
\(795\) 0 0
\(796\) −1.11765e7 −0.625204
\(797\) 3.72876e6 0.207931 0.103965 0.994581i \(-0.466847\pi\)
0.103965 + 0.994581i \(0.466847\pi\)
\(798\) 0 0
\(799\) 1.07221e7 0.594173
\(800\) 2.39321e6 0.132207
\(801\) 0 0
\(802\) −2.58109e7 −1.41699
\(803\) −7.78852e6 −0.426252
\(804\) 0 0
\(805\) 1.15477e7 0.628068
\(806\) −3.33943e6 −0.181065
\(807\) 0 0
\(808\) −4.81963e6 −0.259708
\(809\) −6.35004e6 −0.341119 −0.170559 0.985347i \(-0.554557\pi\)
−0.170559 + 0.985347i \(0.554557\pi\)
\(810\) 0 0
\(811\) 1.34156e7 0.716241 0.358120 0.933675i \(-0.383418\pi\)
0.358120 + 0.933675i \(0.383418\pi\)
\(812\) −6.42856e6 −0.342156
\(813\) 0 0
\(814\) −6.23705e6 −0.329928
\(815\) −6.25365e6 −0.329791
\(816\) 0 0
\(817\) 7.90538e6 0.414350
\(818\) −4.30945e6 −0.225184
\(819\) 0 0
\(820\) −1.43432e6 −0.0744922
\(821\) −2.40201e7 −1.24370 −0.621851 0.783135i \(-0.713619\pi\)
−0.621851 + 0.783135i \(0.713619\pi\)
\(822\) 0 0
\(823\) −1.46523e6 −0.0754058 −0.0377029 0.999289i \(-0.512004\pi\)
−0.0377029 + 0.999289i \(0.512004\pi\)
\(824\) 2.33466e6 0.119786
\(825\) 0 0
\(826\) 9.27105e6 0.472801
\(827\) 2.32918e7 1.18424 0.592120 0.805850i \(-0.298291\pi\)
0.592120 + 0.805850i \(0.298291\pi\)
\(828\) 0 0
\(829\) −2.02821e6 −0.102501 −0.0512503 0.998686i \(-0.516321\pi\)
−0.0512503 + 0.998686i \(0.516321\pi\)
\(830\) 762250. 0.0384063
\(831\) 0 0
\(832\) 2.56229e6 0.128327
\(833\) −7.27850e6 −0.363437
\(834\) 0 0
\(835\) −1.05208e6 −0.0522197
\(836\) 759712. 0.0375953
\(837\) 0 0
\(838\) 2.87610e7 1.41480
\(839\) 3.07518e7 1.50822 0.754111 0.656747i \(-0.228068\pi\)
0.754111 + 0.656747i \(0.228068\pi\)
\(840\) 0 0
\(841\) −4.65021e6 −0.226716
\(842\) −1.53517e7 −0.746234
\(843\) 0 0
\(844\) 6.82881e6 0.329981
\(845\) 8.55780e6 0.412307
\(846\) 0 0
\(847\) 2.14471e6 0.102721
\(848\) −4.81259e6 −0.229821
\(849\) 0 0
\(850\) 6.41466e6 0.304527
\(851\) −2.47811e7 −1.17300
\(852\) 0 0
\(853\) −2.05598e7 −0.967491 −0.483745 0.875209i \(-0.660724\pi\)
−0.483745 + 0.875209i \(0.660724\pi\)
\(854\) 2.03032e7 0.952621
\(855\) 0 0
\(856\) −1.67753e6 −0.0782505
\(857\) −3.20463e7 −1.49048 −0.745240 0.666796i \(-0.767665\pi\)
−0.745240 + 0.666796i \(0.767665\pi\)
\(858\) 0 0
\(859\) 2.34894e6 0.108615 0.0543075 0.998524i \(-0.482705\pi\)
0.0543075 + 0.998524i \(0.482705\pi\)
\(860\) −3.82210e6 −0.176220
\(861\) 0 0
\(862\) −1.43125e7 −0.656068
\(863\) 1.44887e7 0.662219 0.331110 0.943592i \(-0.392577\pi\)
0.331110 + 0.943592i \(0.392577\pi\)
\(864\) 0 0
\(865\) −2.93014e6 −0.133152
\(866\) 2.36829e7 1.07310
\(867\) 0 0
\(868\) 4.82763e6 0.217488
\(869\) 3.50122e6 0.157279
\(870\) 0 0
\(871\) −7.40533e6 −0.330749
\(872\) 1.67042e6 0.0743936
\(873\) 0 0
\(874\) 1.17842e7 0.521823
\(875\) −2.28885e6 −0.101064
\(876\) 0 0
\(877\) −3.17684e7 −1.39475 −0.697376 0.716705i \(-0.745649\pi\)
−0.697376 + 0.716705i \(0.745649\pi\)
\(878\) −4.25143e7 −1.86122
\(879\) 0 0
\(880\) 3.79696e6 0.165283
\(881\) −1.06777e7 −0.463486 −0.231743 0.972777i \(-0.574443\pi\)
−0.231743 + 0.972777i \(0.574443\pi\)
\(882\) 0 0
\(883\) 1.77890e7 0.767804 0.383902 0.923374i \(-0.374580\pi\)
0.383902 + 0.923374i \(0.374580\pi\)
\(884\) −2.93542e6 −0.126340
\(885\) 0 0
\(886\) −4.47005e7 −1.91306
\(887\) −3.13731e7 −1.33890 −0.669450 0.742857i \(-0.733470\pi\)
−0.669450 + 0.742857i \(0.733470\pi\)
\(888\) 0 0
\(889\) −1.64418e7 −0.697741
\(890\) 1.69642e7 0.717892
\(891\) 0 0
\(892\) 9.85397e6 0.414667
\(893\) −3.90418e6 −0.163833
\(894\) 0 0
\(895\) 1.45746e7 0.608191
\(896\) −3.24104e7 −1.34870
\(897\) 0 0
\(898\) −1.95689e7 −0.809795
\(899\) −1.19110e7 −0.491529
\(900\) 0 0
\(901\) −5.99972e6 −0.246218
\(902\) −4.13210e6 −0.169104
\(903\) 0 0
\(904\) −2.81620e7 −1.14615
\(905\) −5.88228e6 −0.238739
\(906\) 0 0
\(907\) −8.46355e6 −0.341613 −0.170807 0.985305i \(-0.554637\pi\)
−0.170807 + 0.985305i \(0.554637\pi\)
\(908\) −9.38252e6 −0.377663
\(909\) 0 0
\(910\) 4.08908e6 0.163690
\(911\) 2.18411e7 0.871923 0.435961 0.899965i \(-0.356408\pi\)
0.435961 + 0.899965i \(0.356408\pi\)
\(912\) 0 0
\(913\) 562486. 0.0223324
\(914\) 4.00870e7 1.58722
\(915\) 0 0
\(916\) 1.51889e6 0.0598120
\(917\) 1.71081e6 0.0671861
\(918\) 0 0
\(919\) 4.18752e7 1.63557 0.817784 0.575525i \(-0.195202\pi\)
0.817784 + 0.575525i \(0.195202\pi\)
\(920\) 1.08480e7 0.422553
\(921\) 0 0
\(922\) −2.24165e7 −0.868440
\(923\) 8.95575e6 0.346017
\(924\) 0 0
\(925\) 4.91183e6 0.188751
\(926\) 3.01717e7 1.15630
\(927\) 0 0
\(928\) −1.52498e7 −0.581293
\(929\) −8.03740e6 −0.305546 −0.152773 0.988261i \(-0.548820\pi\)
−0.152773 + 0.988261i \(0.548820\pi\)
\(930\) 0 0
\(931\) 2.65028e6 0.100211
\(932\) 1.45002e7 0.546805
\(933\) 0 0
\(934\) 3.30317e7 1.23898
\(935\) 4.73356e6 0.177076
\(936\) 0 0
\(937\) −1.78192e6 −0.0663038 −0.0331519 0.999450i \(-0.510555\pi\)
−0.0331519 + 0.999450i \(0.510555\pi\)
\(938\) 4.17943e7 1.55099
\(939\) 0 0
\(940\) 1.88760e6 0.0696770
\(941\) −2.97245e7 −1.09431 −0.547154 0.837032i \(-0.684289\pi\)
−0.547154 + 0.837032i \(0.684289\pi\)
\(942\) 0 0
\(943\) −1.64177e7 −0.601220
\(944\) 1.21118e7 0.442364
\(945\) 0 0
\(946\) −1.10110e7 −0.400036
\(947\) −931083. −0.0337375 −0.0168688 0.999858i \(-0.505370\pi\)
−0.0168688 + 0.999858i \(0.505370\pi\)
\(948\) 0 0
\(949\) −1.09579e7 −0.394967
\(950\) −2.33573e6 −0.0839681
\(951\) 0 0
\(952\) −3.15437e7 −1.12803
\(953\) 2.74983e7 0.980784 0.490392 0.871502i \(-0.336854\pi\)
0.490392 + 0.871502i \(0.336854\pi\)
\(954\) 0 0
\(955\) 1.47947e7 0.524926
\(956\) −1.23171e7 −0.435876
\(957\) 0 0
\(958\) −1.85459e7 −0.652882
\(959\) 5.63879e7 1.97988
\(960\) 0 0
\(961\) −1.96844e7 −0.687565
\(962\) −8.77507e6 −0.305712
\(963\) 0 0
\(964\) −5.19646e6 −0.180101
\(965\) 1.35206e7 0.467389
\(966\) 0 0
\(967\) 4.33623e6 0.149123 0.0745617 0.997216i \(-0.476244\pi\)
0.0745617 + 0.997216i \(0.476244\pi\)
\(968\) 2.01476e6 0.0691091
\(969\) 0 0
\(970\) 1.24307e7 0.424195
\(971\) 5.44123e7 1.85204 0.926018 0.377480i \(-0.123209\pi\)
0.926018 + 0.377480i \(0.123209\pi\)
\(972\) 0 0
\(973\) −4.54995e7 −1.54072
\(974\) 3.73157e7 1.26036
\(975\) 0 0
\(976\) 2.65244e7 0.891294
\(977\) 3.16213e7 1.05985 0.529924 0.848045i \(-0.322220\pi\)
0.529924 + 0.848045i \(0.322220\pi\)
\(978\) 0 0
\(979\) 1.25184e7 0.417438
\(980\) −1.28136e6 −0.0426192
\(981\) 0 0
\(982\) 2.12321e7 0.702611
\(983\) −1.31368e7 −0.433617 −0.216808 0.976214i \(-0.569565\pi\)
−0.216808 + 0.976214i \(0.569565\pi\)
\(984\) 0 0
\(985\) 1.20428e7 0.395491
\(986\) −4.08750e7 −1.33895
\(987\) 0 0
\(988\) 1.06886e6 0.0348359
\(989\) −4.37491e7 −1.42226
\(990\) 0 0
\(991\) −3.53335e7 −1.14288 −0.571442 0.820643i \(-0.693616\pi\)
−0.571442 + 0.820643i \(0.693616\pi\)
\(992\) 1.14521e7 0.369493
\(993\) 0 0
\(994\) −5.05446e7 −1.62259
\(995\) 2.53567e7 0.811962
\(996\) 0 0
\(997\) 3.72145e7 1.18570 0.592850 0.805313i \(-0.298003\pi\)
0.592850 + 0.805313i \(0.298003\pi\)
\(998\) 3.33563e7 1.06011
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 495.6.a.c.1.1 3
3.2 odd 2 165.6.a.d.1.3 3
15.14 odd 2 825.6.a.h.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
165.6.a.d.1.3 3 3.2 odd 2
495.6.a.c.1.1 3 1.1 even 1 trivial
825.6.a.h.1.1 3 15.14 odd 2