Properties

Label 494.2.d.c.77.10
Level $494$
Weight $2$
Character 494.77
Analytic conductor $3.945$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [494,2,Mod(77,494)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("494.77"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(494, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 494 = 2 \cdot 13 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 494.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.94460985985\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 36x^{12} + 492x^{10} + 3171x^{8} + 9678x^{6} + 11765x^{4} + 1893x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 77.10
Root \(-0.431028i\) of defining polynomial
Character \(\chi\) \(=\) 494.77
Dual form 494.2.d.c.77.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -0.431028 q^{3} -1.00000 q^{4} +0.638027i q^{5} -0.431028i q^{6} -2.88689i q^{7} -1.00000i q^{8} -2.81422 q^{9} -0.638027 q^{10} +4.60137i q^{11} +0.431028 q^{12} +(-3.23697 + 1.58809i) q^{13} +2.88689 q^{14} -0.275008i q^{15} +1.00000 q^{16} -6.56224 q^{17} -2.81422i q^{18} +1.00000i q^{19} -0.638027i q^{20} +1.24433i q^{21} -4.60137 q^{22} -8.91550 q^{23} +0.431028i q^{24} +4.59292 q^{25} +(-1.58809 - 3.23697i) q^{26} +2.50609 q^{27} +2.88689i q^{28} +0.265542 q^{29} +0.275008 q^{30} -2.61805i q^{31} +1.00000i q^{32} -1.98332i q^{33} -6.56224i q^{34} +1.84191 q^{35} +2.81422 q^{36} -5.69657i q^{37} -1.00000 q^{38} +(1.39522 - 0.684513i) q^{39} +0.638027 q^{40} +0.820197i q^{41} -1.24433 q^{42} -0.882033 q^{43} -4.60137i q^{44} -1.79555i q^{45} -8.91550i q^{46} +1.44894i q^{47} -0.431028 q^{48} -1.33411 q^{49} +4.59292i q^{50} +2.82851 q^{51} +(3.23697 - 1.58809i) q^{52} -8.64940 q^{53} +2.50609i q^{54} -2.93580 q^{55} -2.88689 q^{56} -0.431028i q^{57} +0.265542i q^{58} +8.55699i q^{59} +0.275008i q^{60} +6.21427 q^{61} +2.61805 q^{62} +8.12432i q^{63} -1.00000 q^{64} +(-1.01325 - 2.06527i) q^{65} +1.98332 q^{66} +10.0382i q^{67} +6.56224 q^{68} +3.84283 q^{69} +1.84191i q^{70} +3.88072i q^{71} +2.81422i q^{72} -8.05237i q^{73} +5.69657 q^{74} -1.97968 q^{75} -1.00000i q^{76} +13.2836 q^{77} +(0.684513 + 1.39522i) q^{78} -9.12448 q^{79} +0.638027i q^{80} +7.36245 q^{81} -0.820197 q^{82} +8.35868i q^{83} -1.24433i q^{84} -4.18689i q^{85} -0.882033i q^{86} -0.114456 q^{87} +4.60137 q^{88} -15.1114i q^{89} +1.79555 q^{90} +(4.58465 + 9.34476i) q^{91} +8.91550 q^{92} +1.12845i q^{93} -1.44894 q^{94} -0.638027 q^{95} -0.431028i q^{96} +2.31791i q^{97} -1.33411i q^{98} -12.9492i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 4 q^{3} - 14 q^{4} + 30 q^{9} - 4 q^{10} - 4 q^{12} - 2 q^{13} + 2 q^{14} + 14 q^{16} - 32 q^{17} + 10 q^{22} - 6 q^{23} - 14 q^{25} + 10 q^{26} + 10 q^{27} - 14 q^{29} - 26 q^{30} + 2 q^{35} - 30 q^{36}+ \cdots - 4 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/494\mathbb{Z}\right)^\times\).

\(n\) \(287\) \(457\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) −0.431028 −0.248854 −0.124427 0.992229i \(-0.539709\pi\)
−0.124427 + 0.992229i \(0.539709\pi\)
\(4\) −1.00000 −0.500000
\(5\) 0.638027i 0.285334i 0.989771 + 0.142667i \(0.0455679\pi\)
−0.989771 + 0.142667i \(0.954432\pi\)
\(6\) 0.431028i 0.175966i
\(7\) 2.88689i 1.09114i −0.838065 0.545570i \(-0.816313\pi\)
0.838065 0.545570i \(-0.183687\pi\)
\(8\) 1.00000i 0.353553i
\(9\) −2.81422 −0.938072
\(10\) −0.638027 −0.201762
\(11\) 4.60137i 1.38736i 0.720281 + 0.693682i \(0.244013\pi\)
−0.720281 + 0.693682i \(0.755987\pi\)
\(12\) 0.431028 0.124427
\(13\) −3.23697 + 1.58809i −0.897773 + 0.440458i
\(14\) 2.88689 0.771553
\(15\) 0.275008i 0.0710066i
\(16\) 1.00000 0.250000
\(17\) −6.56224 −1.59158 −0.795789 0.605574i \(-0.792943\pi\)
−0.795789 + 0.605574i \(0.792943\pi\)
\(18\) 2.81422i 0.663317i
\(19\) 1.00000i 0.229416i
\(20\) 0.638027i 0.142667i
\(21\) 1.24433i 0.271535i
\(22\) −4.60137 −0.981015
\(23\) −8.91550 −1.85901 −0.929505 0.368810i \(-0.879765\pi\)
−0.929505 + 0.368810i \(0.879765\pi\)
\(24\) 0.431028i 0.0879832i
\(25\) 4.59292 0.918584
\(26\) −1.58809 3.23697i −0.311451 0.634822i
\(27\) 2.50609 0.482297
\(28\) 2.88689i 0.545570i
\(29\) 0.265542 0.0493099 0.0246549 0.999696i \(-0.492151\pi\)
0.0246549 + 0.999696i \(0.492151\pi\)
\(30\) 0.275008 0.0502093
\(31\) 2.61805i 0.470216i −0.971969 0.235108i \(-0.924456\pi\)
0.971969 0.235108i \(-0.0755443\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 1.98332i 0.345251i
\(34\) 6.56224i 1.12542i
\(35\) 1.84191 0.311340
\(36\) 2.81422 0.469036
\(37\) 5.69657i 0.936510i −0.883593 0.468255i \(-0.844883\pi\)
0.883593 0.468255i \(-0.155117\pi\)
\(38\) −1.00000 −0.162221
\(39\) 1.39522 0.684513i 0.223414 0.109610i
\(40\) 0.638027 0.100881
\(41\) 0.820197i 0.128093i 0.997947 + 0.0640466i \(0.0204006\pi\)
−0.997947 + 0.0640466i \(0.979599\pi\)
\(42\) −1.24433 −0.192004
\(43\) −0.882033 −0.134509 −0.0672544 0.997736i \(-0.521424\pi\)
−0.0672544 + 0.997736i \(0.521424\pi\)
\(44\) 4.60137i 0.693682i
\(45\) 1.79555i 0.267664i
\(46\) 8.91550i 1.31452i
\(47\) 1.44894i 0.211349i 0.994401 + 0.105675i \(0.0337002\pi\)
−0.994401 + 0.105675i \(0.966300\pi\)
\(48\) −0.431028 −0.0622135
\(49\) −1.33411 −0.190587
\(50\) 4.59292i 0.649537i
\(51\) 2.82851 0.396070
\(52\) 3.23697 1.58809i 0.448887 0.220229i
\(53\) −8.64940 −1.18809 −0.594043 0.804433i \(-0.702469\pi\)
−0.594043 + 0.804433i \(0.702469\pi\)
\(54\) 2.50609i 0.341035i
\(55\) −2.93580 −0.395863
\(56\) −2.88689 −0.385776
\(57\) 0.431028i 0.0570910i
\(58\) 0.265542i 0.0348673i
\(59\) 8.55699i 1.11402i 0.830504 + 0.557012i \(0.188052\pi\)
−0.830504 + 0.557012i \(0.811948\pi\)
\(60\) 0.275008i 0.0355033i
\(61\) 6.21427 0.795655 0.397828 0.917460i \(-0.369764\pi\)
0.397828 + 0.917460i \(0.369764\pi\)
\(62\) 2.61805 0.332493
\(63\) 8.12432i 1.02357i
\(64\) −1.00000 −0.125000
\(65\) −1.01325 2.06527i −0.125678 0.256166i
\(66\) 1.98332 0.244129
\(67\) 10.0382i 1.22637i 0.789941 + 0.613183i \(0.210111\pi\)
−0.789941 + 0.613183i \(0.789889\pi\)
\(68\) 6.56224 0.795789
\(69\) 3.84283 0.462622
\(70\) 1.84191i 0.220151i
\(71\) 3.88072i 0.460556i 0.973125 + 0.230278i \(0.0739636\pi\)
−0.973125 + 0.230278i \(0.926036\pi\)
\(72\) 2.81422i 0.331658i
\(73\) 8.05237i 0.942459i −0.882011 0.471229i \(-0.843810\pi\)
0.882011 0.471229i \(-0.156190\pi\)
\(74\) 5.69657 0.662213
\(75\) −1.97968 −0.228593
\(76\) 1.00000i 0.114708i
\(77\) 13.2836 1.51381
\(78\) 0.684513 + 1.39522i 0.0775058 + 0.157978i
\(79\) −9.12448 −1.02658 −0.513292 0.858214i \(-0.671574\pi\)
−0.513292 + 0.858214i \(0.671574\pi\)
\(80\) 0.638027i 0.0713336i
\(81\) 7.36245 0.818050
\(82\) −0.820197 −0.0905756
\(83\) 8.35868i 0.917484i 0.888569 + 0.458742i \(0.151700\pi\)
−0.888569 + 0.458742i \(0.848300\pi\)
\(84\) 1.24433i 0.135767i
\(85\) 4.18689i 0.454132i
\(86\) 0.882033i 0.0951121i
\(87\) −0.114456 −0.0122710
\(88\) 4.60137 0.490507
\(89\) 15.1114i 1.60181i −0.598793 0.800904i \(-0.704353\pi\)
0.598793 0.800904i \(-0.295647\pi\)
\(90\) 1.79555 0.189267
\(91\) 4.58465 + 9.34476i 0.480601 + 0.979597i
\(92\) 8.91550 0.929505
\(93\) 1.12845i 0.117015i
\(94\) −1.44894 −0.149447
\(95\) −0.638027 −0.0654602
\(96\) 0.431028i 0.0439916i
\(97\) 2.31791i 0.235349i 0.993052 + 0.117674i \(0.0375439\pi\)
−0.993052 + 0.117674i \(0.962456\pi\)
\(98\) 1.33411i 0.134765i
\(99\) 12.9492i 1.30145i
\(100\) −4.59292 −0.459292
\(101\) 2.24285 0.223172 0.111586 0.993755i \(-0.464407\pi\)
0.111586 + 0.993755i \(0.464407\pi\)
\(102\) 2.82851i 0.280064i
\(103\) −2.15291 −0.212132 −0.106066 0.994359i \(-0.533826\pi\)
−0.106066 + 0.994359i \(0.533826\pi\)
\(104\) 1.58809 + 3.23697i 0.155725 + 0.317411i
\(105\) −0.793915 −0.0774782
\(106\) 8.64940i 0.840104i
\(107\) 11.0137 1.06474 0.532369 0.846512i \(-0.321302\pi\)
0.532369 + 0.846512i \(0.321302\pi\)
\(108\) −2.50609 −0.241148
\(109\) 13.2324i 1.26743i 0.773566 + 0.633715i \(0.218471\pi\)
−0.773566 + 0.633715i \(0.781529\pi\)
\(110\) 2.93580i 0.279917i
\(111\) 2.45538i 0.233054i
\(112\) 2.88689i 0.272785i
\(113\) 4.63583 0.436102 0.218051 0.975937i \(-0.430030\pi\)
0.218051 + 0.975937i \(0.430030\pi\)
\(114\) 0.431028 0.0403695
\(115\) 5.68833i 0.530440i
\(116\) −0.265542 −0.0246549
\(117\) 9.10952 4.46924i 0.842176 0.413181i
\(118\) −8.55699 −0.787734
\(119\) 18.9444i 1.73663i
\(120\) −0.275008 −0.0251046
\(121\) −10.1726 −0.924779
\(122\) 6.21427i 0.562613i
\(123\) 0.353528i 0.0318765i
\(124\) 2.61805i 0.235108i
\(125\) 6.12055i 0.547438i
\(126\) −8.12432 −0.723772
\(127\) −10.8022 −0.958540 −0.479270 0.877668i \(-0.659098\pi\)
−0.479270 + 0.877668i \(0.659098\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0.380181 0.0334731
\(130\) 2.06527 1.01325i 0.181136 0.0888677i
\(131\) 17.5634 1.53452 0.767260 0.641336i \(-0.221620\pi\)
0.767260 + 0.641336i \(0.221620\pi\)
\(132\) 1.98332i 0.172626i
\(133\) 2.88689 0.250325
\(134\) −10.0382 −0.867172
\(135\) 1.59895i 0.137616i
\(136\) 6.56224i 0.562708i
\(137\) 21.4219i 1.83019i 0.403236 + 0.915096i \(0.367885\pi\)
−0.403236 + 0.915096i \(0.632115\pi\)
\(138\) 3.84283i 0.327123i
\(139\) −9.72043 −0.824476 −0.412238 0.911076i \(-0.635253\pi\)
−0.412238 + 0.911076i \(0.635253\pi\)
\(140\) −1.84191 −0.155670
\(141\) 0.624533i 0.0525952i
\(142\) −3.88072 −0.325662
\(143\) −7.30740 14.8945i −0.611076 1.24554i
\(144\) −2.81422 −0.234518
\(145\) 0.169423i 0.0140698i
\(146\) 8.05237 0.666419
\(147\) 0.575038 0.0474284
\(148\) 5.69657i 0.468255i
\(149\) 21.4534i 1.75753i −0.477255 0.878765i \(-0.658368\pi\)
0.477255 0.878765i \(-0.341632\pi\)
\(150\) 1.97968i 0.161640i
\(151\) 4.67100i 0.380121i 0.981772 + 0.190060i \(0.0608684\pi\)
−0.981772 + 0.190060i \(0.939132\pi\)
\(152\) 1.00000 0.0811107
\(153\) 18.4676 1.49301
\(154\) 13.2836i 1.07042i
\(155\) 1.67039 0.134169
\(156\) −1.39522 + 0.684513i −0.111707 + 0.0548049i
\(157\) 12.8145 1.02271 0.511356 0.859369i \(-0.329143\pi\)
0.511356 + 0.859369i \(0.329143\pi\)
\(158\) 9.12448i 0.725905i
\(159\) 3.72813 0.295660
\(160\) −0.638027 −0.0504405
\(161\) 25.7380i 2.02844i
\(162\) 7.36245i 0.578449i
\(163\) 0.682086i 0.0534251i 0.999643 + 0.0267126i \(0.00850388\pi\)
−0.999643 + 0.0267126i \(0.991496\pi\)
\(164\) 0.820197i 0.0640466i
\(165\) 1.26541 0.0985121
\(166\) −8.35868 −0.648759
\(167\) 9.17257i 0.709795i 0.934905 + 0.354897i \(0.115484\pi\)
−0.934905 + 0.354897i \(0.884516\pi\)
\(168\) 1.24433 0.0960020
\(169\) 7.95592 10.2812i 0.611994 0.790863i
\(170\) 4.18689 0.321120
\(171\) 2.81422i 0.215208i
\(172\) 0.882033 0.0672544
\(173\) −23.2870 −1.77048 −0.885240 0.465135i \(-0.846006\pi\)
−0.885240 + 0.465135i \(0.846006\pi\)
\(174\) 0.114456i 0.00867688i
\(175\) 13.2592i 1.00230i
\(176\) 4.60137i 0.346841i
\(177\) 3.68830i 0.277230i
\(178\) 15.1114 1.13265
\(179\) −15.3521 −1.14747 −0.573735 0.819041i \(-0.694506\pi\)
−0.573735 + 0.819041i \(0.694506\pi\)
\(180\) 1.79555i 0.133832i
\(181\) −0.346337 −0.0257430 −0.0128715 0.999917i \(-0.504097\pi\)
−0.0128715 + 0.999917i \(0.504097\pi\)
\(182\) −9.34476 + 4.58465i −0.692679 + 0.339837i
\(183\) −2.67852 −0.198002
\(184\) 8.91550i 0.657259i
\(185\) 3.63457 0.267219
\(186\) −1.12845 −0.0827421
\(187\) 30.1953i 2.20810i
\(188\) 1.44894i 0.105675i
\(189\) 7.23479i 0.526254i
\(190\) 0.638027i 0.0462874i
\(191\) −1.64856 −0.119286 −0.0596429 0.998220i \(-0.518996\pi\)
−0.0596429 + 0.998220i \(0.518996\pi\)
\(192\) 0.431028 0.0311068
\(193\) 11.2563i 0.810245i −0.914262 0.405123i \(-0.867229\pi\)
0.914262 0.405123i \(-0.132771\pi\)
\(194\) −2.31791 −0.166417
\(195\) 0.436738 + 0.890190i 0.0312754 + 0.0637479i
\(196\) 1.33411 0.0952936
\(197\) 17.3398i 1.23541i −0.786410 0.617705i \(-0.788063\pi\)
0.786410 0.617705i \(-0.211937\pi\)
\(198\) 12.9492 0.920262
\(199\) −12.5635 −0.890600 −0.445300 0.895382i \(-0.646903\pi\)
−0.445300 + 0.895382i \(0.646903\pi\)
\(200\) 4.59292i 0.324769i
\(201\) 4.32676i 0.305186i
\(202\) 2.24285i 0.157807i
\(203\) 0.766589i 0.0538040i
\(204\) −2.82851 −0.198035
\(205\) −0.523308 −0.0365494
\(206\) 2.15291i 0.150000i
\(207\) 25.0901 1.74388
\(208\) −3.23697 + 1.58809i −0.224443 + 0.110114i
\(209\) −4.60137 −0.318283
\(210\) 0.793915i 0.0547854i
\(211\) −12.3579 −0.850751 −0.425376 0.905017i \(-0.639858\pi\)
−0.425376 + 0.905017i \(0.639858\pi\)
\(212\) 8.64940 0.594043
\(213\) 1.67270i 0.114611i
\(214\) 11.0137i 0.752883i
\(215\) 0.562761i 0.0383800i
\(216\) 2.50609i 0.170518i
\(217\) −7.55801 −0.513071
\(218\) −13.2324 −0.896209
\(219\) 3.47080i 0.234535i
\(220\) 2.93580 0.197931
\(221\) 21.2418 10.4215i 1.42888 0.701023i
\(222\) −2.45538 −0.164794
\(223\) 9.63105i 0.644943i −0.946579 0.322471i \(-0.895486\pi\)
0.946579 0.322471i \(-0.104514\pi\)
\(224\) 2.88689 0.192888
\(225\) −12.9255 −0.861698
\(226\) 4.63583i 0.308371i
\(227\) 3.55891i 0.236213i −0.993001 0.118107i \(-0.962318\pi\)
0.993001 0.118107i \(-0.0376825\pi\)
\(228\) 0.431028i 0.0285455i
\(229\) 1.35007i 0.0892149i 0.999005 + 0.0446075i \(0.0142037\pi\)
−0.999005 + 0.0446075i \(0.985796\pi\)
\(230\) 5.68833 0.375077
\(231\) −5.72561 −0.376717
\(232\) 0.265542i 0.0174337i
\(233\) 3.00177 0.196652 0.0983262 0.995154i \(-0.468651\pi\)
0.0983262 + 0.995154i \(0.468651\pi\)
\(234\) 4.46924 + 9.10952i 0.292163 + 0.595508i
\(235\) −0.924462 −0.0603053
\(236\) 8.55699i 0.557012i
\(237\) 3.93291 0.255470
\(238\) −18.9444 −1.22799
\(239\) 28.7946i 1.86257i 0.364291 + 0.931285i \(0.381311\pi\)
−0.364291 + 0.931285i \(0.618689\pi\)
\(240\) 0.275008i 0.0177517i
\(241\) 6.96565i 0.448697i −0.974509 0.224348i \(-0.927975\pi\)
0.974509 0.224348i \(-0.0720254\pi\)
\(242\) 10.1726i 0.653918i
\(243\) −10.6917 −0.685872
\(244\) −6.21427 −0.397828
\(245\) 0.851199i 0.0543811i
\(246\) 0.353528 0.0225401
\(247\) −1.58809 3.23697i −0.101048 0.205963i
\(248\) −2.61805 −0.166246
\(249\) 3.60282i 0.228320i
\(250\) −6.12055 −0.387097
\(251\) 3.51444 0.221830 0.110915 0.993830i \(-0.464622\pi\)
0.110915 + 0.993830i \(0.464622\pi\)
\(252\) 8.12432i 0.511784i
\(253\) 41.0235i 2.57912i
\(254\) 10.8022i 0.677790i
\(255\) 1.80467i 0.113013i
\(256\) 1.00000 0.0625000
\(257\) −20.8301 −1.29935 −0.649673 0.760213i \(-0.725094\pi\)
−0.649673 + 0.760213i \(0.725094\pi\)
\(258\) 0.380181i 0.0236690i
\(259\) −16.4453 −1.02186
\(260\) 1.01325 + 2.06527i 0.0628389 + 0.128083i
\(261\) −0.747292 −0.0462562
\(262\) 17.5634i 1.08507i
\(263\) 9.99847 0.616532 0.308266 0.951300i \(-0.400251\pi\)
0.308266 + 0.951300i \(0.400251\pi\)
\(264\) −1.98332 −0.122065
\(265\) 5.51855i 0.339002i
\(266\) 2.88689i 0.177006i
\(267\) 6.51344i 0.398616i
\(268\) 10.0382i 0.613183i
\(269\) 8.68190 0.529345 0.264672 0.964338i \(-0.414736\pi\)
0.264672 + 0.964338i \(0.414736\pi\)
\(270\) −1.59895 −0.0973092
\(271\) 9.21067i 0.559509i −0.960072 0.279754i \(-0.909747\pi\)
0.960072 0.279754i \(-0.0902530\pi\)
\(272\) −6.56224 −0.397894
\(273\) −1.97611 4.02785i −0.119600 0.243777i
\(274\) −21.4219 −1.29414
\(275\) 21.1337i 1.27441i
\(276\) −3.84283 −0.231311
\(277\) −14.0245 −0.842651 −0.421325 0.906910i \(-0.638435\pi\)
−0.421325 + 0.906910i \(0.638435\pi\)
\(278\) 9.72043i 0.582992i
\(279\) 7.36775i 0.441096i
\(280\) 1.84191i 0.110075i
\(281\) 28.3975i 1.69405i 0.531551 + 0.847026i \(0.321609\pi\)
−0.531551 + 0.847026i \(0.678391\pi\)
\(282\) 0.624533 0.0371904
\(283\) −1.01213 −0.0601648 −0.0300824 0.999547i \(-0.509577\pi\)
−0.0300824 + 0.999547i \(0.509577\pi\)
\(284\) 3.88072i 0.230278i
\(285\) 0.275008 0.0162900
\(286\) 14.8945 7.30740i 0.880729 0.432096i
\(287\) 2.36781 0.139768
\(288\) 2.81422i 0.165829i
\(289\) 26.0630 1.53312
\(290\) −0.169423 −0.00994885
\(291\) 0.999086i 0.0585674i
\(292\) 8.05237i 0.471229i
\(293\) 31.9167i 1.86459i −0.361695 0.932296i \(-0.617802\pi\)
0.361695 0.932296i \(-0.382198\pi\)
\(294\) 0.575038i 0.0335369i
\(295\) −5.45959 −0.317870
\(296\) −5.69657 −0.331106
\(297\) 11.5314i 0.669121i
\(298\) 21.4534 1.24276
\(299\) 28.8592 14.1586i 1.66897 0.818816i
\(300\) 1.97968 0.114297
\(301\) 2.54633i 0.146768i
\(302\) −4.67100 −0.268786
\(303\) −0.966732 −0.0555373
\(304\) 1.00000i 0.0573539i
\(305\) 3.96487i 0.227028i
\(306\) 18.4676i 1.05572i
\(307\) 25.0291i 1.42849i 0.699897 + 0.714244i \(0.253229\pi\)
−0.699897 + 0.714244i \(0.746771\pi\)
\(308\) −13.2836 −0.756904
\(309\) 0.927962 0.0527899
\(310\) 1.67039i 0.0948716i
\(311\) 11.8393 0.671348 0.335674 0.941978i \(-0.391036\pi\)
0.335674 + 0.941978i \(0.391036\pi\)
\(312\) −0.684513 1.39522i −0.0387529 0.0789889i
\(313\) −27.5763 −1.55870 −0.779352 0.626586i \(-0.784452\pi\)
−0.779352 + 0.626586i \(0.784452\pi\)
\(314\) 12.8145i 0.723166i
\(315\) −5.18354 −0.292059
\(316\) 9.12448 0.513292
\(317\) 6.30277i 0.353999i −0.984211 0.176999i \(-0.943361\pi\)
0.984211 0.176999i \(-0.0566390\pi\)
\(318\) 3.72813i 0.209063i
\(319\) 1.22185i 0.0684107i
\(320\) 0.638027i 0.0356668i
\(321\) −4.74723 −0.264964
\(322\) −25.7380 −1.43432
\(323\) 6.56224i 0.365133i
\(324\) −7.36245 −0.409025
\(325\) −14.8671 + 7.29399i −0.824680 + 0.404598i
\(326\) −0.682086 −0.0377773
\(327\) 5.70352i 0.315405i
\(328\) 0.820197 0.0452878
\(329\) 4.18292 0.230612
\(330\) 1.26541i 0.0696585i
\(331\) 25.0818i 1.37862i −0.724465 0.689311i \(-0.757913\pi\)
0.724465 0.689311i \(-0.242087\pi\)
\(332\) 8.35868i 0.458742i
\(333\) 16.0314i 0.878514i
\(334\) −9.17257 −0.501901
\(335\) −6.40467 −0.349925
\(336\) 1.24433i 0.0678837i
\(337\) −14.5105 −0.790435 −0.395218 0.918588i \(-0.629331\pi\)
−0.395218 + 0.918588i \(0.629331\pi\)
\(338\) 10.2812 + 7.95592i 0.559224 + 0.432745i
\(339\) −1.99817 −0.108526
\(340\) 4.18689i 0.227066i
\(341\) 12.0466 0.652360
\(342\) 2.81422 0.152175
\(343\) 16.3568i 0.883183i
\(344\) 0.882033i 0.0475561i
\(345\) 2.45183i 0.132002i
\(346\) 23.2870i 1.25192i
\(347\) −30.6848 −1.64725 −0.823624 0.567137i \(-0.808051\pi\)
−0.823624 + 0.567137i \(0.808051\pi\)
\(348\) 0.114456 0.00613548
\(349\) 27.8794i 1.49235i 0.665751 + 0.746174i \(0.268111\pi\)
−0.665751 + 0.746174i \(0.731889\pi\)
\(350\) 13.2592 0.708736
\(351\) −8.11213 + 3.97990i −0.432993 + 0.212432i
\(352\) −4.60137 −0.245254
\(353\) 19.4245i 1.03386i −0.856027 0.516931i \(-0.827075\pi\)
0.856027 0.516931i \(-0.172925\pi\)
\(354\) 3.68830 0.196031
\(355\) −2.47600 −0.131413
\(356\) 15.1114i 0.800904i
\(357\) 8.16558i 0.432168i
\(358\) 15.3521i 0.811384i
\(359\) 9.30740i 0.491226i −0.969368 0.245613i \(-0.921011\pi\)
0.969368 0.245613i \(-0.0789892\pi\)
\(360\) −1.79555 −0.0946336
\(361\) −1.00000 −0.0526316
\(362\) 0.346337i 0.0182030i
\(363\) 4.38466 0.230135
\(364\) −4.58465 9.34476i −0.240301 0.489798i
\(365\) 5.13763 0.268916
\(366\) 2.67852i 0.140009i
\(367\) 33.7248 1.76042 0.880211 0.474582i \(-0.157401\pi\)
0.880211 + 0.474582i \(0.157401\pi\)
\(368\) −8.91550 −0.464752
\(369\) 2.30821i 0.120161i
\(370\) 3.63457i 0.188952i
\(371\) 24.9698i 1.29637i
\(372\) 1.12845i 0.0585075i
\(373\) −34.8087 −1.80233 −0.901163 0.433481i \(-0.857285\pi\)
−0.901163 + 0.433481i \(0.857285\pi\)
\(374\) 30.1953 1.56136
\(375\) 2.63813i 0.136232i
\(376\) 1.44894 0.0747233
\(377\) −0.859550 + 0.421705i −0.0442691 + 0.0217189i
\(378\) 7.23479 0.372117
\(379\) 20.9251i 1.07485i 0.843311 + 0.537426i \(0.180603\pi\)
−0.843311 + 0.537426i \(0.819397\pi\)
\(380\) 0.638027 0.0327301
\(381\) 4.65605 0.238536
\(382\) 1.64856i 0.0843478i
\(383\) 31.2027i 1.59438i 0.603727 + 0.797191i \(0.293682\pi\)
−0.603727 + 0.797191i \(0.706318\pi\)
\(384\) 0.431028i 0.0219958i
\(385\) 8.47531i 0.431942i
\(386\) 11.2563 0.572930
\(387\) 2.48223 0.126179
\(388\) 2.31791i 0.117674i
\(389\) 2.75731 0.139801 0.0699007 0.997554i \(-0.477732\pi\)
0.0699007 + 0.997554i \(0.477732\pi\)
\(390\) −0.890190 + 0.436738i −0.0450765 + 0.0221151i
\(391\) 58.5057 2.95876
\(392\) 1.33411i 0.0673827i
\(393\) −7.57031 −0.381872
\(394\) 17.3398 0.873566
\(395\) 5.82167i 0.292920i
\(396\) 12.9492i 0.650724i
\(397\) 6.80518i 0.341542i −0.985311 0.170771i \(-0.945374\pi\)
0.985311 0.170771i \(-0.0546258\pi\)
\(398\) 12.5635i 0.629749i
\(399\) −1.24433 −0.0622943
\(400\) 4.59292 0.229646
\(401\) 15.1868i 0.758392i 0.925316 + 0.379196i \(0.123799\pi\)
−0.925316 + 0.379196i \(0.876201\pi\)
\(402\) 4.32676 0.215799
\(403\) 4.15771 + 8.47454i 0.207110 + 0.422147i
\(404\) −2.24285 −0.111586
\(405\) 4.69745i 0.233418i
\(406\) 0.766589 0.0380452
\(407\) 26.2120 1.29928
\(408\) 2.82851i 0.140032i
\(409\) 39.2965i 1.94309i 0.236863 + 0.971543i \(0.423881\pi\)
−0.236863 + 0.971543i \(0.576119\pi\)
\(410\) 0.523308i 0.0258443i
\(411\) 9.23341i 0.455451i
\(412\) 2.15291 0.106066
\(413\) 24.7030 1.21556
\(414\) 25.0901i 1.23311i
\(415\) −5.33307 −0.261790
\(416\) −1.58809 3.23697i −0.0778627 0.158705i
\(417\) 4.18977 0.205174
\(418\) 4.60137i 0.225060i
\(419\) 12.6390 0.617454 0.308727 0.951151i \(-0.400097\pi\)
0.308727 + 0.951151i \(0.400097\pi\)
\(420\) 0.793915 0.0387391
\(421\) 15.3280i 0.747043i −0.927621 0.373522i \(-0.878150\pi\)
0.927621 0.373522i \(-0.121850\pi\)
\(422\) 12.3579i 0.601572i
\(423\) 4.07763i 0.198261i
\(424\) 8.64940i 0.420052i
\(425\) −30.1399 −1.46200
\(426\) 1.67270 0.0810424
\(427\) 17.9399i 0.868171i
\(428\) −11.0137 −0.532369
\(429\) 3.14969 + 6.41993i 0.152069 + 0.309957i
\(430\) 0.562761 0.0271388
\(431\) 9.76456i 0.470343i 0.971954 + 0.235171i \(0.0755651\pi\)
−0.971954 + 0.235171i \(0.924435\pi\)
\(432\) 2.50609 0.120574
\(433\) 4.85897 0.233507 0.116754 0.993161i \(-0.462751\pi\)
0.116754 + 0.993161i \(0.462751\pi\)
\(434\) 7.55801i 0.362796i
\(435\) 0.0730260i 0.00350133i
\(436\) 13.2324i 0.633715i
\(437\) 8.91550i 0.426486i
\(438\) −3.47080 −0.165841
\(439\) −34.9555 −1.66833 −0.834167 0.551512i \(-0.814051\pi\)
−0.834167 + 0.551512i \(0.814051\pi\)
\(440\) 2.93580i 0.139959i
\(441\) 3.75447 0.178784
\(442\) 10.4215 + 21.2418i 0.495698 + 1.01037i
\(443\) −37.2490 −1.76976 −0.884878 0.465823i \(-0.845758\pi\)
−0.884878 + 0.465823i \(0.845758\pi\)
\(444\) 2.45538i 0.116527i
\(445\) 9.64150 0.457051
\(446\) 9.63105 0.456043
\(447\) 9.24701i 0.437368i
\(448\) 2.88689i 0.136393i
\(449\) 21.2015i 1.00056i 0.865863 + 0.500281i \(0.166770\pi\)
−0.865863 + 0.500281i \(0.833230\pi\)
\(450\) 12.9255i 0.609312i
\(451\) −3.77402 −0.177712
\(452\) −4.63583 −0.218051
\(453\) 2.01333i 0.0945946i
\(454\) 3.55891 0.167028
\(455\) −5.96221 + 2.92513i −0.279513 + 0.137132i
\(456\) −0.431028 −0.0201847
\(457\) 13.5355i 0.633162i −0.948565 0.316581i \(-0.897465\pi\)
0.948565 0.316581i \(-0.102535\pi\)
\(458\) −1.35007 −0.0630845
\(459\) −16.4456 −0.767613
\(460\) 5.68833i 0.265220i
\(461\) 1.67381i 0.0779570i −0.999240 0.0389785i \(-0.987590\pi\)
0.999240 0.0389785i \(-0.0124104\pi\)
\(462\) 5.72561i 0.266379i
\(463\) 32.6931i 1.51938i 0.650288 + 0.759688i \(0.274648\pi\)
−0.650288 + 0.759688i \(0.725352\pi\)
\(464\) 0.265542 0.0123275
\(465\) −0.719983 −0.0333884
\(466\) 3.00177i 0.139054i
\(467\) 1.81373 0.0839293 0.0419646 0.999119i \(-0.486638\pi\)
0.0419646 + 0.999119i \(0.486638\pi\)
\(468\) −9.10952 + 4.46924i −0.421088 + 0.206591i
\(469\) 28.9793 1.33814
\(470\) 0.924462i 0.0426423i
\(471\) −5.52342 −0.254506
\(472\) 8.55699 0.393867
\(473\) 4.05856i 0.186613i
\(474\) 3.93291i 0.180644i
\(475\) 4.59292i 0.210738i
\(476\) 18.9444i 0.868317i
\(477\) 24.3413 1.11451
\(478\) −28.7946 −1.31704
\(479\) 14.8087i 0.676627i −0.941033 0.338314i \(-0.890144\pi\)
0.941033 0.338314i \(-0.109856\pi\)
\(480\) 0.275008 0.0125523
\(481\) 9.04669 + 18.4396i 0.412493 + 0.840774i
\(482\) 6.96565 0.317277
\(483\) 11.0938i 0.504786i
\(484\) 10.1726 0.462390
\(485\) −1.47889 −0.0671531
\(486\) 10.6917i 0.484985i
\(487\) 0.510775i 0.0231454i −0.999933 0.0115727i \(-0.996316\pi\)
0.999933 0.0115727i \(-0.00368379\pi\)
\(488\) 6.21427i 0.281307i
\(489\) 0.293998i 0.0132951i
\(490\) 0.851199 0.0384532
\(491\) −5.42068 −0.244632 −0.122316 0.992491i \(-0.539032\pi\)
−0.122316 + 0.992491i \(0.539032\pi\)
\(492\) 0.353528i 0.0159383i
\(493\) −1.74255 −0.0784805
\(494\) 3.23697 1.58809i 0.145638 0.0714517i
\(495\) 8.26197 0.371348
\(496\) 2.61805i 0.117554i
\(497\) 11.2032 0.502531
\(498\) 3.60282 0.161446
\(499\) 33.5451i 1.50168i 0.660483 + 0.750841i \(0.270352\pi\)
−0.660483 + 0.750841i \(0.729648\pi\)
\(500\) 6.12055i 0.273719i
\(501\) 3.95363i 0.176635i
\(502\) 3.51444i 0.156857i
\(503\) 14.5305 0.647883 0.323941 0.946077i \(-0.394992\pi\)
0.323941 + 0.946077i \(0.394992\pi\)
\(504\) 8.12432 0.361886
\(505\) 1.43100i 0.0636788i
\(506\) 41.0235 1.82372
\(507\) −3.42922 + 4.43149i −0.152297 + 0.196809i
\(508\) 10.8022 0.479270
\(509\) 23.3050i 1.03298i −0.856294 0.516488i \(-0.827239\pi\)
0.856294 0.516488i \(-0.172761\pi\)
\(510\) −1.80467 −0.0799119
\(511\) −23.2463 −1.02835
\(512\) 1.00000i 0.0441942i
\(513\) 2.50609i 0.110647i
\(514\) 20.8301i 0.918777i
\(515\) 1.37361i 0.0605286i
\(516\) −0.380181 −0.0167365
\(517\) −6.66710 −0.293219
\(518\) 16.4453i 0.722567i
\(519\) 10.0374 0.440591
\(520\) −2.06527 + 1.01325i −0.0905682 + 0.0444338i
\(521\) −9.97738 −0.437117 −0.218559 0.975824i \(-0.570135\pi\)
−0.218559 + 0.975824i \(0.570135\pi\)
\(522\) 0.747292i 0.0327081i
\(523\) 31.7209 1.38706 0.693530 0.720428i \(-0.256055\pi\)
0.693530 + 0.720428i \(0.256055\pi\)
\(524\) −17.5634 −0.767260
\(525\) 5.71510i 0.249427i
\(526\) 9.99847i 0.435954i
\(527\) 17.1803i 0.748384i
\(528\) 1.98332i 0.0863128i
\(529\) 56.4861 2.45592
\(530\) 5.51855 0.239711
\(531\) 24.0812i 1.04504i
\(532\) −2.88689 −0.125162
\(533\) −1.30255 2.65495i −0.0564197 0.114999i
\(534\) −6.51344 −0.281864
\(535\) 7.02706i 0.303806i
\(536\) 10.0382 0.433586
\(537\) 6.61718 0.285553
\(538\) 8.68190i 0.374303i
\(539\) 6.13873i 0.264414i
\(540\) 1.59895i 0.0688080i
\(541\) 5.53445i 0.237945i −0.992898 0.118972i \(-0.962040\pi\)
0.992898 0.118972i \(-0.0379600\pi\)
\(542\) 9.21067 0.395632
\(543\) 0.149281 0.00640625
\(544\) 6.56224i 0.281354i
\(545\) −8.44261 −0.361642
\(546\) 4.02785 1.97611i 0.172376 0.0845697i
\(547\) −8.75795 −0.374463 −0.187231 0.982316i \(-0.559951\pi\)
−0.187231 + 0.982316i \(0.559951\pi\)
\(548\) 21.4219i 0.915096i
\(549\) −17.4883 −0.746382
\(550\) −21.1337 −0.901145
\(551\) 0.265542i 0.0113125i
\(552\) 3.84283i 0.163562i
\(553\) 26.3413i 1.12015i
\(554\) 14.0245i 0.595844i
\(555\) −1.56660 −0.0664985
\(556\) 9.72043 0.412238
\(557\) 9.54096i 0.404263i −0.979358 0.202132i \(-0.935213\pi\)
0.979358 0.202132i \(-0.0647869\pi\)
\(558\) −7.36775 −0.311902
\(559\) 2.85511 1.40075i 0.120758 0.0592455i
\(560\) 1.84191 0.0778350
\(561\) 13.0150i 0.549494i
\(562\) −28.3975 −1.19788
\(563\) 17.5768 0.740775 0.370387 0.928877i \(-0.379225\pi\)
0.370387 + 0.928877i \(0.379225\pi\)
\(564\) 0.624533i 0.0262976i
\(565\) 2.95778i 0.124435i
\(566\) 1.01213i 0.0425429i
\(567\) 21.2546i 0.892607i
\(568\) 3.88072 0.162831
\(569\) 13.4946 0.565725 0.282863 0.959160i \(-0.408716\pi\)
0.282863 + 0.959160i \(0.408716\pi\)
\(570\) 0.275008i 0.0115188i
\(571\) 26.9508 1.12786 0.563928 0.825824i \(-0.309290\pi\)
0.563928 + 0.825824i \(0.309290\pi\)
\(572\) 7.30740 + 14.8945i 0.305538 + 0.622769i
\(573\) 0.710576 0.0296847
\(574\) 2.36781i 0.0988306i
\(575\) −40.9482 −1.70766
\(576\) 2.81422 0.117259
\(577\) 24.6662i 1.02687i −0.858129 0.513434i \(-0.828373\pi\)
0.858129 0.513434i \(-0.171627\pi\)
\(578\) 26.0630i 1.08408i
\(579\) 4.85177i 0.201633i
\(580\) 0.169423i 0.00703490i
\(581\) 24.1306 1.00110
\(582\) 0.999086 0.0414134
\(583\) 39.7990i 1.64831i
\(584\) −8.05237 −0.333210
\(585\) 2.85150 + 5.81212i 0.117895 + 0.240302i
\(586\) 31.9167 1.31847
\(587\) 21.8785i 0.903023i −0.892265 0.451512i \(-0.850885\pi\)
0.892265 0.451512i \(-0.149115\pi\)
\(588\) −0.575038 −0.0237142
\(589\) 2.61805 0.107875
\(590\) 5.45959i 0.224768i
\(591\) 7.47393i 0.307437i
\(592\) 5.69657i 0.234128i
\(593\) 32.5713i 1.33754i 0.743469 + 0.668771i \(0.233179\pi\)
−0.743469 + 0.668771i \(0.766821\pi\)
\(594\) −11.5314 −0.473140
\(595\) −12.0871 −0.495522
\(596\) 21.4534i 0.878765i
\(597\) 5.41520 0.221629
\(598\) 14.1586 + 28.8592i 0.578990 + 1.18014i
\(599\) −28.4380 −1.16194 −0.580972 0.813924i \(-0.697327\pi\)
−0.580972 + 0.813924i \(0.697327\pi\)
\(600\) 1.97968i 0.0808200i
\(601\) −11.7155 −0.477885 −0.238943 0.971034i \(-0.576801\pi\)
−0.238943 + 0.971034i \(0.576801\pi\)
\(602\) −2.54633 −0.103781
\(603\) 28.2498i 1.15042i
\(604\) 4.67100i 0.190060i
\(605\) 6.49038i 0.263871i
\(606\) 0.966732i 0.0392708i
\(607\) 47.3729 1.92281 0.961404 0.275142i \(-0.0887250\pi\)
0.961404 + 0.275142i \(0.0887250\pi\)
\(608\) −1.00000 −0.0405554
\(609\) 0.330421i 0.0133893i
\(610\) −3.96487 −0.160533
\(611\) −2.30105 4.69017i −0.0930905 0.189744i
\(612\) −18.4676 −0.746507
\(613\) 25.2516i 1.01990i 0.860204 + 0.509951i \(0.170336\pi\)
−0.860204 + 0.509951i \(0.829664\pi\)
\(614\) −25.0291 −1.01009
\(615\) 0.225560 0.00909547
\(616\) 13.2836i 0.535212i
\(617\) 14.4484i 0.581670i 0.956773 + 0.290835i \(0.0939331\pi\)
−0.956773 + 0.290835i \(0.906067\pi\)
\(618\) 0.927962i 0.0373281i
\(619\) 2.56785i 0.103211i −0.998668 0.0516053i \(-0.983566\pi\)
0.998668 0.0516053i \(-0.0164338\pi\)
\(620\) −1.67039 −0.0670844
\(621\) −22.3430 −0.896595
\(622\) 11.8393i 0.474714i
\(623\) −43.6250 −1.74780
\(624\) 1.39522 0.684513i 0.0558536 0.0274024i
\(625\) 19.0595 0.762381
\(626\) 27.5763i 1.10217i
\(627\) 1.98332 0.0792060
\(628\) −12.8145 −0.511356
\(629\) 37.3823i 1.49053i
\(630\) 5.18354i 0.206517i
\(631\) 2.86547i 0.114073i 0.998372 + 0.0570364i \(0.0181651\pi\)
−0.998372 + 0.0570364i \(0.981835\pi\)
\(632\) 9.12448i 0.362952i
\(633\) 5.32659 0.211713
\(634\) 6.30277 0.250315
\(635\) 6.89210i 0.273504i
\(636\) −3.72813 −0.147830
\(637\) 4.31847 2.11869i 0.171104 0.0839456i
\(638\) −1.22185 −0.0483737
\(639\) 10.9212i 0.432035i
\(640\) 0.638027 0.0252202
\(641\) −43.0464 −1.70023 −0.850115 0.526597i \(-0.823468\pi\)
−0.850115 + 0.526597i \(0.823468\pi\)
\(642\) 4.74723i 0.187358i
\(643\) 24.8973i 0.981855i −0.871201 0.490927i \(-0.836658\pi\)
0.871201 0.490927i \(-0.163342\pi\)
\(644\) 25.7380i 1.01422i
\(645\) 0.242566i 0.00955102i
\(646\) 6.56224 0.258188
\(647\) 30.8434 1.21258 0.606290 0.795244i \(-0.292657\pi\)
0.606290 + 0.795244i \(0.292657\pi\)
\(648\) 7.36245i 0.289224i
\(649\) −39.3738 −1.54556
\(650\) −7.29399 14.8671i −0.286094 0.583137i
\(651\) 3.25771 0.127680
\(652\) 0.682086i 0.0267126i
\(653\) 17.9116 0.700936 0.350468 0.936575i \(-0.386023\pi\)
0.350468 + 0.936575i \(0.386023\pi\)
\(654\) 5.70352 0.223025
\(655\) 11.2059i 0.437852i
\(656\) 0.820197i 0.0320233i
\(657\) 22.6611i 0.884094i
\(658\) 4.18292i 0.163067i
\(659\) −45.0518 −1.75497 −0.877485 0.479605i \(-0.840780\pi\)
−0.877485 + 0.479605i \(0.840780\pi\)
\(660\) −1.26541 −0.0492560
\(661\) 22.1057i 0.859811i 0.902874 + 0.429905i \(0.141453\pi\)
−0.902874 + 0.429905i \(0.858547\pi\)
\(662\) 25.0818 0.974833
\(663\) −9.15579 + 4.49194i −0.355581 + 0.174452i
\(664\) 8.35868 0.324380
\(665\) 1.84191i 0.0714263i
\(666\) −16.0314 −0.621203
\(667\) −2.36744 −0.0916675
\(668\) 9.17257i 0.354897i
\(669\) 4.15125i 0.160497i
\(670\) 6.40467i 0.247434i
\(671\) 28.5941i 1.10386i
\(672\) −1.24433 −0.0480010
\(673\) −46.4541 −1.79067 −0.895337 0.445390i \(-0.853065\pi\)
−0.895337 + 0.445390i \(0.853065\pi\)
\(674\) 14.5105i 0.558922i
\(675\) 11.5103 0.443030
\(676\) −7.95592 + 10.2812i −0.305997 + 0.395431i
\(677\) −19.6630 −0.755709 −0.377855 0.925865i \(-0.623338\pi\)
−0.377855 + 0.925865i \(0.623338\pi\)
\(678\) 1.99817i 0.0767393i
\(679\) 6.69155 0.256798
\(680\) −4.18689 −0.160560
\(681\) 1.53399i 0.0587827i
\(682\) 12.0466i 0.461288i
\(683\) 1.20504i 0.0461095i 0.999734 + 0.0230547i \(0.00733920\pi\)
−0.999734 + 0.0230547i \(0.992661\pi\)
\(684\) 2.81422i 0.107604i
\(685\) −13.6677 −0.522217
\(686\) 16.3568 0.624505
\(687\) 0.581916i 0.0222015i
\(688\) −0.882033 −0.0336272
\(689\) 27.9978 13.7361i 1.06663 0.523302i
\(690\) −2.45183 −0.0933395
\(691\) 24.1867i 0.920106i 0.887891 + 0.460053i \(0.152170\pi\)
−0.887891 + 0.460053i \(0.847830\pi\)
\(692\) 23.2870 0.885240
\(693\) −37.3830 −1.42006
\(694\) 30.6848i 1.16478i
\(695\) 6.20190i 0.235251i
\(696\) 0.114456i 0.00433844i
\(697\) 5.38233i 0.203870i
\(698\) −27.8794 −1.05525
\(699\) −1.29385 −0.0489378
\(700\) 13.2592i 0.501152i
\(701\) −1.39426 −0.0526605 −0.0263303 0.999653i \(-0.508382\pi\)
−0.0263303 + 0.999653i \(0.508382\pi\)
\(702\) −3.97990 8.11213i −0.150212 0.306172i
\(703\) 5.69657 0.214850
\(704\) 4.60137i 0.173421i
\(705\) 0.398469 0.0150072
\(706\) 19.4245 0.731050
\(707\) 6.47486i 0.243512i
\(708\) 3.68830i 0.138615i
\(709\) 15.0569i 0.565474i −0.959198 0.282737i \(-0.908758\pi\)
0.959198 0.282737i \(-0.0912423\pi\)
\(710\) 2.47600i 0.0929227i
\(711\) 25.6783 0.963010
\(712\) −15.1114 −0.566325
\(713\) 23.3412i 0.874135i
\(714\) 8.16558 0.305589
\(715\) 9.50308 4.66232i 0.355395 0.174361i
\(716\) 15.3521 0.573735
\(717\) 12.4113i 0.463508i
\(718\) 9.30740 0.347349
\(719\) −47.0705 −1.75543 −0.877716 0.479181i \(-0.840934\pi\)
−0.877716 + 0.479181i \(0.840934\pi\)
\(720\) 1.79555i 0.0669161i
\(721\) 6.21519i 0.231466i
\(722\) 1.00000i 0.0372161i
\(723\) 3.00239i 0.111660i
\(724\) 0.346337 0.0128715
\(725\) 1.21961 0.0452953
\(726\) 4.38466i 0.162730i
\(727\) 1.88605 0.0699499 0.0349750 0.999388i \(-0.488865\pi\)
0.0349750 + 0.999388i \(0.488865\pi\)
\(728\) 9.34476 4.58465i 0.346340 0.169918i
\(729\) −17.4789 −0.647368
\(730\) 5.13763i 0.190152i
\(731\) 5.78812 0.214081
\(732\) 2.67852 0.0990010
\(733\) 7.17673i 0.265079i −0.991178 0.132539i \(-0.957687\pi\)
0.991178 0.132539i \(-0.0423131\pi\)
\(734\) 33.7248i 1.24481i
\(735\) 0.366890i 0.0135330i
\(736\) 8.91550i 0.328630i
\(737\) −46.1896 −1.70142
\(738\) 2.30821 0.0849664
\(739\) 32.5256i 1.19647i −0.801320 0.598237i \(-0.795868\pi\)
0.801320 0.598237i \(-0.204132\pi\)
\(740\) −3.63457 −0.133609
\(741\) 0.684513 + 1.39522i 0.0251462 + 0.0512548i
\(742\) −24.9698 −0.916671
\(743\) 43.6215i 1.60032i −0.599788 0.800159i \(-0.704748\pi\)
0.599788 0.800159i \(-0.295252\pi\)
\(744\) 1.12845 0.0413711
\(745\) 13.6878 0.501484
\(746\) 34.8087i 1.27444i
\(747\) 23.5231i 0.860666i
\(748\) 30.1953i 1.10405i
\(749\) 31.7954i 1.16178i
\(750\) 2.63813 0.0963307
\(751\) −29.7930 −1.08716 −0.543582 0.839356i \(-0.682932\pi\)
−0.543582 + 0.839356i \(0.682932\pi\)
\(752\) 1.44894i 0.0528374i
\(753\) −1.51482 −0.0552032
\(754\) −0.421705 0.859550i −0.0153576 0.0313030i
\(755\) −2.98023 −0.108462
\(756\) 7.23479i 0.263127i
\(757\) −20.8435 −0.757570 −0.378785 0.925485i \(-0.623658\pi\)
−0.378785 + 0.925485i \(0.623658\pi\)
\(758\) −20.9251 −0.760035
\(759\) 17.6823i 0.641825i
\(760\) 0.638027i 0.0231437i
\(761\) 21.5917i 0.782699i 0.920242 + 0.391349i \(0.127992\pi\)
−0.920242 + 0.391349i \(0.872008\pi\)
\(762\) 4.65605i 0.168671i
\(763\) 38.2003 1.38294
\(764\) 1.64856 0.0596429
\(765\) 11.7828i 0.426008i
\(766\) −31.2027 −1.12740
\(767\) −13.5893 27.6987i −0.490681 1.00014i
\(768\) −0.431028 −0.0155534
\(769\) 22.0124i 0.793788i −0.917864 0.396894i \(-0.870088\pi\)
0.917864 0.396894i \(-0.129912\pi\)
\(770\) −8.47531 −0.305429
\(771\) 8.97836 0.323348
\(772\) 11.2563i 0.405123i
\(773\) 21.5838i 0.776314i −0.921593 0.388157i \(-0.873112\pi\)
0.921593 0.388157i \(-0.126888\pi\)
\(774\) 2.48223i 0.0892220i
\(775\) 12.0245i 0.431933i
\(776\) 2.31791 0.0832083
\(777\) 7.08840 0.254295
\(778\) 2.75731i 0.0988545i
\(779\) −0.820197 −0.0293866
\(780\) −0.436738 0.890190i −0.0156377 0.0318739i
\(781\) −17.8566 −0.638959
\(782\) 58.5057i 2.09216i
\(783\) 0.665471 0.0237820
\(784\) −1.33411 −0.0476468
\(785\) 8.17602i 0.291815i
\(786\) 7.57031i 0.270024i
\(787\) 46.8382i 1.66960i 0.550551 + 0.834801i \(0.314417\pi\)
−0.550551 + 0.834801i \(0.685583\pi\)
\(788\) 17.3398i 0.617705i
\(789\) −4.30962 −0.153427
\(790\) 5.82167 0.207126
\(791\) 13.3831i 0.475848i
\(792\) −12.9492 −0.460131
\(793\) −20.1154 + 9.86884i −0.714318 + 0.350453i
\(794\) 6.80518 0.241507
\(795\) 2.37865i 0.0843620i
\(796\) 12.5635 0.445300
\(797\) 26.6794 0.945034 0.472517 0.881322i \(-0.343346\pi\)
0.472517 + 0.881322i \(0.343346\pi\)
\(798\) 1.24433i 0.0440487i
\(799\) 9.50829i 0.336379i
\(800\) 4.59292i 0.162384i
\(801\) 42.5268i 1.50261i
\(802\) −15.1868 −0.536264
\(803\) 37.0519 1.30753
\(804\) 4.32676i 0.152593i
\(805\) −16.4216 −0.578784
\(806\) −8.47454 + 4.15771i −0.298503 + 0.146449i
\(807\) −3.74214 −0.131730
\(808\) 2.24285i 0.0789033i
\(809\) −26.6389 −0.936574 −0.468287 0.883577i \(-0.655129\pi\)
−0.468287 + 0.883577i \(0.655129\pi\)
\(810\) −4.69745 −0.165051
\(811\) 23.8647i 0.838004i −0.907985 0.419002i \(-0.862380\pi\)
0.907985 0.419002i \(-0.137620\pi\)
\(812\) 0.766589i 0.0269020i
\(813\) 3.97006i 0.139236i
\(814\) 26.2120i 0.918730i
\(815\) −0.435190 −0.0152440
\(816\) 2.82851 0.0990176
\(817\) 0.882033i 0.0308584i
\(818\) −39.2965 −1.37397
\(819\) −12.9022 26.2982i −0.450839 0.918932i
\(820\) 0.523308 0.0182747
\(821\) 54.0858i 1.88761i −0.330505 0.943804i \(-0.607219\pi\)
0.330505 0.943804i \(-0.392781\pi\)
\(822\) 9.23341 0.322052
\(823\) 22.0038 0.767004 0.383502 0.923540i \(-0.374718\pi\)
0.383502 + 0.923540i \(0.374718\pi\)
\(824\) 2.15291i 0.0750000i
\(825\) 9.10922i 0.317142i
\(826\) 24.7030i 0.859529i
\(827\) 37.8098i 1.31477i 0.753553 + 0.657387i \(0.228338\pi\)
−0.753553 + 0.657387i \(0.771662\pi\)
\(828\) −25.0901 −0.871942
\(829\) 18.1992 0.632085 0.316042 0.948745i \(-0.397646\pi\)
0.316042 + 0.948745i \(0.397646\pi\)
\(830\) 5.33307i 0.185113i
\(831\) 6.04495 0.209697
\(832\) 3.23697 1.58809i 0.112222 0.0550572i
\(833\) 8.75475 0.303334
\(834\) 4.18977i 0.145080i
\(835\) −5.85235 −0.202529
\(836\) 4.60137 0.159142
\(837\) 6.56106i 0.226784i
\(838\) 12.6390i 0.436606i
\(839\) 16.1631i 0.558011i −0.960290 0.279005i \(-0.909995\pi\)
0.960290 0.279005i \(-0.0900048\pi\)
\(840\) 0.793915i 0.0273927i
\(841\) −28.9295 −0.997569
\(842\) 15.3280 0.528239
\(843\) 12.2401i 0.421572i
\(844\) 12.3579 0.425376
\(845\) 6.55970 + 5.07609i 0.225660 + 0.174623i
\(846\) 4.07763 0.140192
\(847\) 29.3671i 1.00906i
\(848\) −8.64940 −0.297021
\(849\) 0.436256 0.0149723
\(850\) 30.1399i 1.03379i
\(851\) 50.7878i 1.74098i
\(852\) 1.67270i 0.0573056i
\(853\) 38.6925i 1.32481i 0.749148 + 0.662403i \(0.230463\pi\)
−0.749148 + 0.662403i \(0.769537\pi\)
\(854\) 17.9399 0.613890
\(855\) 1.79555 0.0614064
\(856\) 11.0137i 0.376442i
\(857\) 32.1909 1.09962 0.549811 0.835289i \(-0.314700\pi\)
0.549811 + 0.835289i \(0.314700\pi\)
\(858\) −6.41993 + 3.14969i −0.219173 + 0.107529i
\(859\) 35.8795 1.22419 0.612096 0.790783i \(-0.290327\pi\)
0.612096 + 0.790783i \(0.290327\pi\)
\(860\) 0.562761i 0.0191900i
\(861\) −1.02059 −0.0347817
\(862\) −9.76456 −0.332582
\(863\) 19.9851i 0.680300i −0.940371 0.340150i \(-0.889522\pi\)
0.940371 0.340150i \(-0.110478\pi\)
\(864\) 2.50609i 0.0852589i
\(865\) 14.8578i 0.505179i
\(866\) 4.85897i 0.165114i
\(867\) −11.2339 −0.381523
\(868\) 7.55801 0.256536
\(869\) 41.9851i 1.42425i
\(870\) 0.0730260 0.00247581
\(871\) −15.9417 32.4935i −0.540163 1.10100i
\(872\) 13.2324 0.448104
\(873\) 6.52311i 0.220774i
\(874\) 8.91550 0.301571
\(875\) 17.6693 0.597332
\(876\) 3.47080i 0.117267i
\(877\) 36.1665i 1.22125i −0.791918 0.610627i \(-0.790917\pi\)
0.791918 0.610627i \(-0.209083\pi\)
\(878\) 34.9555i 1.17969i
\(879\) 13.7570i 0.464011i
\(880\) −2.93580 −0.0989657
\(881\) 21.5906 0.727407 0.363703 0.931515i \(-0.381512\pi\)
0.363703 + 0.931515i \(0.381512\pi\)
\(882\) 3.75447i 0.126420i
\(883\) −14.6780 −0.493955 −0.246977 0.969021i \(-0.579437\pi\)
−0.246977 + 0.969021i \(0.579437\pi\)
\(884\) −21.2418 + 10.4215i −0.714438 + 0.350511i
\(885\) 2.35324 0.0791031
\(886\) 37.2490i 1.25141i
\(887\) 1.82719 0.0613510 0.0306755 0.999529i \(-0.490234\pi\)
0.0306755 + 0.999529i \(0.490234\pi\)
\(888\) 2.45538 0.0823972
\(889\) 31.1847i 1.04590i
\(890\) 9.64150i 0.323184i
\(891\) 33.8773i 1.13493i
\(892\) 9.63105i 0.322471i
\(893\) −1.44894 −0.0484869
\(894\) −9.24701 −0.309266
\(895\) 9.79506i 0.327413i
\(896\) −2.88689 −0.0964441
\(897\) −12.4391 + 6.10277i −0.415330 + 0.203766i
\(898\) −21.2015 −0.707505
\(899\) 0.695201i 0.0231863i
\(900\) 12.9255 0.430849
\(901\) 56.7594 1.89093
\(902\) 3.77402i 0.125661i
\(903\) 1.09754i 0.0365238i
\(904\) 4.63583i 0.154185i
\(905\) 0.220972i 0.00734536i
\(906\) 2.01333 0.0668885
\(907\) 16.6533 0.552963 0.276481 0.961019i \(-0.410832\pi\)
0.276481 + 0.961019i \(0.410832\pi\)
\(908\) 3.55891i 0.118107i
\(909\) −6.31187 −0.209352
\(910\) −2.92513 5.96221i −0.0969671 0.197645i
\(911\) −8.19602 −0.271546 −0.135773 0.990740i \(-0.543352\pi\)
−0.135773 + 0.990740i \(0.543352\pi\)
\(912\) 0.431028i 0.0142728i
\(913\) −38.4613 −1.27288
\(914\) 13.5355 0.447713
\(915\) 1.70897i 0.0564968i
\(916\) 1.35007i 0.0446075i
\(917\) 50.7035i 1.67438i
\(918\) 16.4456i 0.542784i
\(919\) 29.1620 0.961965 0.480983 0.876730i \(-0.340280\pi\)
0.480983 + 0.876730i \(0.340280\pi\)
\(920\) −5.68833 −0.187539
\(921\) 10.7883i 0.355485i
\(922\) 1.67381 0.0551239
\(923\) −6.16294 12.5617i −0.202856 0.413475i
\(924\) 5.72561 0.188359
\(925\) 26.1639i 0.860264i
\(926\) −32.6931 −1.07436
\(927\) 6.05874 0.198995
\(928\) 0.265542i 0.00871684i
\(929\) 31.6120i 1.03716i −0.855030 0.518578i \(-0.826462\pi\)
0.855030 0.518578i \(-0.173538\pi\)
\(930\) 0.719983i 0.0236092i
\(931\) 1.33411i 0.0437237i
\(932\) −3.00177 −0.0983262
\(933\) −5.10309 −0.167068
\(934\) 1.81373i 0.0593470i
\(935\) 19.2654 0.630046
\(936\) −4.46924 9.10952i −0.146082 0.297754i
\(937\) 12.9749 0.423872 0.211936 0.977284i \(-0.432023\pi\)
0.211936 + 0.977284i \(0.432023\pi\)
\(938\) 28.9793i 0.946206i
\(939\) 11.8861 0.387890
\(940\) 0.924462 0.0301526
\(941\) 10.8460i 0.353569i 0.984250 + 0.176785i \(0.0565696\pi\)
−0.984250 + 0.176785i \(0.943430\pi\)
\(942\) 5.52342i 0.179963i
\(943\) 7.31246i 0.238127i
\(944\) 8.55699i 0.278506i
\(945\) 4.61599 0.150158
\(946\) 4.05856 0.131955
\(947\) 57.7947i 1.87807i 0.343816 + 0.939037i \(0.388280\pi\)
−0.343816 + 0.939037i \(0.611720\pi\)
\(948\) −3.93291 −0.127735
\(949\) 12.7879 + 26.0653i 0.415114 + 0.846114i
\(950\) −4.59292 −0.149014
\(951\) 2.71667i 0.0880940i
\(952\) 18.9444 0.613993
\(953\) −3.47179 −0.112462 −0.0562312 0.998418i \(-0.517908\pi\)
−0.0562312 + 0.998418i \(0.517908\pi\)
\(954\) 24.3413i 0.788077i
\(955\) 1.05183i 0.0340363i
\(956\) 28.7946i 0.931285i
\(957\) 0.526653i 0.0170243i
\(958\) 14.8087 0.478448
\(959\) 61.8424 1.99700
\(960\) 0.275008i 0.00887583i
\(961\) 24.1458 0.778897
\(962\) −18.4396 + 9.04669i −0.594517 + 0.291677i
\(963\) −30.9950 −0.998801
\(964\) 6.96565i 0.224348i
\(965\) 7.18182 0.231191
\(966\) 11.0938 0.356937
\(967\) 30.3475i 0.975910i −0.872869 0.487955i \(-0.837743\pi\)
0.872869 0.487955i \(-0.162257\pi\)
\(968\) 10.1726i 0.326959i
\(969\) 2.82851i 0.0908648i
\(970\) 1.47889i 0.0474844i
\(971\) −11.1055 −0.356392 −0.178196 0.983995i \(-0.557026\pi\)
−0.178196 + 0.983995i \(0.557026\pi\)
\(972\) 10.6917 0.342936
\(973\) 28.0618i 0.899619i
\(974\) 0.510775 0.0163663
\(975\) 6.40815 3.14391i 0.205225 0.100686i
\(976\) 6.21427 0.198914
\(977\) 46.1906i 1.47777i 0.673833 + 0.738884i \(0.264647\pi\)
−0.673833 + 0.738884i \(0.735353\pi\)
\(978\) 0.293998 0.00940103
\(979\) 69.5332 2.22229
\(980\) 0.851199i 0.0271905i
\(981\) 37.2387i 1.18894i
\(982\) 5.42068i 0.172981i
\(983\) 26.9821i 0.860595i −0.902687 0.430298i \(-0.858409\pi\)
0.902687 0.430298i \(-0.141591\pi\)
\(984\) −0.353528 −0.0112700
\(985\) 11.0633 0.352505
\(986\) 1.74255i 0.0554941i
\(987\) −1.80296 −0.0573887
\(988\) 1.58809 + 3.23697i 0.0505240 + 0.102982i
\(989\) 7.86377 0.250053
\(990\) 8.26197i 0.262582i
\(991\) 4.48629 0.142512 0.0712558 0.997458i \(-0.477299\pi\)
0.0712558 + 0.997458i \(0.477299\pi\)
\(992\) 2.61805 0.0831232
\(993\) 10.8110i 0.343076i
\(994\) 11.2032i 0.355343i
\(995\) 8.01583i 0.254119i
\(996\) 3.60282i 0.114160i
\(997\) 49.3812 1.56392 0.781960 0.623329i \(-0.214220\pi\)
0.781960 + 0.623329i \(0.214220\pi\)
\(998\) −33.5451 −1.06185
\(999\) 14.2761i 0.451676i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 494.2.d.c.77.10 yes 14
13.5 odd 4 6422.2.a.bf.1.3 7
13.8 odd 4 6422.2.a.be.1.3 7
13.12 even 2 inner 494.2.d.c.77.3 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
494.2.d.c.77.3 14 13.12 even 2 inner
494.2.d.c.77.10 yes 14 1.1 even 1 trivial
6422.2.a.be.1.3 7 13.8 odd 4
6422.2.a.bf.1.3 7 13.5 odd 4