Properties

Label 494.2.x.a
Level $494$
Weight $2$
Character orbit 494.x
Analytic conductor $3.945$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [494,2,Mod(131,494)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(494, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 10])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("494.131"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 494 = 2 \cdot 13 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 494.x (of order \(9\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.94460985985\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{18}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \zeta_{18}^{4} + \zeta_{18}) q^{2} + (\zeta_{18}^{2} + 1) q^{3} - \zeta_{18}^{5} q^{4} + ( - 2 \zeta_{18}^{4} - \zeta_{18}^{3} + \cdots + 1) q^{5} + ( - \zeta_{18}^{4} + \zeta_{18} + 1) q^{6} + \cdots + (6 \zeta_{18}^{5} - 4 \zeta_{18}^{4} + \cdots - 3) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{3} + 3 q^{5} + 6 q^{6} - 3 q^{7} - 3 q^{8} + 6 q^{9} - 6 q^{10} - 3 q^{11} - 3 q^{14} + 9 q^{15} + 9 q^{17} - 6 q^{18} + 9 q^{19} - 12 q^{20} + 3 q^{21} + 3 q^{22} + 9 q^{23} - 3 q^{24} - 15 q^{25}+ \cdots - 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/494\mathbb{Z}\right)^\times\).

\(n\) \(287\) \(457\)
\(\chi(n)\) \(-\zeta_{18}^{5}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
131.1
−0.766044 0.642788i
−0.173648 + 0.984808i
−0.766044 + 0.642788i
0.939693 0.342020i
−0.173648 0.984808i
0.939693 + 0.342020i
0.173648 0.984808i 1.17365 + 0.984808i −0.939693 0.342020i 2.20574 0.802823i 1.17365 0.984808i −1.26604 2.19285i −0.500000 + 0.866025i −0.113341 0.642788i −0.407604 2.31164i
157.1 −0.939693 + 0.342020i 0.0603074 0.342020i 0.766044 0.642788i −0.0923963 0.0775297i 0.0603074 + 0.342020i −0.673648 1.16679i −0.500000 + 0.866025i 2.70574 + 0.984808i 0.113341 + 0.0412527i
313.1 0.173648 + 0.984808i 1.17365 0.984808i −0.939693 + 0.342020i 2.20574 + 0.802823i 1.17365 + 0.984808i −1.26604 + 2.19285i −0.500000 0.866025i −0.113341 + 0.642788i −0.407604 + 2.31164i
339.1 0.766044 + 0.642788i 1.76604 0.642788i 0.173648 + 0.984808i −0.613341 + 3.47843i 1.76604 + 0.642788i 0.439693 + 0.761570i −0.500000 + 0.866025i 0.407604 0.342020i −2.70574 + 2.27038i
365.1 −0.939693 0.342020i 0.0603074 + 0.342020i 0.766044 + 0.642788i −0.0923963 + 0.0775297i 0.0603074 0.342020i −0.673648 + 1.16679i −0.500000 0.866025i 2.70574 0.984808i 0.113341 0.0412527i
443.1 0.766044 0.642788i 1.76604 + 0.642788i 0.173648 0.984808i −0.613341 3.47843i 1.76604 0.642788i 0.439693 0.761570i −0.500000 0.866025i 0.407604 + 0.342020i −2.70574 2.27038i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 131.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.e even 9 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 494.2.x.a 6
19.e even 9 1 inner 494.2.x.a 6
19.e even 9 1 9386.2.a.ba 3
19.f odd 18 1 9386.2.a.x 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
494.2.x.a 6 1.a even 1 1 trivial
494.2.x.a 6 19.e even 9 1 inner
9386.2.a.x 3 19.f odd 18 1
9386.2.a.ba 3 19.e even 9 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{6} - 6T_{3}^{5} + 15T_{3}^{4} - 19T_{3}^{3} + 12T_{3}^{2} - 3T_{3} + 1 \) acting on \(S_{2}^{\mathrm{new}}(494, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} + T^{3} + 1 \) Copy content Toggle raw display
$3$ \( T^{6} - 6 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{6} - 3 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( T^{6} + 3 T^{5} + \cdots + 9 \) Copy content Toggle raw display
$11$ \( T^{6} + 3 T^{5} + \cdots + 289 \) Copy content Toggle raw display
$13$ \( T^{6} + T^{3} + 1 \) Copy content Toggle raw display
$17$ \( T^{6} - 9 T^{5} + \cdots + 6561 \) Copy content Toggle raw display
$19$ \( T^{6} - 9 T^{5} + \cdots + 6859 \) Copy content Toggle raw display
$23$ \( T^{6} - 9 T^{5} + \cdots + 1369 \) Copy content Toggle raw display
$29$ \( T^{6} - 27 T^{5} + \cdots + 2809 \) Copy content Toggle raw display
$31$ \( T^{6} - 15 T^{5} + \cdots + 1369 \) Copy content Toggle raw display
$37$ \( (T^{3} - 48 T - 64)^{2} \) Copy content Toggle raw display
$41$ \( T^{6} - 12 T^{5} + \cdots + 64 \) Copy content Toggle raw display
$43$ \( T^{6} - 3 T^{5} + \cdots + 361 \) Copy content Toggle raw display
$47$ \( T^{6} - 42 T^{5} + \cdots + 23104 \) Copy content Toggle raw display
$53$ \( T^{6} + 18 T^{5} + \cdots + 1369 \) Copy content Toggle raw display
$59$ \( T^{6} + 6 T^{5} + \cdots + 9 \) Copy content Toggle raw display
$61$ \( T^{6} + 3 T^{5} + \cdots + 361 \) Copy content Toggle raw display
$67$ \( T^{6} + 21 T^{5} + \cdots + 239121 \) Copy content Toggle raw display
$71$ \( T^{6} + 24 T^{5} + \cdots + 104329 \) Copy content Toggle raw display
$73$ \( T^{6} + 39 T^{5} + \cdots + 848241 \) Copy content Toggle raw display
$79$ \( T^{6} + 30 T^{5} + \cdots + 597529 \) Copy content Toggle raw display
$83$ \( T^{6} - 6 T^{5} + \cdots + 2601 \) Copy content Toggle raw display
$89$ \( T^{6} + 27 T^{5} + \cdots + 110889 \) Copy content Toggle raw display
$97$ \( T^{6} + 42 T^{5} + \cdots + 5041 \) Copy content Toggle raw display
show more
show less