Properties

Label 495.2.n.h.181.4
Level $495$
Weight $2$
Character 495.181
Analytic conductor $3.953$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [495,2,Mod(91,495)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(495, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("495.91"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 495 = 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 495.n (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,2,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.95259490005\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + 5 x^{14} - 8 x^{13} + 47 x^{12} + 32 x^{11} + 171 x^{10} + 26 x^{9} + 360 x^{8} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 181.4
Root \(2.46673 - 1.79218i\) of defining polynomial
Character \(\chi\) \(=\) 495.181
Dual form 495.2.n.h.361.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.633189 + 1.94876i) q^{2} +(-1.77869 + 1.29229i) q^{4} +(-0.309017 + 0.951057i) q^{5} +(0.477268 - 0.346756i) q^{7} +(-0.329192 - 0.239172i) q^{8} -2.04904 q^{10} +(0.933738 + 3.18247i) q^{11} +(0.465044 + 1.43126i) q^{13} +(0.977943 + 0.710517i) q^{14} +(-1.10115 + 3.38900i) q^{16} +(-1.52036 + 4.67919i) q^{17} +(-5.51798 - 4.00905i) q^{19} +(-0.679399 - 2.09098i) q^{20} +(-5.61063 + 3.83474i) q^{22} +0.0822934 q^{23} +(-0.809017 - 0.587785i) q^{25} +(-2.49471 + 1.81252i) q^{26} +(-0.400802 + 1.23354i) q^{28} +(6.81551 - 4.95175i) q^{29} +(-0.611585 - 1.88227i) q^{31} -8.11537 q^{32} -10.0813 q^{34} +(0.182300 + 0.561062i) q^{35} +(2.89625 - 2.10425i) q^{37} +(4.31873 - 13.2917i) q^{38} +(0.329192 - 0.239172i) q^{40} +(3.29530 + 2.39417i) q^{41} +4.86148 q^{43} +(-5.77352 - 4.45397i) q^{44} +(0.0521073 + 0.160370i) q^{46} +(4.67492 + 3.39653i) q^{47} +(-2.05557 + 6.32640i) q^{49} +(0.633189 - 1.94876i) q^{50} +(-2.67678 - 1.94479i) q^{52} +(-2.09317 - 6.44213i) q^{53} +(-3.31525 - 0.0954005i) q^{55} -0.240047 q^{56} +(13.9653 + 10.1464i) q^{58} +(-4.51758 + 3.28221i) q^{59} +(-0.296732 + 0.913248i) q^{61} +(3.28083 - 2.38366i) q^{62} +(-2.93627 - 9.03690i) q^{64} -1.50491 q^{65} +13.6559 q^{67} +(-3.34264 - 10.2876i) q^{68} +(-0.977943 + 0.710517i) q^{70} +(0.396714 - 1.22096i) q^{71} +(12.6426 - 9.18538i) q^{73} +(5.93455 + 4.31171i) q^{74} +14.9956 q^{76} +(1.54918 + 1.19511i) q^{77} +(-3.44622 - 10.6064i) q^{79} +(-2.88285 - 2.09451i) q^{80} +(-2.57911 + 7.93770i) q^{82} +(1.23982 - 3.81578i) q^{83} +(-3.98036 - 2.89190i) q^{85} +(3.07824 + 9.47385i) q^{86} +(0.453779 - 1.27097i) q^{88} -6.08177 q^{89} +(0.718247 + 0.521837i) q^{91} +(-0.146374 + 0.106347i) q^{92} +(-3.65890 + 11.2609i) q^{94} +(5.51798 - 4.00905i) q^{95} +(-2.07220 - 6.37757i) q^{97} -13.6302 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 2 q^{2} - 8 q^{4} + 4 q^{5} - 4 q^{7} + 6 q^{8} + 8 q^{10} - 4 q^{11} + 2 q^{13} + 22 q^{14} + 8 q^{16} + 4 q^{17} - 4 q^{19} - 2 q^{20} - 28 q^{22} - 8 q^{23} - 4 q^{25} - 6 q^{26} - 2 q^{28} + 26 q^{29}+ \cdots - 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/495\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\) \(397\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.633189 + 1.94876i 0.447733 + 1.37798i 0.879459 + 0.475975i \(0.157905\pi\)
−0.431726 + 0.902005i \(0.642095\pi\)
\(3\) 0 0
\(4\) −1.77869 + 1.29229i −0.889345 + 0.646147i
\(5\) −0.309017 + 0.951057i −0.138197 + 0.425325i
\(6\) 0 0
\(7\) 0.477268 0.346756i 0.180390 0.131061i −0.493926 0.869504i \(-0.664439\pi\)
0.674316 + 0.738443i \(0.264439\pi\)
\(8\) −0.329192 0.239172i −0.116387 0.0845600i
\(9\) 0 0
\(10\) −2.04904 −0.647965
\(11\) 0.933738 + 3.18247i 0.281533 + 0.959552i
\(12\) 0 0
\(13\) 0.465044 + 1.43126i 0.128980 + 0.396960i 0.994605 0.103733i \(-0.0330787\pi\)
−0.865625 + 0.500693i \(0.833079\pi\)
\(14\) 0.977943 + 0.710517i 0.261366 + 0.189894i
\(15\) 0 0
\(16\) −1.10115 + 3.38900i −0.275288 + 0.847249i
\(17\) −1.52036 + 4.67919i −0.368742 + 1.13487i 0.578862 + 0.815425i \(0.303497\pi\)
−0.947604 + 0.319446i \(0.896503\pi\)
\(18\) 0 0
\(19\) −5.51798 4.00905i −1.26591 0.919739i −0.266880 0.963730i \(-0.585993\pi\)
−0.999032 + 0.0439914i \(0.985993\pi\)
\(20\) −0.679399 2.09098i −0.151918 0.467556i
\(21\) 0 0
\(22\) −5.61063 + 3.83474i −1.19619 + 0.817569i
\(23\) 0.0822934 0.0171594 0.00857968 0.999963i \(-0.497269\pi\)
0.00857968 + 0.999963i \(0.497269\pi\)
\(24\) 0 0
\(25\) −0.809017 0.587785i −0.161803 0.117557i
\(26\) −2.49471 + 1.81252i −0.489253 + 0.355463i
\(27\) 0 0
\(28\) −0.400802 + 1.23354i −0.0757444 + 0.233117i
\(29\) 6.81551 4.95175i 1.26561 0.919518i 0.266589 0.963810i \(-0.414103\pi\)
0.999019 + 0.0442926i \(0.0141034\pi\)
\(30\) 0 0
\(31\) −0.611585 1.88227i −0.109844 0.338065i 0.880993 0.473130i \(-0.156876\pi\)
−0.990837 + 0.135065i \(0.956876\pi\)
\(32\) −8.11537 −1.43461
\(33\) 0 0
\(34\) −10.0813 −1.72893
\(35\) 0.182300 + 0.561062i 0.0308144 + 0.0948368i
\(36\) 0 0
\(37\) 2.89625 2.10425i 0.476141 0.345937i −0.323689 0.946164i \(-0.604923\pi\)
0.799830 + 0.600227i \(0.204923\pi\)
\(38\) 4.31873 13.2917i 0.700591 2.15620i
\(39\) 0 0
\(40\) 0.329192 0.239172i 0.0520498 0.0378164i
\(41\) 3.29530 + 2.39417i 0.514639 + 0.373907i 0.814581 0.580050i \(-0.196967\pi\)
−0.299942 + 0.953958i \(0.596967\pi\)
\(42\) 0 0
\(43\) 4.86148 0.741369 0.370685 0.928759i \(-0.379123\pi\)
0.370685 + 0.928759i \(0.379123\pi\)
\(44\) −5.77352 4.45397i −0.870391 0.671461i
\(45\) 0 0
\(46\) 0.0521073 + 0.160370i 0.00768280 + 0.0236452i
\(47\) 4.67492 + 3.39653i 0.681908 + 0.495435i 0.873990 0.485944i \(-0.161524\pi\)
−0.192082 + 0.981379i \(0.561524\pi\)
\(48\) 0 0
\(49\) −2.05557 + 6.32640i −0.293653 + 0.903772i
\(50\) 0.633189 1.94876i 0.0895465 0.275596i
\(51\) 0 0
\(52\) −2.67678 1.94479i −0.371202 0.269694i
\(53\) −2.09317 6.44213i −0.287520 0.884894i −0.985632 0.168906i \(-0.945976\pi\)
0.698112 0.715988i \(-0.254024\pi\)
\(54\) 0 0
\(55\) −3.31525 0.0954005i −0.447029 0.0128638i
\(56\) −0.240047 −0.0320776
\(57\) 0 0
\(58\) 13.9653 + 10.1464i 1.83373 + 1.33228i
\(59\) −4.51758 + 3.28221i −0.588138 + 0.427308i −0.841649 0.540025i \(-0.818415\pi\)
0.253511 + 0.967333i \(0.418415\pi\)
\(60\) 0 0
\(61\) −0.296732 + 0.913248i −0.0379927 + 0.116929i −0.968254 0.249968i \(-0.919580\pi\)
0.930261 + 0.366897i \(0.119580\pi\)
\(62\) 3.28083 2.38366i 0.416666 0.302725i
\(63\) 0 0
\(64\) −2.93627 9.03690i −0.367033 1.12961i
\(65\) −1.50491 −0.186662
\(66\) 0 0
\(67\) 13.6559 1.66834 0.834168 0.551511i \(-0.185948\pi\)
0.834168 + 0.551511i \(0.185948\pi\)
\(68\) −3.34264 10.2876i −0.405355 1.24755i
\(69\) 0 0
\(70\) −0.977943 + 0.710517i −0.116887 + 0.0849231i
\(71\) 0.396714 1.22096i 0.0470813 0.144901i −0.924752 0.380570i \(-0.875728\pi\)
0.971834 + 0.235668i \(0.0757279\pi\)
\(72\) 0 0
\(73\) 12.6426 9.18538i 1.47970 1.07507i 0.502052 0.864837i \(-0.332579\pi\)
0.977652 0.210230i \(-0.0674214\pi\)
\(74\) 5.93455 + 4.31171i 0.689878 + 0.501226i
\(75\) 0 0
\(76\) 14.9956 1.72012
\(77\) 1.54918 + 1.19511i 0.176546 + 0.136196i
\(78\) 0 0
\(79\) −3.44622 10.6064i −0.387730 1.19331i −0.934481 0.356014i \(-0.884135\pi\)
0.546751 0.837295i \(-0.315865\pi\)
\(80\) −2.88285 2.09451i −0.322313 0.234174i
\(81\) 0 0
\(82\) −2.57911 + 7.93770i −0.284816 + 0.876572i
\(83\) 1.23982 3.81578i 0.136088 0.418837i −0.859669 0.510851i \(-0.829330\pi\)
0.995758 + 0.0920140i \(0.0293305\pi\)
\(84\) 0 0
\(85\) −3.98036 2.89190i −0.431731 0.313671i
\(86\) 3.07824 + 9.47385i 0.331935 + 1.02159i
\(87\) 0 0
\(88\) 0.453779 1.27097i 0.0483730 0.135486i
\(89\) −6.08177 −0.644667 −0.322333 0.946626i \(-0.604467\pi\)
−0.322333 + 0.946626i \(0.604467\pi\)
\(90\) 0 0
\(91\) 0.718247 + 0.521837i 0.0752928 + 0.0547034i
\(92\) −0.146374 + 0.106347i −0.0152606 + 0.0110875i
\(93\) 0 0
\(94\) −3.65890 + 11.2609i −0.377387 + 1.16148i
\(95\) 5.51798 4.00905i 0.566133 0.411320i
\(96\) 0 0
\(97\) −2.07220 6.37757i −0.210400 0.647544i −0.999448 0.0332133i \(-0.989426\pi\)
0.789048 0.614331i \(-0.210574\pi\)
\(98\) −13.6302 −1.37686
\(99\) 0 0
\(100\) 2.19858 0.219858
\(101\) 1.83730 + 5.65462i 0.182818 + 0.562656i 0.999904 0.0138601i \(-0.00441195\pi\)
−0.817086 + 0.576516i \(0.804412\pi\)
\(102\) 0 0
\(103\) −1.56592 + 1.13771i −0.154294 + 0.112101i −0.662254 0.749280i \(-0.730400\pi\)
0.507959 + 0.861381i \(0.330400\pi\)
\(104\) 0.189228 0.582384i 0.0185553 0.0571074i
\(105\) 0 0
\(106\) 11.2288 8.15818i 1.09063 0.792392i
\(107\) 6.70449 + 4.87110i 0.648148 + 0.470907i 0.862640 0.505819i \(-0.168810\pi\)
−0.214492 + 0.976726i \(0.568810\pi\)
\(108\) 0 0
\(109\) 3.18782 0.305338 0.152669 0.988277i \(-0.451213\pi\)
0.152669 + 0.988277i \(0.451213\pi\)
\(110\) −1.91327 6.52103i −0.182423 0.621756i
\(111\) 0 0
\(112\) 0.649609 + 1.99929i 0.0613822 + 0.188915i
\(113\) 9.29605 + 6.75398i 0.874499 + 0.635361i 0.931790 0.362997i \(-0.118246\pi\)
−0.0572913 + 0.998358i \(0.518246\pi\)
\(114\) 0 0
\(115\) −0.0254300 + 0.0782656i −0.00237136 + 0.00729831i
\(116\) −5.72355 + 17.6153i −0.531418 + 1.63554i
\(117\) 0 0
\(118\) −9.25671 6.72540i −0.852150 0.619123i
\(119\) 0.896916 + 2.76042i 0.0822202 + 0.253048i
\(120\) 0 0
\(121\) −9.25627 + 5.94319i −0.841479 + 0.540290i
\(122\) −1.96759 −0.178137
\(123\) 0 0
\(124\) 3.52026 + 2.55762i 0.316129 + 0.229681i
\(125\) 0.809017 0.587785i 0.0723607 0.0525731i
\(126\) 0 0
\(127\) 5.62146 17.3011i 0.498824 1.53522i −0.312087 0.950054i \(-0.601028\pi\)
0.810911 0.585170i \(-0.198972\pi\)
\(128\) 2.62055 1.90394i 0.231626 0.168286i
\(129\) 0 0
\(130\) −0.952896 2.93271i −0.0835745 0.257216i
\(131\) −18.7758 −1.64045 −0.820225 0.572041i \(-0.806152\pi\)
−0.820225 + 0.572041i \(0.806152\pi\)
\(132\) 0 0
\(133\) −4.02371 −0.348900
\(134\) 8.64678 + 26.6121i 0.746968 + 2.29893i
\(135\) 0 0
\(136\) 1.61962 1.17672i 0.138881 0.100903i
\(137\) 1.46073 4.49567i 0.124799 0.384091i −0.869066 0.494697i \(-0.835279\pi\)
0.993864 + 0.110606i \(0.0352791\pi\)
\(138\) 0 0
\(139\) 14.9456 10.8586i 1.26767 0.921013i 0.268558 0.963264i \(-0.413453\pi\)
0.999107 + 0.0422509i \(0.0134529\pi\)
\(140\) −1.04931 0.762370i −0.0886831 0.0644321i
\(141\) 0 0
\(142\) 2.63055 0.220751
\(143\) −4.12071 + 2.81641i −0.344591 + 0.235520i
\(144\) 0 0
\(145\) 2.60329 + 8.01211i 0.216192 + 0.665369i
\(146\) 25.9052 + 18.8213i 2.14393 + 1.55766i
\(147\) 0 0
\(148\) −2.43223 + 7.48563i −0.199928 + 0.615315i
\(149\) −4.79009 + 14.7424i −0.392420 + 1.20774i 0.538533 + 0.842604i \(0.318979\pi\)
−0.930953 + 0.365140i \(0.881021\pi\)
\(150\) 0 0
\(151\) −4.49360 3.26479i −0.365684 0.265685i 0.389735 0.920927i \(-0.372567\pi\)
−0.755419 + 0.655242i \(0.772567\pi\)
\(152\) 0.857623 + 2.63949i 0.0695624 + 0.214091i
\(153\) 0 0
\(154\) −1.34806 + 3.77571i −0.108630 + 0.304256i
\(155\) 1.97913 0.158968
\(156\) 0 0
\(157\) 14.9761 + 10.8808i 1.19522 + 0.868381i 0.993807 0.111124i \(-0.0354451\pi\)
0.201418 + 0.979505i \(0.435445\pi\)
\(158\) 18.4871 13.4317i 1.47076 1.06857i
\(159\) 0 0
\(160\) 2.50779 7.71818i 0.198258 0.610176i
\(161\) 0.0392760 0.0285357i 0.00309538 0.00224893i
\(162\) 0 0
\(163\) 2.41484 + 7.43210i 0.189145 + 0.582127i 0.999995 0.00312615i \(-0.000995086\pi\)
−0.810851 + 0.585253i \(0.800995\pi\)
\(164\) −8.95529 −0.699291
\(165\) 0 0
\(166\) 8.22108 0.638080
\(167\) −1.84233 5.67010i −0.142564 0.438766i 0.854126 0.520066i \(-0.174093\pi\)
−0.996690 + 0.0813005i \(0.974093\pi\)
\(168\) 0 0
\(169\) 8.68499 6.31001i 0.668076 0.485386i
\(170\) 3.11529 9.58788i 0.238932 0.735357i
\(171\) 0 0
\(172\) −8.64707 + 6.28247i −0.659333 + 0.479034i
\(173\) −13.4085 9.74186i −1.01943 0.740660i −0.0532650 0.998580i \(-0.516963\pi\)
−0.966166 + 0.257920i \(0.916963\pi\)
\(174\) 0 0
\(175\) −0.589936 −0.0445949
\(176\) −11.8136 0.339950i −0.890482 0.0256247i
\(177\) 0 0
\(178\) −3.85092 11.8519i −0.288638 0.888337i
\(179\) −17.4300 12.6637i −1.30278 0.946526i −0.302802 0.953053i \(-0.597922\pi\)
−0.999979 + 0.00652751i \(0.997922\pi\)
\(180\) 0 0
\(181\) −6.23300 + 19.1832i −0.463295 + 1.42588i 0.397819 + 0.917464i \(0.369767\pi\)
−0.861114 + 0.508411i \(0.830233\pi\)
\(182\) −0.562147 + 1.73011i −0.0416691 + 0.128244i
\(183\) 0 0
\(184\) −0.0270903 0.0196823i −0.00199712 0.00145100i
\(185\) 1.10627 + 3.40475i 0.0813346 + 0.250322i
\(186\) 0 0
\(187\) −16.3110 0.469370i −1.19278 0.0343237i
\(188\) −12.7046 −0.926575
\(189\) 0 0
\(190\) 11.3066 + 8.21471i 0.820266 + 0.595958i
\(191\) 13.1782 9.57452i 0.953541 0.692788i 0.00189928 0.999998i \(-0.499395\pi\)
0.951642 + 0.307210i \(0.0993954\pi\)
\(192\) 0 0
\(193\) 1.03505 3.18555i 0.0745043 0.229301i −0.906868 0.421414i \(-0.861534\pi\)
0.981373 + 0.192113i \(0.0615340\pi\)
\(194\) 11.1162 8.07642i 0.798100 0.579853i
\(195\) 0 0
\(196\) −4.51935 13.9091i −0.322811 0.993509i
\(197\) 9.78158 0.696909 0.348454 0.937326i \(-0.386707\pi\)
0.348454 + 0.937326i \(0.386707\pi\)
\(198\) 0 0
\(199\) 9.89054 0.701121 0.350561 0.936540i \(-0.385991\pi\)
0.350561 + 0.936540i \(0.385991\pi\)
\(200\) 0.125740 + 0.386988i 0.00889117 + 0.0273642i
\(201\) 0 0
\(202\) −9.85612 + 7.16089i −0.693474 + 0.503838i
\(203\) 1.53577 4.72663i 0.107790 0.331744i
\(204\) 0 0
\(205\) −3.29530 + 2.39417i −0.230154 + 0.167216i
\(206\) −3.20863 2.33121i −0.223556 0.162423i
\(207\) 0 0
\(208\) −5.36261 −0.371830
\(209\) 7.60634 21.3042i 0.526141 1.47364i
\(210\) 0 0
\(211\) −6.85049 21.0836i −0.471607 1.45146i −0.850480 0.526008i \(-0.823688\pi\)
0.378873 0.925449i \(-0.376312\pi\)
\(212\) 12.0482 + 8.75355i 0.827476 + 0.601197i
\(213\) 0 0
\(214\) −5.24737 + 16.1497i −0.358703 + 1.10397i
\(215\) −1.50228 + 4.62355i −0.102455 + 0.315323i
\(216\) 0 0
\(217\) −0.944576 0.686275i −0.0641220 0.0465874i
\(218\) 2.01850 + 6.21229i 0.136710 + 0.420750i
\(219\) 0 0
\(220\) 6.02009 4.11459i 0.405875 0.277406i
\(221\) −7.40417 −0.498058
\(222\) 0 0
\(223\) −9.98313 7.25317i −0.668520 0.485708i 0.201010 0.979589i \(-0.435578\pi\)
−0.869529 + 0.493881i \(0.835578\pi\)
\(224\) −3.87321 + 2.81405i −0.258790 + 0.188022i
\(225\) 0 0
\(226\) −7.27570 + 22.3923i −0.483972 + 1.48951i
\(227\) −6.65140 + 4.83252i −0.441469 + 0.320746i −0.786218 0.617949i \(-0.787964\pi\)
0.344750 + 0.938695i \(0.387964\pi\)
\(228\) 0 0
\(229\) 8.35722 + 25.7209i 0.552261 + 1.69968i 0.703070 + 0.711120i \(0.251812\pi\)
−0.150810 + 0.988563i \(0.548188\pi\)
\(230\) −0.168623 −0.0111187
\(231\) 0 0
\(232\) −3.42793 −0.225055
\(233\) −7.72672 23.7804i −0.506194 1.55791i −0.798753 0.601659i \(-0.794507\pi\)
0.292559 0.956247i \(-0.405493\pi\)
\(234\) 0 0
\(235\) −4.67492 + 3.39653i −0.304958 + 0.221565i
\(236\) 3.79379 11.6761i 0.246955 0.760048i
\(237\) 0 0
\(238\) −4.81148 + 3.49574i −0.311882 + 0.226595i
\(239\) −16.7638 12.1796i −1.08436 0.787835i −0.105924 0.994374i \(-0.533780\pi\)
−0.978438 + 0.206539i \(0.933780\pi\)
\(240\) 0 0
\(241\) −23.4295 −1.50923 −0.754615 0.656168i \(-0.772176\pi\)
−0.754615 + 0.656168i \(0.772176\pi\)
\(242\) −17.4428 14.2750i −1.12127 0.917635i
\(243\) 0 0
\(244\) −0.652390 2.00785i −0.0417650 0.128539i
\(245\) −5.38156 3.90993i −0.343815 0.249796i
\(246\) 0 0
\(247\) 3.17188 9.76204i 0.201822 0.621144i
\(248\) −0.248856 + 0.765901i −0.0158024 + 0.0486347i
\(249\) 0 0
\(250\) 1.65771 + 1.20440i 0.104843 + 0.0761728i
\(251\) 3.17352 + 9.76710i 0.200311 + 0.616494i 0.999873 + 0.0159107i \(0.00506475\pi\)
−0.799563 + 0.600583i \(0.794935\pi\)
\(252\) 0 0
\(253\) 0.0768405 + 0.261896i 0.00483092 + 0.0164653i
\(254\) 37.2751 2.33885
\(255\) 0 0
\(256\) −10.0049 7.26896i −0.625304 0.454310i
\(257\) −1.57711 + 1.14584i −0.0983774 + 0.0714753i −0.635886 0.771783i \(-0.719365\pi\)
0.537509 + 0.843258i \(0.319365\pi\)
\(258\) 0 0
\(259\) 0.652629 2.00858i 0.0405524 0.124807i
\(260\) 2.67678 1.94479i 0.166007 0.120611i
\(261\) 0 0
\(262\) −11.8886 36.5895i −0.734483 2.26051i
\(263\) −8.80234 −0.542775 −0.271388 0.962470i \(-0.587483\pi\)
−0.271388 + 0.962470i \(0.587483\pi\)
\(264\) 0 0
\(265\) 6.77365 0.416102
\(266\) −2.54777 7.84124i −0.156214 0.480777i
\(267\) 0 0
\(268\) −24.2896 + 17.6475i −1.48373 + 1.07799i
\(269\) 3.76512 11.5878i 0.229563 0.706523i −0.768233 0.640171i \(-0.778864\pi\)
0.997796 0.0663529i \(-0.0211363\pi\)
\(270\) 0 0
\(271\) −10.0039 + 7.26827i −0.607694 + 0.441516i −0.848602 0.529032i \(-0.822555\pi\)
0.240907 + 0.970548i \(0.422555\pi\)
\(272\) −14.1836 10.3050i −0.860008 0.624833i
\(273\) 0 0
\(274\) 9.68590 0.585146
\(275\) 1.11520 3.12351i 0.0672491 0.188355i
\(276\) 0 0
\(277\) 6.34377 + 19.5241i 0.381160 + 1.17309i 0.939228 + 0.343295i \(0.111543\pi\)
−0.558067 + 0.829796i \(0.688457\pi\)
\(278\) 30.6241 + 22.2497i 1.83671 + 1.33445i
\(279\) 0 0
\(280\) 0.0741786 0.228298i 0.00443302 0.0136434i
\(281\) 3.53113 10.8677i 0.210650 0.648313i −0.788784 0.614670i \(-0.789289\pi\)
0.999434 0.0336429i \(-0.0107109\pi\)
\(282\) 0 0
\(283\) −23.8919 17.3585i −1.42023 1.03186i −0.991734 0.128311i \(-0.959044\pi\)
−0.428493 0.903545i \(-0.640956\pi\)
\(284\) 0.872208 + 2.68438i 0.0517560 + 0.159289i
\(285\) 0 0
\(286\) −8.09769 6.24694i −0.478826 0.369389i
\(287\) 2.40293 0.141841
\(288\) 0 0
\(289\) −5.83007 4.23579i −0.342945 0.249164i
\(290\) −13.9653 + 10.1464i −0.820069 + 0.595815i
\(291\) 0 0
\(292\) −10.6170 + 32.6759i −0.621316 + 1.91221i
\(293\) −9.38171 + 6.81621i −0.548085 + 0.398207i −0.827079 0.562086i \(-0.809999\pi\)
0.278994 + 0.960293i \(0.409999\pi\)
\(294\) 0 0
\(295\) −1.72556 5.31073i −0.100466 0.309203i
\(296\) −1.45670 −0.0846690
\(297\) 0 0
\(298\) −31.7624 −1.83995
\(299\) 0.0382700 + 0.117783i 0.00221321 + 0.00681157i
\(300\) 0 0
\(301\) 2.32023 1.68575i 0.133736 0.0971648i
\(302\) 3.51699 10.8242i 0.202380 0.622861i
\(303\) 0 0
\(304\) 19.6628 14.2858i 1.12774 0.819349i
\(305\) −0.776855 0.564418i −0.0444826 0.0323185i
\(306\) 0 0
\(307\) 1.27309 0.0726593 0.0363296 0.999340i \(-0.488433\pi\)
0.0363296 + 0.999340i \(0.488433\pi\)
\(308\) −4.29996 0.123737i −0.245013 0.00705054i
\(309\) 0 0
\(310\) 1.25317 + 3.85685i 0.0711750 + 0.219054i
\(311\) −3.96859 2.88335i −0.225038 0.163500i 0.469553 0.882904i \(-0.344415\pi\)
−0.694592 + 0.719404i \(0.744415\pi\)
\(312\) 0 0
\(313\) −4.76494 + 14.6650i −0.269331 + 0.828914i 0.721333 + 0.692588i \(0.243530\pi\)
−0.990664 + 0.136326i \(0.956470\pi\)
\(314\) −11.7213 + 36.0744i −0.661470 + 2.03580i
\(315\) 0 0
\(316\) 19.8363 + 14.4119i 1.11588 + 0.810734i
\(317\) 10.3782 + 31.9408i 0.582897 + 1.79397i 0.607555 + 0.794278i \(0.292151\pi\)
−0.0246573 + 0.999696i \(0.507849\pi\)
\(318\) 0 0
\(319\) 22.1227 + 17.0665i 1.23863 + 0.955542i
\(320\) 9.50196 0.531175
\(321\) 0 0
\(322\) 0.0804782 + 0.0584709i 0.00448488 + 0.00325845i
\(323\) 27.1484 19.7245i 1.51058 1.09750i
\(324\) 0 0
\(325\) 0.465044 1.43126i 0.0257960 0.0793919i
\(326\) −12.9543 + 9.41186i −0.717473 + 0.521275i
\(327\) 0 0
\(328\) −0.512166 1.57628i −0.0282796 0.0870358i
\(329\) 3.40896 0.187942
\(330\) 0 0
\(331\) −9.50564 −0.522477 −0.261239 0.965274i \(-0.584131\pi\)
−0.261239 + 0.965274i \(0.584131\pi\)
\(332\) 2.72585 + 8.38932i 0.149601 + 0.460424i
\(333\) 0 0
\(334\) 9.88310 7.18050i 0.540779 0.392899i
\(335\) −4.21991 + 12.9875i −0.230558 + 0.709586i
\(336\) 0 0
\(337\) −20.7225 + 15.0557i −1.12882 + 0.820138i −0.985523 0.169541i \(-0.945772\pi\)
−0.143301 + 0.989679i \(0.545772\pi\)
\(338\) 17.7959 + 12.9295i 0.967971 + 0.703272i
\(339\) 0 0
\(340\) 10.8170 0.586635
\(341\) 5.41920 3.70390i 0.293466 0.200577i
\(342\) 0 0
\(343\) 2.48876 + 7.65961i 0.134380 + 0.413580i
\(344\) −1.60036 1.16273i −0.0862856 0.0626902i
\(345\) 0 0
\(346\) 10.4944 32.2984i 0.564182 1.73637i
\(347\) −8.62415 + 26.5424i −0.462969 + 1.42487i 0.398551 + 0.917146i \(0.369513\pi\)
−0.861520 + 0.507724i \(0.830487\pi\)
\(348\) 0 0
\(349\) 8.58282 + 6.23578i 0.459428 + 0.333794i 0.793307 0.608822i \(-0.208358\pi\)
−0.333879 + 0.942616i \(0.608358\pi\)
\(350\) −0.373541 1.14964i −0.0199666 0.0614509i
\(351\) 0 0
\(352\) −7.57763 25.8270i −0.403889 1.37658i
\(353\) −29.0702 −1.54725 −0.773627 0.633642i \(-0.781559\pi\)
−0.773627 + 0.633642i \(0.781559\pi\)
\(354\) 0 0
\(355\) 1.03861 + 0.754594i 0.0551237 + 0.0400497i
\(356\) 10.8176 7.85944i 0.573331 0.416550i
\(357\) 0 0
\(358\) 13.6419 41.9854i 0.720995 2.21900i
\(359\) 24.4571 17.7692i 1.29080 0.937820i 0.290978 0.956730i \(-0.406019\pi\)
0.999821 + 0.0189094i \(0.00601942\pi\)
\(360\) 0 0
\(361\) 8.50432 + 26.1736i 0.447596 + 1.37756i
\(362\) −41.3300 −2.17226
\(363\) 0 0
\(364\) −1.95191 −0.102308
\(365\) 4.82904 + 14.8623i 0.252764 + 0.777926i
\(366\) 0 0
\(367\) 19.1378 13.9044i 0.998984 0.725805i 0.0371142 0.999311i \(-0.488183\pi\)
0.961870 + 0.273506i \(0.0881835\pi\)
\(368\) −0.0906175 + 0.278892i −0.00472376 + 0.0145382i
\(369\) 0 0
\(370\) −5.93455 + 4.31171i −0.308523 + 0.224155i
\(371\) −3.23285 2.34880i −0.167841 0.121944i
\(372\) 0 0
\(373\) −14.5998 −0.755949 −0.377974 0.925816i \(-0.623379\pi\)
−0.377974 + 0.925816i \(0.623379\pi\)
\(374\) −9.41328 32.0834i −0.486749 1.65899i
\(375\) 0 0
\(376\) −0.726592 2.23622i −0.0374711 0.115324i
\(377\) 10.2567 + 7.45196i 0.528249 + 0.383796i
\(378\) 0 0
\(379\) 2.07156 6.37559i 0.106409 0.327492i −0.883650 0.468148i \(-0.844921\pi\)
0.990058 + 0.140656i \(0.0449212\pi\)
\(380\) −4.63391 + 14.2617i −0.237715 + 0.731610i
\(381\) 0 0
\(382\) 27.0027 + 19.6186i 1.38158 + 1.00378i
\(383\) 9.74277 + 29.9852i 0.497832 + 1.53217i 0.812496 + 0.582967i \(0.198108\pi\)
−0.314663 + 0.949203i \(0.601892\pi\)
\(384\) 0 0
\(385\) −1.61534 + 1.10405i −0.0823256 + 0.0562676i
\(386\) 6.86324 0.349330
\(387\) 0 0
\(388\) 11.9275 + 8.66584i 0.605527 + 0.439941i
\(389\) −31.5385 + 22.9141i −1.59907 + 1.16179i −0.709794 + 0.704409i \(0.751212\pi\)
−0.889271 + 0.457380i \(0.848788\pi\)
\(390\) 0 0
\(391\) −0.125116 + 0.385067i −0.00632737 + 0.0194737i
\(392\) 2.18978 1.59097i 0.110600 0.0803559i
\(393\) 0 0
\(394\) 6.19359 + 19.0619i 0.312029 + 0.960326i
\(395\) 11.1522 0.561128
\(396\) 0 0
\(397\) 27.1682 1.36353 0.681766 0.731570i \(-0.261212\pi\)
0.681766 + 0.731570i \(0.261212\pi\)
\(398\) 6.26258 + 19.2742i 0.313915 + 0.966131i
\(399\) 0 0
\(400\) 2.88285 2.09451i 0.144143 0.104726i
\(401\) −4.07725 + 12.5485i −0.203608 + 0.626641i 0.796160 + 0.605087i \(0.206861\pi\)
−0.999768 + 0.0215543i \(0.993139\pi\)
\(402\) 0 0
\(403\) 2.40959 1.75067i 0.120030 0.0872072i
\(404\) −10.5754 7.68349i −0.526146 0.382268i
\(405\) 0 0
\(406\) 10.1835 0.505398
\(407\) 9.40107 + 7.25243i 0.465994 + 0.359490i
\(408\) 0 0
\(409\) −3.06772 9.44146i −0.151689 0.466850i 0.846122 0.532990i \(-0.178932\pi\)
−0.997810 + 0.0661398i \(0.978932\pi\)
\(410\) −6.75221 4.90577i −0.333468 0.242279i
\(411\) 0 0
\(412\) 1.31503 4.04725i 0.0647870 0.199394i
\(413\) −1.01797 + 3.13299i −0.0500910 + 0.154164i
\(414\) 0 0
\(415\) 3.24590 + 2.35828i 0.159335 + 0.115764i
\(416\) −3.77401 11.6152i −0.185036 0.569482i
\(417\) 0 0
\(418\) 46.3330 + 1.33329i 2.26622 + 0.0652133i
\(419\) 26.4274 1.29107 0.645533 0.763733i \(-0.276635\pi\)
0.645533 + 0.763733i \(0.276635\pi\)
\(420\) 0 0
\(421\) −11.1232 8.08146i −0.542111 0.393866i 0.282758 0.959191i \(-0.408751\pi\)
−0.824868 + 0.565325i \(0.808751\pi\)
\(422\) 36.7492 26.6999i 1.78892 1.29973i
\(423\) 0 0
\(424\) −0.851720 + 2.62132i −0.0413632 + 0.127303i
\(425\) 3.98036 2.89190i 0.193076 0.140278i
\(426\) 0 0
\(427\) 0.175053 + 0.538758i 0.00847141 + 0.0260723i
\(428\) −18.2201 −0.880702
\(429\) 0 0
\(430\) −9.96139 −0.480381
\(431\) −6.17164 18.9944i −0.297278 0.914927i −0.982447 0.186543i \(-0.940272\pi\)
0.685169 0.728384i \(-0.259728\pi\)
\(432\) 0 0
\(433\) −13.4316 + 9.75862i −0.645481 + 0.468969i −0.861729 0.507369i \(-0.830618\pi\)
0.216248 + 0.976338i \(0.430618\pi\)
\(434\) 0.739287 2.27529i 0.0354869 0.109218i
\(435\) 0 0
\(436\) −5.67015 + 4.11961i −0.271551 + 0.197293i
\(437\) −0.454093 0.329918i −0.0217222 0.0157821i
\(438\) 0 0
\(439\) −28.3645 −1.35376 −0.676882 0.736091i \(-0.736669\pi\)
−0.676882 + 0.736091i \(0.736669\pi\)
\(440\) 1.06854 + 0.824320i 0.0509405 + 0.0392979i
\(441\) 0 0
\(442\) −4.68824 14.4289i −0.222997 0.686314i
\(443\) 18.3506 + 13.3325i 0.871865 + 0.633447i 0.931087 0.364798i \(-0.118862\pi\)
−0.0592220 + 0.998245i \(0.518862\pi\)
\(444\) 0 0
\(445\) 1.87937 5.78411i 0.0890908 0.274193i
\(446\) 7.81345 24.0473i 0.369977 1.13867i
\(447\) 0 0
\(448\) −4.53498 3.29486i −0.214258 0.155667i
\(449\) −1.41587 4.35761i −0.0668192 0.205648i 0.912072 0.410030i \(-0.134482\pi\)
−0.978891 + 0.204381i \(0.934482\pi\)
\(450\) 0 0
\(451\) −4.54245 + 12.7227i −0.213896 + 0.599090i
\(452\) −25.2629 −1.18827
\(453\) 0 0
\(454\) −13.6290 9.90205i −0.639641 0.464726i
\(455\) −0.718247 + 0.521837i −0.0336719 + 0.0244641i
\(456\) 0 0
\(457\) 2.07841 6.39668i 0.0972238 0.299224i −0.890603 0.454781i \(-0.849717\pi\)
0.987827 + 0.155557i \(0.0497174\pi\)
\(458\) −44.8320 + 32.5724i −2.09486 + 1.52201i
\(459\) 0 0
\(460\) −0.0559101 0.172073i −0.00260682 0.00802297i
\(461\) 2.83529 0.132053 0.0660263 0.997818i \(-0.478968\pi\)
0.0660263 + 0.997818i \(0.478968\pi\)
\(462\) 0 0
\(463\) 20.5498 0.955029 0.477515 0.878624i \(-0.341538\pi\)
0.477515 + 0.878624i \(0.341538\pi\)
\(464\) 9.27657 + 28.5504i 0.430654 + 1.32542i
\(465\) 0 0
\(466\) 41.4497 30.1150i 1.92012 1.39505i
\(467\) 3.63384 11.1838i 0.168154 0.517525i −0.831101 0.556122i \(-0.812289\pi\)
0.999255 + 0.0385968i \(0.0122888\pi\)
\(468\) 0 0
\(469\) 6.51753 4.73526i 0.300952 0.218654i
\(470\) −9.57912 6.95964i −0.441852 0.321024i
\(471\) 0 0
\(472\) 2.27216 0.104585
\(473\) 4.53935 + 15.4715i 0.208720 + 0.711382i
\(474\) 0 0
\(475\) 2.10768 + 6.48677i 0.0967070 + 0.297634i
\(476\) −5.16262 3.75086i −0.236628 0.171920i
\(477\) 0 0
\(478\) 13.1205 40.3806i 0.600116 1.84697i
\(479\) −0.470421 + 1.44781i −0.0214941 + 0.0661519i −0.961228 0.275754i \(-0.911072\pi\)
0.939734 + 0.341906i \(0.111072\pi\)
\(480\) 0 0
\(481\) 4.35861 + 3.16672i 0.198736 + 0.144390i
\(482\) −14.8353 45.6585i −0.675731 2.07969i
\(483\) 0 0
\(484\) 8.78368 22.5329i 0.399258 1.02422i
\(485\) 6.70578 0.304494
\(486\) 0 0
\(487\) −28.7184 20.8652i −1.30136 0.945491i −0.301389 0.953501i \(-0.597450\pi\)
−0.999968 + 0.00801039i \(0.997450\pi\)
\(488\) 0.316105 0.229664i 0.0143094 0.0103964i
\(489\) 0 0
\(490\) 4.21196 12.9631i 0.190277 0.585612i
\(491\) 10.2562 7.45159i 0.462858 0.336286i −0.331794 0.943352i \(-0.607654\pi\)
0.794651 + 0.607066i \(0.207654\pi\)
\(492\) 0 0
\(493\) 12.8082 + 39.4195i 0.576852 + 1.77537i
\(494\) 21.0322 0.946285
\(495\) 0 0
\(496\) 7.05244 0.316664
\(497\) −0.234036 0.720288i −0.0104979 0.0323093i
\(498\) 0 0
\(499\) −17.0361 + 12.3774i −0.762640 + 0.554090i −0.899719 0.436470i \(-0.856229\pi\)
0.137079 + 0.990560i \(0.456229\pi\)
\(500\) −0.679399 + 2.09098i −0.0303837 + 0.0935113i
\(501\) 0 0
\(502\) −17.0243 + 12.3688i −0.759830 + 0.552049i
\(503\) 20.2875 + 14.7398i 0.904576 + 0.657213i 0.939637 0.342172i \(-0.111163\pi\)
−0.0350612 + 0.999385i \(0.511163\pi\)
\(504\) 0 0
\(505\) −5.94562 −0.264577
\(506\) −0.461718 + 0.315573i −0.0205259 + 0.0140289i
\(507\) 0 0
\(508\) 12.3593 + 38.0379i 0.548353 + 1.68766i
\(509\) −29.6791 21.5631i −1.31550 0.955767i −0.999977 0.00684995i \(-0.997820\pi\)
−0.315524 0.948917i \(-0.602180\pi\)
\(510\) 0 0
\(511\) 2.84882 8.76778i 0.126025 0.387864i
\(512\) 9.83238 30.2610i 0.434534 1.33736i
\(513\) 0 0
\(514\) −3.23157 2.34787i −0.142538 0.103560i
\(515\) −0.598127 1.84085i −0.0263566 0.0811174i
\(516\) 0 0
\(517\) −6.44421 + 18.0493i −0.283416 + 0.793807i
\(518\) 4.32748 0.190139
\(519\) 0 0
\(520\) 0.495405 + 0.359933i 0.0217250 + 0.0157841i
\(521\) 22.9371 16.6648i 1.00489 0.730099i 0.0417626 0.999128i \(-0.486703\pi\)
0.963132 + 0.269029i \(0.0867027\pi\)
\(522\) 0 0
\(523\) 8.27685 25.4735i 0.361922 1.11388i −0.589965 0.807429i \(-0.700858\pi\)
0.951886 0.306451i \(-0.0991416\pi\)
\(524\) 33.3964 24.2639i 1.45893 1.05997i
\(525\) 0 0
\(526\) −5.57355 17.1536i −0.243018 0.747933i
\(527\) 9.73732 0.424164
\(528\) 0 0
\(529\) −22.9932 −0.999706
\(530\) 4.28901 + 13.2002i 0.186303 + 0.573380i
\(531\) 0 0
\(532\) 7.15694 5.19982i 0.310293 0.225441i
\(533\) −1.89422 + 5.82982i −0.0820479 + 0.252517i
\(534\) 0 0
\(535\) −6.70449 + 4.87110i −0.289860 + 0.210596i
\(536\) −4.49542 3.26611i −0.194172 0.141074i
\(537\) 0 0
\(538\) 24.9659 1.07636
\(539\) −22.0530 0.634602i −0.949889 0.0273342i
\(540\) 0 0
\(541\) 5.17081 + 15.9141i 0.222311 + 0.684201i 0.998553 + 0.0537675i \(0.0171230\pi\)
−0.776243 + 0.630434i \(0.782877\pi\)
\(542\) −20.4985 14.8930i −0.880484 0.639709i
\(543\) 0 0
\(544\) 12.3383 37.9734i 0.529001 1.62810i
\(545\) −0.985092 + 3.03180i −0.0421967 + 0.129868i
\(546\) 0 0
\(547\) 17.3143 + 12.5796i 0.740305 + 0.537863i 0.892807 0.450440i \(-0.148733\pi\)
−0.152502 + 0.988303i \(0.548733\pi\)
\(548\) 3.21154 + 9.88411i 0.137190 + 0.422228i
\(549\) 0 0
\(550\) 6.79310 + 0.195480i 0.289659 + 0.00833529i
\(551\) −57.4596 −2.44786
\(552\) 0 0
\(553\) −5.32259 3.86709i −0.226339 0.164445i
\(554\) −34.0310 + 24.7249i −1.44584 + 1.05046i
\(555\) 0 0
\(556\) −12.5510 + 38.6281i −0.532282 + 1.63820i
\(557\) 34.7026 25.2129i 1.47040 1.06830i 0.489897 0.871781i \(-0.337035\pi\)
0.980499 0.196524i \(-0.0629655\pi\)
\(558\) 0 0
\(559\) 2.26080 + 6.95804i 0.0956218 + 0.294294i
\(560\) −2.10218 −0.0888332
\(561\) 0 0
\(562\) 23.4144 0.987677
\(563\) −10.1843 31.3440i −0.429216 1.32099i −0.898899 0.438157i \(-0.855632\pi\)
0.469682 0.882835i \(-0.344368\pi\)
\(564\) 0 0
\(565\) −9.29605 + 6.75398i −0.391088 + 0.284142i
\(566\) 18.6994 57.5508i 0.785994 2.41904i
\(567\) 0 0
\(568\) −0.422614 + 0.307047i −0.0177325 + 0.0128834i
\(569\) 2.72574 + 1.98036i 0.114269 + 0.0830212i 0.643452 0.765486i \(-0.277502\pi\)
−0.529183 + 0.848508i \(0.677502\pi\)
\(570\) 0 0
\(571\) −0.267599 −0.0111987 −0.00559934 0.999984i \(-0.501782\pi\)
−0.00559934 + 0.999984i \(0.501782\pi\)
\(572\) 3.68984 10.3347i 0.154280 0.432115i
\(573\) 0 0
\(574\) 1.52151 + 4.68273i 0.0635067 + 0.195453i
\(575\) −0.0665767 0.0483708i −0.00277644 0.00201720i
\(576\) 0 0
\(577\) 11.7100 36.0396i 0.487493 1.50035i −0.340844 0.940120i \(-0.610713\pi\)
0.828337 0.560230i \(-0.189287\pi\)
\(578\) 4.56299 14.0434i 0.189795 0.584130i
\(579\) 0 0
\(580\) −14.9844 10.8868i −0.622195 0.452051i
\(581\) −0.731416 2.25107i −0.0303443 0.0933900i
\(582\) 0 0
\(583\) 18.5474 12.6767i 0.768156 0.525017i
\(584\) −6.35872 −0.263126
\(585\) 0 0
\(586\) −19.2235 13.9667i −0.794117 0.576960i
\(587\) −13.6375 + 9.90825i −0.562881 + 0.408957i −0.832512 0.554006i \(-0.813098\pi\)
0.269631 + 0.962964i \(0.413098\pi\)
\(588\) 0 0
\(589\) −4.17138 + 12.8382i −0.171879 + 0.528988i
\(590\) 9.25671 6.72540i 0.381093 0.276880i
\(591\) 0 0
\(592\) 3.94209 + 12.1325i 0.162019 + 0.498642i
\(593\) −11.0211 −0.452580 −0.226290 0.974060i \(-0.572660\pi\)
−0.226290 + 0.974060i \(0.572660\pi\)
\(594\) 0 0
\(595\) −2.90248 −0.118990
\(596\) −10.5314 32.4124i −0.431384 1.32766i
\(597\) 0 0
\(598\) −0.205298 + 0.149158i −0.00839527 + 0.00609952i
\(599\) −5.15906 + 15.8779i −0.210793 + 0.648755i 0.788632 + 0.614865i \(0.210790\pi\)
−0.999426 + 0.0338901i \(0.989210\pi\)
\(600\) 0 0
\(601\) 6.27526 4.55925i 0.255973 0.185976i −0.452397 0.891817i \(-0.649431\pi\)
0.708370 + 0.705841i \(0.249431\pi\)
\(602\) 4.75425 + 3.45417i 0.193769 + 0.140781i
\(603\) 0 0
\(604\) 12.2118 0.496891
\(605\) −2.79197 10.6398i −0.113510 0.432569i
\(606\) 0 0
\(607\) 9.85634 + 30.3347i 0.400057 + 1.23125i 0.924953 + 0.380082i \(0.124104\pi\)
−0.524896 + 0.851166i \(0.675896\pi\)
\(608\) 44.7805 + 32.5349i 1.81609 + 1.31946i
\(609\) 0 0
\(610\) 0.608018 1.87129i 0.0246179 0.0757662i
\(611\) −2.68727 + 8.27056i −0.108715 + 0.334591i
\(612\) 0 0
\(613\) 34.6283 + 25.1589i 1.39862 + 1.01616i 0.994856 + 0.101296i \(0.0322991\pi\)
0.403766 + 0.914862i \(0.367701\pi\)
\(614\) 0.806109 + 2.48095i 0.0325319 + 0.100123i
\(615\) 0 0
\(616\) −0.224141 0.763943i −0.00903089 0.0307801i
\(617\) 21.7979 0.877550 0.438775 0.898597i \(-0.355412\pi\)
0.438775 + 0.898597i \(0.355412\pi\)
\(618\) 0 0
\(619\) −27.2098 19.7691i −1.09366 0.794587i −0.113642 0.993522i \(-0.536252\pi\)
−0.980013 + 0.198935i \(0.936252\pi\)
\(620\) −3.52026 + 2.55762i −0.141377 + 0.102717i
\(621\) 0 0
\(622\) 3.10608 9.55953i 0.124542 0.383302i
\(623\) −2.90264 + 2.10889i −0.116292 + 0.0844908i
\(624\) 0 0
\(625\) 0.309017 + 0.951057i 0.0123607 + 0.0380423i
\(626\) −31.5956 −1.26281
\(627\) 0 0
\(628\) −40.6990 −1.62407
\(629\) 5.44285 + 16.7514i 0.217021 + 0.667921i
\(630\) 0 0
\(631\) 17.3577 12.6111i 0.690997 0.502039i −0.185991 0.982552i \(-0.559549\pi\)
0.876988 + 0.480513i \(0.159549\pi\)
\(632\) −1.40228 + 4.31577i −0.0557796 + 0.171672i
\(633\) 0 0
\(634\) −55.6735 + 40.4492i −2.21108 + 1.60644i
\(635\) 14.7172 + 10.6927i 0.584034 + 0.424325i
\(636\) 0 0
\(637\) −10.0107 −0.396636
\(638\) −19.2506 + 53.9181i −0.762139 + 2.13464i
\(639\) 0 0
\(640\) 1.00096 + 3.08064i 0.0395665 + 0.121773i
\(641\) 36.1507 + 26.2650i 1.42787 + 1.03740i 0.990409 + 0.138165i \(0.0441205\pi\)
0.437456 + 0.899240i \(0.355880\pi\)
\(642\) 0 0
\(643\) 2.65477 8.17053i 0.104694 0.322214i −0.884965 0.465658i \(-0.845818\pi\)
0.989658 + 0.143444i \(0.0458176\pi\)
\(644\) −0.0329833 + 0.101512i −0.00129973 + 0.00400014i
\(645\) 0 0
\(646\) 55.6284 + 40.4164i 2.18867 + 1.59016i
\(647\) −2.76396 8.50658i −0.108662 0.334428i 0.881910 0.471417i \(-0.156257\pi\)
−0.990573 + 0.136989i \(0.956257\pi\)
\(648\) 0 0
\(649\) −14.6638 11.3123i −0.575604 0.444048i
\(650\) 3.08363 0.120950
\(651\) 0 0
\(652\) −13.8997 10.0987i −0.544355 0.395497i
\(653\) −11.2834 + 8.19784i −0.441552 + 0.320806i −0.786251 0.617907i \(-0.787981\pi\)
0.344699 + 0.938713i \(0.387981\pi\)
\(654\) 0 0
\(655\) 5.80204 17.8569i 0.226705 0.697725i
\(656\) −11.7425 + 8.53140i −0.458466 + 0.333095i
\(657\) 0 0
\(658\) 2.15852 + 6.64323i 0.0841477 + 0.258980i
\(659\) 6.61492 0.257681 0.128840 0.991665i \(-0.458875\pi\)
0.128840 + 0.991665i \(0.458875\pi\)
\(660\) 0 0
\(661\) 23.5635 0.916515 0.458257 0.888820i \(-0.348474\pi\)
0.458257 + 0.888820i \(0.348474\pi\)
\(662\) −6.01887 18.5242i −0.233930 0.719962i
\(663\) 0 0
\(664\) −1.32077 + 0.959594i −0.0512557 + 0.0372395i
\(665\) 1.24340 3.82678i 0.0482168 0.148396i
\(666\) 0 0
\(667\) 0.560871 0.407497i 0.0217170 0.0157783i
\(668\) 10.6044 + 7.70452i 0.410295 + 0.298097i
\(669\) 0 0
\(670\) −27.9816 −1.08102
\(671\) −3.18346 0.0916079i −0.122896 0.00353649i
\(672\) 0 0
\(673\) 1.30209 + 4.00742i 0.0501919 + 0.154475i 0.973011 0.230759i \(-0.0741209\pi\)
−0.922819 + 0.385234i \(0.874121\pi\)
\(674\) −42.4612 30.8499i −1.63554 1.18829i
\(675\) 0 0
\(676\) −7.29351 + 22.4471i −0.280520 + 0.863351i
\(677\) 5.25436 16.1713i 0.201942 0.621512i −0.797884 0.602812i \(-0.794047\pi\)
0.999825 0.0187007i \(-0.00595297\pi\)
\(678\) 0 0
\(679\) −3.20045 2.32527i −0.122822 0.0892355i
\(680\) 0.618641 + 1.90398i 0.0237238 + 0.0730143i
\(681\) 0 0
\(682\) 10.6494 + 8.21544i 0.407786 + 0.314585i
\(683\) −19.6114 −0.750409 −0.375204 0.926942i \(-0.622427\pi\)
−0.375204 + 0.926942i \(0.622427\pi\)
\(684\) 0 0
\(685\) 3.82425 + 2.77848i 0.146117 + 0.106160i
\(686\) −13.3509 + 9.69997i −0.509738 + 0.370346i
\(687\) 0 0
\(688\) −5.35323 + 16.4755i −0.204090 + 0.628124i
\(689\) 8.24693 5.99175i 0.314183 0.228267i
\(690\) 0 0
\(691\) 2.37016 + 7.29459i 0.0901650 + 0.277499i 0.985963 0.166961i \(-0.0533954\pi\)
−0.895799 + 0.444460i \(0.853395\pi\)
\(692\) 36.4390 1.38520
\(693\) 0 0
\(694\) −57.1854 −2.17073
\(695\) 5.70869 + 17.5695i 0.216543 + 0.666451i
\(696\) 0 0
\(697\) −16.2129 + 11.7793i −0.614106 + 0.446174i
\(698\) −6.71747 + 20.6743i −0.254260 + 0.782532i
\(699\) 0 0
\(700\) 1.04931 0.762370i 0.0396603 0.0288149i
\(701\) 17.7443 + 12.8920i 0.670192 + 0.486923i 0.870090 0.492894i \(-0.164061\pi\)
−0.199897 + 0.979817i \(0.564061\pi\)
\(702\) 0 0
\(703\) −24.4175 −0.920924
\(704\) 26.0180 17.7827i 0.980589 0.670210i
\(705\) 0 0
\(706\) −18.4070 56.6508i −0.692756 2.13208i
\(707\) 2.83765 + 2.06168i 0.106721 + 0.0775373i
\(708\) 0 0
\(709\) −2.23257 + 6.87116i −0.0838461 + 0.258052i −0.984187 0.177134i \(-0.943317\pi\)
0.900341 + 0.435186i \(0.143317\pi\)
\(710\) −0.812884 + 2.50180i −0.0305070 + 0.0938909i
\(711\) 0 0
\(712\) 2.00207 + 1.45459i 0.0750307 + 0.0545130i
\(713\) −0.0503294 0.154898i −0.00188485 0.00580098i
\(714\) 0 0
\(715\) −1.40520 4.78935i −0.0525513 0.179111i
\(716\) 47.3678 1.77022
\(717\) 0 0
\(718\) 50.1138 + 36.4098i 1.87023 + 1.35880i
\(719\) −15.5513 + 11.2987i −0.579967 + 0.421371i −0.838712 0.544575i \(-0.816691\pi\)
0.258745 + 0.965946i \(0.416691\pi\)
\(720\) 0 0
\(721\) −0.352857 + 1.08598i −0.0131411 + 0.0404440i
\(722\) −45.6212 + 33.1457i −1.69784 + 1.23356i
\(723\) 0 0
\(724\) −13.7038 42.1758i −0.509296 1.56745i
\(725\) −8.42443 −0.312875
\(726\) 0 0
\(727\) −33.9775 −1.26015 −0.630077 0.776532i \(-0.716977\pi\)
−0.630077 + 0.776532i \(0.716977\pi\)
\(728\) −0.111632 0.343569i −0.00413737 0.0127335i
\(729\) 0 0
\(730\) −25.9052 + 18.8213i −0.958796 + 0.696606i
\(731\) −7.39122 + 22.7478i −0.273374 + 0.841359i
\(732\) 0 0
\(733\) −5.25720 + 3.81958i −0.194179 + 0.141079i −0.680627 0.732630i \(-0.738292\pi\)
0.486448 + 0.873710i \(0.338292\pi\)
\(734\) 39.2142 + 28.4908i 1.44742 + 1.05161i
\(735\) 0 0
\(736\) −0.667841 −0.0246170
\(737\) 12.7510 + 43.4596i 0.469691 + 1.60085i
\(738\) 0 0
\(739\) −5.78294 17.7981i −0.212729 0.654712i −0.999307 0.0372216i \(-0.988149\pi\)
0.786578 0.617491i \(-0.211851\pi\)
\(740\) −6.36765 4.62637i −0.234080 0.170069i
\(741\) 0 0
\(742\) 2.53024 7.78727i 0.0928880 0.285880i
\(743\) −2.71901 + 8.36824i −0.0997506 + 0.307001i −0.988463 0.151465i \(-0.951601\pi\)
0.888712 + 0.458466i \(0.151601\pi\)
\(744\) 0 0
\(745\) −12.5406 9.11130i −0.459453 0.333812i
\(746\) −9.24443 28.4514i −0.338463 1.04168i
\(747\) 0 0
\(748\) 29.6188 20.2438i 1.08297 0.740186i
\(749\) 4.88892 0.178637
\(750\) 0 0
\(751\) −20.8619 15.1571i −0.761261 0.553089i 0.138036 0.990427i \(-0.455921\pi\)
−0.899297 + 0.437339i \(0.855921\pi\)
\(752\) −16.6586 + 12.1032i −0.607478 + 0.441358i
\(753\) 0 0
\(754\) −8.02760 + 24.7064i −0.292348 + 0.899754i
\(755\) 4.49360 3.26479i 0.163539 0.118818i
\(756\) 0 0
\(757\) 12.3823 + 38.1087i 0.450041 + 1.38508i 0.876859 + 0.480747i \(0.159634\pi\)
−0.426818 + 0.904338i \(0.640366\pi\)
\(758\) 13.7362 0.498920
\(759\) 0 0
\(760\) −2.77532 −0.100672
\(761\) −5.54238 17.0577i −0.200911 0.618340i −0.999857 0.0169371i \(-0.994608\pi\)
0.798946 0.601403i \(-0.205392\pi\)
\(762\) 0 0
\(763\) 1.52145 1.10540i 0.0550801 0.0400180i
\(764\) −11.0668 + 34.0602i −0.400384 + 1.23226i
\(765\) 0 0
\(766\) −52.2648 + 37.9726i −1.88840 + 1.37201i
\(767\) −6.79856 4.93945i −0.245482 0.178353i
\(768\) 0 0
\(769\) −10.8431 −0.391011 −0.195506 0.980703i \(-0.562635\pi\)
−0.195506 + 0.980703i \(0.562635\pi\)
\(770\) −3.17435 2.44884i −0.114395 0.0882501i
\(771\) 0 0
\(772\) 2.27564 + 7.00369i 0.0819020 + 0.252068i
\(773\) −5.55690 4.03732i −0.199868 0.145212i 0.483350 0.875427i \(-0.339420\pi\)
−0.683218 + 0.730215i \(0.739420\pi\)
\(774\) 0 0
\(775\) −0.611585 + 1.88227i −0.0219688 + 0.0676130i
\(776\) −0.843185 + 2.59506i −0.0302686 + 0.0931571i
\(777\) 0 0
\(778\) −64.6238 46.9519i −2.31687 1.68331i
\(779\) −8.58503 26.4220i −0.307591 0.946667i
\(780\) 0 0
\(781\) 4.25610 + 0.122474i 0.152295 + 0.00438248i
\(782\) −0.829623 −0.0296673
\(783\) 0 0
\(784\) −19.1767 13.9327i −0.684881 0.497595i
\(785\) −14.9761 + 10.8808i −0.534521 + 0.388352i
\(786\) 0 0
\(787\) 0.701367 2.15858i 0.0250010 0.0769452i −0.937778 0.347237i \(-0.887120\pi\)
0.962779 + 0.270291i \(0.0871201\pi\)
\(788\) −17.3984 + 12.6407i −0.619792 + 0.450306i
\(789\) 0 0
\(790\) 7.06145 + 21.7329i 0.251235 + 0.773222i
\(791\) 6.77869 0.241022
\(792\) 0 0
\(793\) −1.44509 −0.0513166
\(794\) 17.2026 + 52.9442i 0.610498 + 1.87892i
\(795\) 0 0
\(796\) −17.5922 + 12.7815i −0.623539 + 0.453028i
\(797\) −3.41660 + 10.5152i −0.121022 + 0.372468i −0.993155 0.116800i \(-0.962736\pi\)
0.872133 + 0.489269i \(0.162736\pi\)
\(798\) 0 0
\(799\) −23.0006 + 16.7109i −0.813703 + 0.591190i
\(800\) 6.56547 + 4.77010i 0.232125 + 0.168648i
\(801\) 0 0
\(802\) −27.0356 −0.954660
\(803\) 41.0371 + 31.6580i 1.44817 + 1.11719i
\(804\) 0 0
\(805\) 0.0150021 + 0.0461717i 0.000528754 + 0.00162734i
\(806\) 4.93737 + 3.58721i 0.173911 + 0.126354i
\(807\) 0 0
\(808\) 0.747602 2.30088i 0.0263006 0.0809448i
\(809\) −1.32961 + 4.09212i −0.0467466 + 0.143871i −0.971705 0.236196i \(-0.924099\pi\)
0.924959 + 0.380067i \(0.124099\pi\)
\(810\) 0 0
\(811\) 15.1451 + 11.0036i 0.531817 + 0.386387i 0.821037 0.570875i \(-0.193396\pi\)
−0.289220 + 0.957263i \(0.593396\pi\)
\(812\) 3.37653 + 10.3919i 0.118493 + 0.364683i
\(813\) 0 0
\(814\) −8.18057 + 22.9126i −0.286729 + 0.803085i
\(815\) −7.81457 −0.273733
\(816\) 0 0
\(817\) −26.8256 19.4899i −0.938508 0.681866i
\(818\) 16.4567 11.9565i 0.575394 0.418048i
\(819\) 0 0
\(820\) 2.76734 8.51699i 0.0966396 0.297426i
\(821\) 29.4674 21.4093i 1.02842 0.747189i 0.0604266 0.998173i \(-0.480754\pi\)
0.967991 + 0.250983i \(0.0807539\pi\)
\(822\) 0 0
\(823\) −0.470329 1.44752i −0.0163946 0.0504575i 0.942525 0.334137i \(-0.108445\pi\)
−0.958919 + 0.283679i \(0.908445\pi\)
\(824\) 0.787594 0.0274371
\(825\) 0 0
\(826\) −6.75000 −0.234863
\(827\) −7.85490 24.1749i −0.273141 0.840643i −0.989705 0.143121i \(-0.954286\pi\)
0.716564 0.697522i \(-0.245714\pi\)
\(828\) 0 0
\(829\) 6.87760 4.99687i 0.238869 0.173548i −0.461910 0.886927i \(-0.652836\pi\)
0.700779 + 0.713378i \(0.252836\pi\)
\(830\) −2.54045 + 7.81871i −0.0881804 + 0.271391i
\(831\) 0 0
\(832\) 11.5686 8.40511i 0.401070 0.291395i
\(833\) −26.4773 19.2369i −0.917383 0.666518i
\(834\) 0 0
\(835\) 5.96190 0.206320
\(836\) 14.0020 + 47.7232i 0.484269 + 1.65054i
\(837\) 0 0
\(838\) 16.7336 + 51.5007i 0.578052 + 1.77906i
\(839\) −35.9783 26.1398i −1.24211 0.902445i −0.244372 0.969682i \(-0.578582\pi\)
−0.997737 + 0.0672363i \(0.978582\pi\)
\(840\) 0 0
\(841\) 12.9697 39.9168i 0.447233 1.37644i
\(842\) 8.70573 26.7935i 0.300019 0.923364i
\(843\) 0 0
\(844\) 39.4311 + 28.6484i 1.35728 + 0.986119i
\(845\) 3.31737 + 10.2098i 0.114121 + 0.351228i
\(846\) 0 0
\(847\) −2.35689 + 6.04616i −0.0809835 + 0.207748i
\(848\) 24.1372 0.828877
\(849\) 0 0
\(850\) 8.15593 + 5.92563i 0.279746 + 0.203248i
\(851\) 0.238343 0.173166i 0.00817028 0.00593605i
\(852\) 0 0
\(853\) 8.61289 26.5077i 0.294900 0.907608i −0.688356 0.725373i \(-0.741667\pi\)
0.983255 0.182234i \(-0.0583329\pi\)
\(854\) −0.939066 + 0.682271i −0.0321342 + 0.0233468i
\(855\) 0 0
\(856\) −1.04203 3.20705i −0.0356160 0.109615i
\(857\) −23.1342 −0.790249 −0.395125 0.918628i \(-0.629299\pi\)
−0.395125 + 0.918628i \(0.629299\pi\)
\(858\) 0 0
\(859\) 51.9912 1.77392 0.886959 0.461849i \(-0.152814\pi\)
0.886959 + 0.461849i \(0.152814\pi\)
\(860\) −3.30289 10.1652i −0.112628 0.346632i
\(861\) 0 0
\(862\) 33.1076 24.0541i 1.12765 0.819285i
\(863\) 9.02589 27.7788i 0.307245 0.945603i −0.671585 0.740928i \(-0.734386\pi\)
0.978830 0.204675i \(-0.0656139\pi\)
\(864\) 0 0
\(865\) 13.4085 9.74186i 0.455903 0.331233i
\(866\) −27.5219 19.9958i −0.935233 0.679486i
\(867\) 0 0
\(868\) 2.56698 0.0871289
\(869\) 30.5366 20.8711i 1.03588 0.708002i
\(870\) 0 0
\(871\) 6.35060 + 19.5451i 0.215182 + 0.662262i
\(872\) −1.04941 0.762438i −0.0355374 0.0258194i
\(873\) 0 0
\(874\) 0.355403 1.09382i 0.0120217 0.0369989i
\(875\) 0.182300 0.561062i 0.00616287 0.0189674i
\(876\) 0 0
\(877\) −27.9723 20.3231i −0.944558 0.686262i 0.00495520 0.999988i \(-0.498423\pi\)
−0.949514 + 0.313726i \(0.898423\pi\)
\(878\) −17.9601 55.2756i −0.606125 1.86546i
\(879\) 0 0
\(880\) 3.97391 11.1303i 0.133960 0.375203i
\(881\) −44.3728 −1.49496 −0.747479 0.664285i \(-0.768736\pi\)
−0.747479 + 0.664285i \(0.768736\pi\)
\(882\) 0 0
\(883\) 23.2824 + 16.9156i 0.783514 + 0.569256i 0.906032 0.423210i \(-0.139097\pi\)
−0.122518 + 0.992466i \(0.539097\pi\)
\(884\) 13.1697 9.56837i 0.442946 0.321819i
\(885\) 0 0
\(886\) −14.3624 + 44.2029i −0.482514 + 1.48503i
\(887\) −7.53096 + 5.47156i −0.252865 + 0.183717i −0.706996 0.707218i \(-0.749950\pi\)
0.454131 + 0.890935i \(0.349950\pi\)
\(888\) 0 0
\(889\) −3.31630 10.2065i −0.111225 0.342316i
\(890\) 12.4618 0.417721
\(891\) 0 0
\(892\) 27.1301 0.908383
\(893\) −12.1793 37.4840i −0.407564 1.25435i
\(894\) 0 0
\(895\) 17.4300 12.6637i 0.582621 0.423299i
\(896\) 0.590503 1.81738i 0.0197273 0.0607145i
\(897\) 0 0
\(898\) 7.59541 5.51839i 0.253462 0.184151i
\(899\) −13.4888 9.80018i −0.449876 0.326854i
\(900\) 0 0
\(901\) 33.3264 1.11026
\(902\) −27.6697 0.796231i −0.921301 0.0265116i
\(903\) 0 0
\(904\) −1.44482 4.44671i −0.0480541 0.147895i
\(905\) −16.3182 11.8559i −0.542435 0.394102i
\(906\) 0 0
\(907\) −13.7217 + 42.2311i −0.455622 + 1.40226i 0.414782 + 0.909921i \(0.363858\pi\)
−0.870404 + 0.492339i \(0.836142\pi\)
\(908\) 5.58573 17.1911i 0.185369 0.570507i
\(909\) 0 0
\(910\) −1.47172 1.06927i −0.0487871 0.0354459i
\(911\) −7.30385 22.4789i −0.241987 0.744761i −0.996117 0.0880355i \(-0.971941\pi\)
0.754130 0.656725i \(-0.228059\pi\)
\(912\) 0 0
\(913\) 13.3013 + 0.382761i 0.440209 + 0.0126676i
\(914\) 13.7816 0.455855
\(915\) 0 0
\(916\) −48.1038 34.9495i −1.58940 1.15476i
\(917\) −8.96109 + 6.51062i −0.295921 + 0.214999i
\(918\) 0 0
\(919\) 2.11809 6.51882i 0.0698694 0.215036i −0.910025 0.414554i \(-0.863938\pi\)
0.979894 + 0.199518i \(0.0639376\pi\)
\(920\) 0.0270903 0.0196823i 0.000893141 0.000648905i
\(921\) 0 0
\(922\) 1.79527 + 5.52529i 0.0591242 + 0.181966i
\(923\) 1.93200 0.0635925
\(924\) 0 0
\(925\) −3.57997 −0.117709
\(926\) 13.0119 + 40.0465i 0.427598 + 1.31601i
\(927\) 0 0
\(928\) −55.3104 + 40.1853i −1.81565 + 1.31915i
\(929\) 8.79954 27.0822i 0.288704 0.888539i −0.696560 0.717498i \(-0.745287\pi\)
0.985264 0.171040i \(-0.0547129\pi\)
\(930\) 0 0
\(931\) 36.7055 26.6681i 1.20297 0.874011i
\(932\) 44.4747 + 32.3128i 1.45682 + 1.05844i
\(933\) 0 0
\(934\) 24.0954 0.788427
\(935\) 5.48678 15.3677i 0.179437 0.502576i
\(936\) 0 0
\(937\) −12.0926 37.2171i −0.395047 1.21583i −0.928925 0.370268i \(-0.879266\pi\)
0.533878 0.845561i \(-0.320734\pi\)
\(938\) 13.3547 + 9.70277i 0.436047 + 0.316807i
\(939\) 0 0
\(940\) 3.92592 12.0828i 0.128050 0.394096i
\(941\) 11.7635 36.2042i 0.383478 1.18022i −0.554101 0.832450i \(-0.686938\pi\)
0.937579 0.347774i \(-0.113062\pi\)
\(942\) 0 0
\(943\) 0.271181 + 0.197025i 0.00883087 + 0.00641600i
\(944\) −6.14887 18.9243i −0.200129 0.615932i
\(945\) 0 0
\(946\) −27.2760 + 18.6425i −0.886819 + 0.606120i
\(947\) −6.37140 −0.207043 −0.103521 0.994627i \(-0.533011\pi\)
−0.103521 + 0.994627i \(0.533011\pi\)
\(948\) 0 0
\(949\) 19.0260 + 13.8232i 0.617611 + 0.448720i
\(950\) −11.3066 + 8.21471i −0.366834 + 0.266521i
\(951\) 0 0
\(952\) 0.364958 1.12323i 0.0118284 0.0364040i
\(953\) −2.34889 + 1.70657i −0.0760881 + 0.0552812i −0.625179 0.780481i \(-0.714974\pi\)
0.549091 + 0.835763i \(0.314974\pi\)
\(954\) 0 0
\(955\) 5.03362 + 15.4919i 0.162884 + 0.501306i
\(956\) 45.5573 1.47343
\(957\) 0 0
\(958\) −3.11929 −0.100780
\(959\) −0.861738 2.65216i −0.0278270 0.0856427i
\(960\) 0 0
\(961\) 21.9106 15.9190i 0.706795 0.513516i
\(962\) −3.41134 + 10.4990i −0.109986 + 0.338502i
\(963\) 0 0
\(964\) 41.6739 30.2779i 1.34223 0.975184i
\(965\) 2.70979 + 1.96878i 0.0872312 + 0.0633772i
\(966\) 0 0
\(967\) −9.58404 −0.308202 −0.154101 0.988055i \(-0.549248\pi\)
−0.154101 + 0.988055i \(0.549248\pi\)
\(968\) 4.46853 + 0.257388i 0.143624 + 0.00827277i
\(969\) 0 0
\(970\) 4.24603 + 13.0679i 0.136332 + 0.419586i
\(971\) −43.5570 31.6460i −1.39781 1.01557i −0.994957 0.100305i \(-0.968018\pi\)
−0.402855 0.915264i \(-0.631982\pi\)
\(972\) 0 0
\(973\) 3.36776 10.3649i 0.107965 0.332284i
\(974\) 22.4769 69.1769i 0.720207 2.21657i
\(975\) 0 0
\(976\) −2.76825 2.01125i −0.0886094 0.0643785i
\(977\) 9.10421 + 28.0199i 0.291269 + 0.896435i 0.984449 + 0.175670i \(0.0562093\pi\)
−0.693180 + 0.720765i \(0.743791\pi\)
\(978\) 0 0
\(979\) −5.67878 19.3551i −0.181495 0.618591i
\(980\) 14.6249 0.467176
\(981\) 0 0
\(982\) 21.0155 + 15.2686i 0.670631 + 0.487242i
\(983\) 36.3841 26.4346i 1.16047 0.843132i 0.170634 0.985335i \(-0.445419\pi\)
0.989838 + 0.142203i \(0.0454185\pi\)
\(984\) 0 0
\(985\) −3.02267 + 9.30284i −0.0963104 + 0.296413i
\(986\) −68.7091 + 49.9201i −2.18814 + 1.58978i
\(987\) 0 0
\(988\) 6.97363 + 21.4626i 0.221861 + 0.682818i
\(989\) 0.400068 0.0127214
\(990\) 0 0
\(991\) 30.3468 0.963997 0.481998 0.876172i \(-0.339911\pi\)
0.481998 + 0.876172i \(0.339911\pi\)
\(992\) 4.96324 + 15.2753i 0.157583 + 0.484991i
\(993\) 0 0
\(994\) 1.25548 0.912157i 0.0398213 0.0289319i
\(995\) −3.05634 + 9.40646i −0.0968926 + 0.298205i
\(996\) 0 0
\(997\) 19.6436 14.2719i 0.622119 0.451996i −0.231542 0.972825i \(-0.574377\pi\)
0.853661 + 0.520829i \(0.174377\pi\)
\(998\) −34.9077 25.3619i −1.10498 0.802817i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 495.2.n.h.181.4 yes 16
3.2 odd 2 495.2.n.g.181.1 16
11.3 even 5 5445.2.a.ca.1.8 8
11.8 odd 10 5445.2.a.cc.1.1 8
11.9 even 5 inner 495.2.n.h.361.4 yes 16
33.8 even 10 5445.2.a.cb.1.8 8
33.14 odd 10 5445.2.a.cd.1.1 8
33.20 odd 10 495.2.n.g.361.1 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
495.2.n.g.181.1 16 3.2 odd 2
495.2.n.g.361.1 yes 16 33.20 odd 10
495.2.n.h.181.4 yes 16 1.1 even 1 trivial
495.2.n.h.361.4 yes 16 11.9 even 5 inner
5445.2.a.ca.1.8 8 11.3 even 5
5445.2.a.cb.1.8 8 33.8 even 10
5445.2.a.cc.1.1 8 11.8 odd 10
5445.2.a.cd.1.1 8 33.14 odd 10