Defining parameters
Level: | \( N \) | = | \( 495 = 3^{2} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | = | \( 6 \) |
Nonzero newspaces: | \( 24 \) | ||
Sturm bound: | \(103680\) | ||
Trace bound: | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(495))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 43840 | 31070 | 12770 |
Cusp forms | 42560 | 30582 | 11978 |
Eisenstein series | 1280 | 488 | 792 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(495))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(495))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_1(495)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(33))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(45))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(55))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(99))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(165))\)\(^{\oplus 2}\)