Properties

Label 494.2.d.c.77.1
Level $494$
Weight $2$
Character 494.77
Analytic conductor $3.945$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [494,2,Mod(77,494)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("494.77"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(494, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 494 = 2 \cdot 13 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 494.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.94460985985\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 36x^{12} + 492x^{10} + 3171x^{8} + 9678x^{6} + 11765x^{4} + 1893x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 77.1
Root \(3.29705i\) of defining polynomial
Character \(\chi\) \(=\) 494.77
Dual form 494.2.d.c.77.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -3.29705 q^{3} -1.00000 q^{4} +3.53833i q^{5} +3.29705i q^{6} -0.150781i q^{7} +1.00000i q^{8} +7.87054 q^{9} +3.53833 q^{10} -2.38888i q^{11} +3.29705 q^{12} +(-3.19751 + 1.66611i) q^{13} -0.150781 q^{14} -11.6661i q^{15} +1.00000 q^{16} -4.64914 q^{17} -7.87054i q^{18} -1.00000i q^{19} -3.53833i q^{20} +0.497134i q^{21} -2.38888 q^{22} +5.53743 q^{23} -3.29705i q^{24} -7.51979 q^{25} +(1.66611 + 3.19751i) q^{26} -16.0584 q^{27} +0.150781i q^{28} -4.48871 q^{29} -11.6661 q^{30} -5.48738i q^{31} -1.00000i q^{32} +7.87626i q^{33} +4.64914i q^{34} +0.533514 q^{35} -7.87054 q^{36} -10.9060i q^{37} -1.00000 q^{38} +(10.5424 - 5.49323i) q^{39} -3.53833 q^{40} +1.62883i q^{41} +0.497134 q^{42} -10.5431 q^{43} +2.38888i q^{44} +27.8486i q^{45} -5.53743i q^{46} -7.02837i q^{47} -3.29705 q^{48} +6.97726 q^{49} +7.51979i q^{50} +15.3284 q^{51} +(3.19751 - 1.66611i) q^{52} +2.39084 q^{53} +16.0584i q^{54} +8.45265 q^{55} +0.150781 q^{56} +3.29705i q^{57} +4.48871i q^{58} -2.86108i q^{59} +11.6661i q^{60} -4.18186 q^{61} -5.48738 q^{62} -1.18673i q^{63} -1.00000 q^{64} +(-5.89523 - 11.3139i) q^{65} +7.87626 q^{66} -9.26189i q^{67} +4.64914 q^{68} -18.2572 q^{69} -0.533514i q^{70} -3.13752i q^{71} +7.87054i q^{72} -2.07937i q^{73} -10.9060 q^{74} +24.7931 q^{75} +1.00000i q^{76} -0.360199 q^{77} +(-5.49323 - 10.5424i) q^{78} -5.29827 q^{79} +3.53833i q^{80} +29.3338 q^{81} +1.62883 q^{82} +12.0013i q^{83} -0.497134i q^{84} -16.4502i q^{85} +10.5431i q^{86} +14.7995 q^{87} +2.38888 q^{88} -18.8413i q^{89} +27.8486 q^{90} +(0.251218 + 0.482125i) q^{91} -5.53743 q^{92} +18.0922i q^{93} -7.02837 q^{94} +3.53833 q^{95} +3.29705i q^{96} +12.5681i q^{97} -6.97726i q^{98} -18.8018i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 4 q^{3} - 14 q^{4} + 30 q^{9} - 4 q^{10} - 4 q^{12} - 2 q^{13} + 2 q^{14} + 14 q^{16} - 32 q^{17} + 10 q^{22} - 6 q^{23} - 14 q^{25} + 10 q^{26} + 10 q^{27} - 14 q^{29} - 26 q^{30} + 2 q^{35} - 30 q^{36}+ \cdots - 4 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/494\mathbb{Z}\right)^\times\).

\(n\) \(287\) \(457\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) −3.29705 −1.90355 −0.951776 0.306792i \(-0.900744\pi\)
−0.951776 + 0.306792i \(0.900744\pi\)
\(4\) −1.00000 −0.500000
\(5\) 3.53833i 1.58239i 0.611564 + 0.791195i \(0.290541\pi\)
−0.611564 + 0.791195i \(0.709459\pi\)
\(6\) 3.29705i 1.34602i
\(7\) 0.150781i 0.0569900i −0.999594 0.0284950i \(-0.990929\pi\)
0.999594 0.0284950i \(-0.00907147\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 7.87054 2.62351
\(10\) 3.53833 1.11892
\(11\) 2.38888i 0.720274i −0.932899 0.360137i \(-0.882730\pi\)
0.932899 0.360137i \(-0.117270\pi\)
\(12\) 3.29705 0.951776
\(13\) −3.19751 + 1.66611i −0.886831 + 0.462095i
\(14\) −0.150781 −0.0402980
\(15\) 11.6661i 3.01216i
\(16\) 1.00000 0.250000
\(17\) −4.64914 −1.12758 −0.563790 0.825918i \(-0.690657\pi\)
−0.563790 + 0.825918i \(0.690657\pi\)
\(18\) 7.87054i 1.85510i
\(19\) 1.00000i 0.229416i
\(20\) 3.53833i 0.791195i
\(21\) 0.497134i 0.108483i
\(22\) −2.38888 −0.509311
\(23\) 5.53743 1.15463 0.577317 0.816520i \(-0.304100\pi\)
0.577317 + 0.816520i \(0.304100\pi\)
\(24\) 3.29705i 0.673008i
\(25\) −7.51979 −1.50396
\(26\) 1.66611 + 3.19751i 0.326750 + 0.627084i
\(27\) −16.0584 −3.09044
\(28\) 0.150781i 0.0284950i
\(29\) −4.48871 −0.833532 −0.416766 0.909014i \(-0.636837\pi\)
−0.416766 + 0.909014i \(0.636837\pi\)
\(30\) −11.6661 −2.12992
\(31\) 5.48738i 0.985562i −0.870153 0.492781i \(-0.835980\pi\)
0.870153 0.492781i \(-0.164020\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 7.87626i 1.37108i
\(34\) 4.64914i 0.797320i
\(35\) 0.533514 0.0901804
\(36\) −7.87054 −1.31176
\(37\) 10.9060i 1.79294i −0.443108 0.896468i \(-0.646124\pi\)
0.443108 0.896468i \(-0.353876\pi\)
\(38\) −1.00000 −0.162221
\(39\) 10.5424 5.49323i 1.68813 0.879621i
\(40\) −3.53833 −0.559459
\(41\) 1.62883i 0.254381i 0.991878 + 0.127190i \(0.0405959\pi\)
−0.991878 + 0.127190i \(0.959404\pi\)
\(42\) 0.497134 0.0767094
\(43\) −10.5431 −1.60781 −0.803907 0.594754i \(-0.797249\pi\)
−0.803907 + 0.594754i \(0.797249\pi\)
\(44\) 2.38888i 0.360137i
\(45\) 27.8486i 4.15142i
\(46\) 5.53743i 0.816450i
\(47\) 7.02837i 1.02519i −0.858630 0.512597i \(-0.828684\pi\)
0.858630 0.512597i \(-0.171316\pi\)
\(48\) −3.29705 −0.475888
\(49\) 6.97726 0.996752
\(50\) 7.51979i 1.06346i
\(51\) 15.3284 2.14641
\(52\) 3.19751 1.66611i 0.443415 0.231047i
\(53\) 2.39084 0.328407 0.164204 0.986426i \(-0.447495\pi\)
0.164204 + 0.986426i \(0.447495\pi\)
\(54\) 16.0584i 2.18527i
\(55\) 8.45265 1.13975
\(56\) 0.150781 0.0201490
\(57\) 3.29705i 0.436705i
\(58\) 4.48871i 0.589396i
\(59\) 2.86108i 0.372481i −0.982504 0.186241i \(-0.940370\pi\)
0.982504 0.186241i \(-0.0596304\pi\)
\(60\) 11.6661i 1.50608i
\(61\) −4.18186 −0.535432 −0.267716 0.963498i \(-0.586269\pi\)
−0.267716 + 0.963498i \(0.586269\pi\)
\(62\) −5.48738 −0.696898
\(63\) 1.18673i 0.149514i
\(64\) −1.00000 −0.125000
\(65\) −5.89523 11.3139i −0.731214 1.40331i
\(66\) 7.87626 0.969500
\(67\) 9.26189i 1.13152i −0.824570 0.565760i \(-0.808583\pi\)
0.824570 0.565760i \(-0.191417\pi\)
\(68\) 4.64914 0.563790
\(69\) −18.2572 −2.19791
\(70\) 0.533514i 0.0637672i
\(71\) 3.13752i 0.372355i −0.982516 0.186178i \(-0.940390\pi\)
0.982516 0.186178i \(-0.0596100\pi\)
\(72\) 7.87054i 0.927552i
\(73\) 2.07937i 0.243372i −0.992569 0.121686i \(-0.961170\pi\)
0.992569 0.121686i \(-0.0388301\pi\)
\(74\) −10.9060 −1.26780
\(75\) 24.7931 2.86286
\(76\) 1.00000i 0.114708i
\(77\) −0.360199 −0.0410484
\(78\) −5.49323 10.5424i −0.621986 1.19369i
\(79\) −5.29827 −0.596102 −0.298051 0.954550i \(-0.596337\pi\)
−0.298051 + 0.954550i \(0.596337\pi\)
\(80\) 3.53833i 0.395597i
\(81\) 29.3338 3.25931
\(82\) 1.62883 0.179874
\(83\) 12.0013i 1.31732i 0.752442 + 0.658658i \(0.228876\pi\)
−0.752442 + 0.658658i \(0.771124\pi\)
\(84\) 0.497134i 0.0542417i
\(85\) 16.4502i 1.78427i
\(86\) 10.5431i 1.13690i
\(87\) 14.7995 1.58667
\(88\) 2.38888 0.254655
\(89\) 18.8413i 1.99718i −0.0531164 0.998588i \(-0.516915\pi\)
0.0531164 0.998588i \(-0.483085\pi\)
\(90\) 27.8486 2.93550
\(91\) 0.251218 + 0.482125i 0.0263348 + 0.0505405i
\(92\) −5.53743 −0.577317
\(93\) 18.0922i 1.87607i
\(94\) −7.02837 −0.724921
\(95\) 3.53833 0.363025
\(96\) 3.29705i 0.336504i
\(97\) 12.5681i 1.27610i 0.769997 + 0.638048i \(0.220258\pi\)
−0.769997 + 0.638048i \(0.779742\pi\)
\(98\) 6.97726i 0.704810i
\(99\) 18.8018i 1.88965i
\(100\) 7.51979 0.751979
\(101\) 8.78739 0.874378 0.437189 0.899370i \(-0.355974\pi\)
0.437189 + 0.899370i \(0.355974\pi\)
\(102\) 15.3284i 1.51774i
\(103\) −12.1560 −1.19776 −0.598882 0.800837i \(-0.704388\pi\)
−0.598882 + 0.800837i \(0.704388\pi\)
\(104\) −1.66611 3.19751i −0.163375 0.313542i
\(105\) −1.75902 −0.171663
\(106\) 2.39084i 0.232219i
\(107\) 3.42816 0.331413 0.165706 0.986175i \(-0.447010\pi\)
0.165706 + 0.986175i \(0.447010\pi\)
\(108\) 16.0584 1.54522
\(109\) 4.98056i 0.477051i 0.971136 + 0.238525i \(0.0766640\pi\)
−0.971136 + 0.238525i \(0.923336\pi\)
\(110\) 8.45265i 0.805928i
\(111\) 35.9577i 3.41295i
\(112\) 0.150781i 0.0142475i
\(113\) 4.29254 0.403808 0.201904 0.979405i \(-0.435287\pi\)
0.201904 + 0.979405i \(0.435287\pi\)
\(114\) 3.29705 0.308797
\(115\) 19.5933i 1.82708i
\(116\) 4.48871 0.416766
\(117\) −25.1662 + 13.1132i −2.32661 + 1.21231i
\(118\) −2.86108 −0.263384
\(119\) 0.701003i 0.0642608i
\(120\) 11.6661 1.06496
\(121\) 5.29325 0.481205
\(122\) 4.18186i 0.378608i
\(123\) 5.37034i 0.484227i
\(124\) 5.48738i 0.492781i
\(125\) 8.91584i 0.797457i
\(126\) −1.18673 −0.105722
\(127\) −18.5562 −1.64659 −0.823296 0.567612i \(-0.807867\pi\)
−0.823296 + 0.567612i \(0.807867\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 34.7613 3.06056
\(130\) −11.3139 + 5.89523i −0.992291 + 0.517046i
\(131\) 6.91047 0.603770 0.301885 0.953344i \(-0.402384\pi\)
0.301885 + 0.953344i \(0.402384\pi\)
\(132\) 7.87626i 0.685540i
\(133\) −0.150781 −0.0130744
\(134\) −9.26189 −0.800105
\(135\) 56.8200i 4.89029i
\(136\) 4.64914i 0.398660i
\(137\) 6.09803i 0.520990i 0.965475 + 0.260495i \(0.0838857\pi\)
−0.965475 + 0.260495i \(0.916114\pi\)
\(138\) 18.2572i 1.55416i
\(139\) −11.5019 −0.975579 −0.487789 0.872961i \(-0.662197\pi\)
−0.487789 + 0.872961i \(0.662197\pi\)
\(140\) −0.533514 −0.0450902
\(141\) 23.1729i 1.95151i
\(142\) −3.13752 −0.263295
\(143\) 3.98013 + 7.63848i 0.332835 + 0.638761i
\(144\) 7.87054 0.655879
\(145\) 15.8825i 1.31897i
\(146\) −2.07937 −0.172090
\(147\) −23.0044 −1.89737
\(148\) 10.9060i 0.896468i
\(149\) 2.14754i 0.175934i −0.996123 0.0879668i \(-0.971963\pi\)
0.996123 0.0879668i \(-0.0280369\pi\)
\(150\) 24.7931i 2.02435i
\(151\) 11.1518i 0.907524i 0.891123 + 0.453762i \(0.149918\pi\)
−0.891123 + 0.453762i \(0.850082\pi\)
\(152\) 1.00000 0.0811107
\(153\) −36.5912 −2.95822
\(154\) 0.360199i 0.0290256i
\(155\) 19.4162 1.55954
\(156\) −10.5424 + 5.49323i −0.844065 + 0.439811i
\(157\) −13.4492 −1.07336 −0.536680 0.843786i \(-0.680322\pi\)
−0.536680 + 0.843786i \(0.680322\pi\)
\(158\) 5.29827i 0.421508i
\(159\) −7.88273 −0.625141
\(160\) 3.53833 0.279730
\(161\) 0.834942i 0.0658026i
\(162\) 29.3338i 2.30468i
\(163\) 0.853731i 0.0668694i −0.999441 0.0334347i \(-0.989355\pi\)
0.999441 0.0334347i \(-0.0106446\pi\)
\(164\) 1.62883i 0.127190i
\(165\) −27.8688 −2.16958
\(166\) 12.0013 0.931483
\(167\) 6.29325i 0.486986i 0.969903 + 0.243493i \(0.0782934\pi\)
−0.969903 + 0.243493i \(0.921707\pi\)
\(168\) −0.497134 −0.0383547
\(169\) 7.44819 10.6548i 0.572937 0.819599i
\(170\) −16.4502 −1.26167
\(171\) 7.87054i 0.601875i
\(172\) 10.5431 0.803907
\(173\) 8.41116 0.639488 0.319744 0.947504i \(-0.396403\pi\)
0.319744 + 0.947504i \(0.396403\pi\)
\(174\) 14.7995i 1.12195i
\(175\) 1.13384i 0.0857105i
\(176\) 2.38888i 0.180069i
\(177\) 9.43313i 0.709038i
\(178\) −18.8413 −1.41222
\(179\) −10.2337 −0.764902 −0.382451 0.923976i \(-0.624920\pi\)
−0.382451 + 0.923976i \(0.624920\pi\)
\(180\) 27.8486i 2.07571i
\(181\) −14.0040 −1.04091 −0.520454 0.853890i \(-0.674237\pi\)
−0.520454 + 0.853890i \(0.674237\pi\)
\(182\) 0.482125 0.251218i 0.0357375 0.0186215i
\(183\) 13.7878 1.01922
\(184\) 5.53743i 0.408225i
\(185\) 38.5891 2.83712
\(186\) 18.0922 1.32658
\(187\) 11.1062i 0.812168i
\(188\) 7.02837i 0.512597i
\(189\) 2.42131i 0.176124i
\(190\) 3.53833i 0.256698i
\(191\) 5.05349 0.365658 0.182829 0.983145i \(-0.441475\pi\)
0.182829 + 0.983145i \(0.441475\pi\)
\(192\) 3.29705 0.237944
\(193\) 12.1526i 0.874764i 0.899276 + 0.437382i \(0.144094\pi\)
−0.899276 + 0.437382i \(0.855906\pi\)
\(194\) 12.5681 0.902336
\(195\) 19.4369 + 37.3024i 1.39190 + 2.67128i
\(196\) −6.97726 −0.498376
\(197\) 8.00854i 0.570585i −0.958440 0.285293i \(-0.907909\pi\)
0.958440 0.285293i \(-0.0920908\pi\)
\(198\) −18.8018 −1.33618
\(199\) −17.3501 −1.22991 −0.614957 0.788561i \(-0.710827\pi\)
−0.614957 + 0.788561i \(0.710827\pi\)
\(200\) 7.51979i 0.531729i
\(201\) 30.5369i 2.15391i
\(202\) 8.78739i 0.618279i
\(203\) 0.676814i 0.0475030i
\(204\) −15.3284 −1.07321
\(205\) −5.76334 −0.402529
\(206\) 12.1560i 0.846948i
\(207\) 43.5826 3.02920
\(208\) −3.19751 + 1.66611i −0.221708 + 0.115524i
\(209\) −2.38888 −0.165242
\(210\) 1.75902i 0.121384i
\(211\) −7.54866 −0.519671 −0.259836 0.965653i \(-0.583668\pi\)
−0.259836 + 0.965653i \(0.583668\pi\)
\(212\) −2.39084 −0.164204
\(213\) 10.3446i 0.708798i
\(214\) 3.42816i 0.234344i
\(215\) 37.3051i 2.54419i
\(216\) 16.0584i 1.09264i
\(217\) −0.827394 −0.0561672
\(218\) 4.98056 0.337326
\(219\) 6.85579i 0.463272i
\(220\) −8.45265 −0.569877
\(221\) 14.8657 7.74595i 0.999973 0.521049i
\(222\) 35.9577 2.41332
\(223\) 28.7643i 1.92620i −0.269146 0.963099i \(-0.586741\pi\)
0.269146 0.963099i \(-0.413259\pi\)
\(224\) −0.150781 −0.0100745
\(225\) −59.1848 −3.94565
\(226\) 4.29254i 0.285535i
\(227\) 1.92833i 0.127988i 0.997950 + 0.0639939i \(0.0203838\pi\)
−0.997950 + 0.0639939i \(0.979616\pi\)
\(228\) 3.29705i 0.218353i
\(229\) 17.3072i 1.14369i 0.820361 + 0.571845i \(0.193772\pi\)
−0.820361 + 0.571845i \(0.806228\pi\)
\(230\) 19.5933 1.29194
\(231\) 1.18759 0.0781379
\(232\) 4.48871i 0.294698i
\(233\) −23.2739 −1.52472 −0.762362 0.647150i \(-0.775961\pi\)
−0.762362 + 0.647150i \(0.775961\pi\)
\(234\) 13.1132 + 25.1662i 0.857234 + 1.64516i
\(235\) 24.8687 1.62226
\(236\) 2.86108i 0.186241i
\(237\) 17.4687 1.13471
\(238\) 0.701003 0.0454393
\(239\) 14.6296i 0.946313i −0.880978 0.473156i \(-0.843115\pi\)
0.880978 0.473156i \(-0.156885\pi\)
\(240\) 11.6661i 0.753041i
\(241\) 14.5700i 0.938534i 0.883056 + 0.469267i \(0.155482\pi\)
−0.883056 + 0.469267i \(0.844518\pi\)
\(242\) 5.29325i 0.340263i
\(243\) −48.5398 −3.11383
\(244\) 4.18186 0.267716
\(245\) 24.6879i 1.57725i
\(246\) −5.37034 −0.342400
\(247\) 1.66611 + 3.19751i 0.106012 + 0.203453i
\(248\) 5.48738 0.348449
\(249\) 39.5690i 2.50758i
\(250\) −8.91584 −0.563887
\(251\) 22.4809 1.41898 0.709491 0.704715i \(-0.248925\pi\)
0.709491 + 0.704715i \(0.248925\pi\)
\(252\) 1.18673i 0.0747570i
\(253\) 13.2283i 0.831654i
\(254\) 18.5562i 1.16432i
\(255\) 54.2371i 3.39646i
\(256\) 1.00000 0.0625000
\(257\) −6.16163 −0.384352 −0.192176 0.981360i \(-0.561554\pi\)
−0.192176 + 0.981360i \(0.561554\pi\)
\(258\) 34.7613i 2.16414i
\(259\) −1.64442 −0.102179
\(260\) 5.89523 + 11.3139i 0.365607 + 0.701656i
\(261\) −35.3286 −2.18678
\(262\) 6.91047i 0.426930i
\(263\) −11.3849 −0.702021 −0.351011 0.936372i \(-0.614162\pi\)
−0.351011 + 0.936372i \(0.614162\pi\)
\(264\) −7.87626 −0.484750
\(265\) 8.45959i 0.519668i
\(266\) 0.150781i 0.00924500i
\(267\) 62.1208i 3.80173i
\(268\) 9.26189i 0.565760i
\(269\) 1.99978 0.121929 0.0609644 0.998140i \(-0.480582\pi\)
0.0609644 + 0.998140i \(0.480582\pi\)
\(270\) −56.8200 −3.45796
\(271\) 23.7845i 1.44480i −0.691474 0.722401i \(-0.743038\pi\)
0.691474 0.722401i \(-0.256962\pi\)
\(272\) −4.64914 −0.281895
\(273\) −0.828277 1.58959i −0.0501296 0.0962065i
\(274\) 6.09803 0.368395
\(275\) 17.9639i 1.08326i
\(276\) 18.2572 1.09895
\(277\) −1.25069 −0.0751465 −0.0375733 0.999294i \(-0.511963\pi\)
−0.0375733 + 0.999294i \(0.511963\pi\)
\(278\) 11.5019i 0.689839i
\(279\) 43.1886i 2.58564i
\(280\) 0.533514i 0.0318836i
\(281\) 27.4423i 1.63707i −0.574455 0.818536i \(-0.694786\pi\)
0.574455 0.818536i \(-0.305214\pi\)
\(282\) 23.1729 1.37993
\(283\) −20.5950 −1.22424 −0.612122 0.790764i \(-0.709684\pi\)
−0.612122 + 0.790764i \(0.709684\pi\)
\(284\) 3.13752i 0.186178i
\(285\) −11.6661 −0.691038
\(286\) 7.63848 3.98013i 0.451673 0.235350i
\(287\) 0.245597 0.0144971
\(288\) 7.87054i 0.463776i
\(289\) 4.61446 0.271439
\(290\) −15.8825 −0.932655
\(291\) 41.4376i 2.42911i
\(292\) 2.07937i 0.121686i
\(293\) 9.00761i 0.526230i −0.964764 0.263115i \(-0.915250\pi\)
0.964764 0.263115i \(-0.0847499\pi\)
\(294\) 23.0044i 1.34164i
\(295\) 10.1235 0.589410
\(296\) 10.9060 0.633899
\(297\) 38.3616i 2.22597i
\(298\) −2.14754 −0.124404
\(299\) −17.7060 + 9.22595i −1.02397 + 0.533550i
\(300\) −24.7931 −1.43143
\(301\) 1.58971i 0.0916294i
\(302\) 11.1518 0.641716
\(303\) −28.9725 −1.66443
\(304\) 1.00000i 0.0573539i
\(305\) 14.7968i 0.847263i
\(306\) 36.5912i 2.09178i
\(307\) 5.40794i 0.308647i 0.988020 + 0.154324i \(0.0493198\pi\)
−0.988020 + 0.154324i \(0.950680\pi\)
\(308\) 0.360199 0.0205242
\(309\) 40.0789 2.28001
\(310\) 19.4162i 1.10276i
\(311\) −9.55248 −0.541672 −0.270836 0.962626i \(-0.587300\pi\)
−0.270836 + 0.962626i \(0.587300\pi\)
\(312\) 5.49323 + 10.5424i 0.310993 + 0.596844i
\(313\) 15.7527 0.890397 0.445198 0.895432i \(-0.353133\pi\)
0.445198 + 0.895432i \(0.353133\pi\)
\(314\) 13.4492i 0.758980i
\(315\) 4.19905 0.236590
\(316\) 5.29827 0.298051
\(317\) 3.14485i 0.176632i 0.996092 + 0.0883161i \(0.0281486\pi\)
−0.996092 + 0.0883161i \(0.971851\pi\)
\(318\) 7.88273i 0.442041i
\(319\) 10.7230i 0.600372i
\(320\) 3.53833i 0.197799i
\(321\) −11.3028 −0.630862
\(322\) −0.834942 −0.0465295
\(323\) 4.64914i 0.258685i
\(324\) −29.3338 −1.62966
\(325\) 24.0446 12.5288i 1.33376 0.694970i
\(326\) −0.853731 −0.0472838
\(327\) 16.4211i 0.908092i
\(328\) −1.62883 −0.0899371
\(329\) −1.05975 −0.0584258
\(330\) 27.8688i 1.53413i
\(331\) 0.269421i 0.0148087i 0.999973 + 0.00740436i \(0.00235690\pi\)
−0.999973 + 0.00740436i \(0.997643\pi\)
\(332\) 12.0013i 0.658658i
\(333\) 85.8362i 4.70379i
\(334\) 6.29325 0.344351
\(335\) 32.7716 1.79051
\(336\) 0.497134i 0.0271209i
\(337\) −2.80206 −0.152638 −0.0763191 0.997083i \(-0.524317\pi\)
−0.0763191 + 0.997083i \(0.524317\pi\)
\(338\) −10.6548 7.44819i −0.579544 0.405128i
\(339\) −14.1527 −0.768670
\(340\) 16.4502i 0.892136i
\(341\) −13.1087 −0.709875
\(342\) −7.87054 −0.425590
\(343\) 2.10751i 0.113795i
\(344\) 10.5431i 0.568448i
\(345\) 64.6000i 3.47795i
\(346\) 8.41116i 0.452187i
\(347\) 26.5610 1.42587 0.712935 0.701231i \(-0.247366\pi\)
0.712935 + 0.701231i \(0.247366\pi\)
\(348\) −14.7995 −0.793336
\(349\) 12.9895i 0.695311i −0.937622 0.347656i \(-0.886978\pi\)
0.937622 0.347656i \(-0.113022\pi\)
\(350\) 1.13384 0.0606065
\(351\) 51.3470 26.7550i 2.74070 1.42808i
\(352\) −2.38888 −0.127328
\(353\) 12.7132i 0.676656i 0.941028 + 0.338328i \(0.109861\pi\)
−0.941028 + 0.338328i \(0.890139\pi\)
\(354\) 9.43313 0.501365
\(355\) 11.1016 0.589211
\(356\) 18.8413i 0.998588i
\(357\) 2.31124i 0.122324i
\(358\) 10.2337i 0.540868i
\(359\) 1.98013i 0.104507i −0.998634 0.0522535i \(-0.983360\pi\)
0.998634 0.0522535i \(-0.0166404\pi\)
\(360\) −27.8486 −1.46775
\(361\) −1.00000 −0.0526316
\(362\) 14.0040i 0.736033i
\(363\) −17.4521 −0.915999
\(364\) −0.251218 0.482125i −0.0131674 0.0252702i
\(365\) 7.35751 0.385109
\(366\) 13.7878i 0.720700i
\(367\) −30.9704 −1.61664 −0.808321 0.588742i \(-0.799623\pi\)
−0.808321 + 0.588742i \(0.799623\pi\)
\(368\) 5.53743 0.288659
\(369\) 12.8198i 0.667371i
\(370\) 38.5891i 2.00615i
\(371\) 0.360494i 0.0187159i
\(372\) 18.0922i 0.938035i
\(373\) 18.5731 0.961681 0.480840 0.876808i \(-0.340332\pi\)
0.480840 + 0.876808i \(0.340332\pi\)
\(374\) 11.1062 0.574289
\(375\) 29.3960i 1.51800i
\(376\) 7.02837 0.362460
\(377\) 14.3527 7.47866i 0.739202 0.385171i
\(378\) 2.42131 0.124539
\(379\) 19.3298i 0.992903i −0.868064 0.496451i \(-0.834636\pi\)
0.868064 0.496451i \(-0.165364\pi\)
\(380\) −3.53833 −0.181513
\(381\) 61.1806 3.13438
\(382\) 5.05349i 0.258559i
\(383\) 18.9244i 0.966991i 0.875347 + 0.483496i \(0.160633\pi\)
−0.875347 + 0.483496i \(0.839367\pi\)
\(384\) 3.29705i 0.168252i
\(385\) 1.27450i 0.0649546i
\(386\) 12.1526 0.618552
\(387\) −82.9803 −4.21813
\(388\) 12.5681i 0.638048i
\(389\) −30.1046 −1.52636 −0.763181 0.646185i \(-0.776363\pi\)
−0.763181 + 0.646185i \(0.776363\pi\)
\(390\) 37.3024 19.4369i 1.88888 0.984225i
\(391\) −25.7443 −1.30194
\(392\) 6.97726i 0.352405i
\(393\) −22.7842 −1.14931
\(394\) −8.00854 −0.403465
\(395\) 18.7470i 0.943266i
\(396\) 18.8018i 0.944825i
\(397\) 19.7312i 0.990279i −0.868813 0.495140i \(-0.835117\pi\)
0.868813 0.495140i \(-0.164883\pi\)
\(398\) 17.3501i 0.869680i
\(399\) 0.497134 0.0248878
\(400\) −7.51979 −0.375989
\(401\) 38.5836i 1.92677i 0.268119 + 0.963386i \(0.413598\pi\)
−0.268119 + 0.963386i \(0.586402\pi\)
\(402\) 30.5369 1.52304
\(403\) 9.14255 + 17.5460i 0.455423 + 0.874027i
\(404\) −8.78739 −0.437189
\(405\) 103.793i 5.15750i
\(406\) 0.676814 0.0335897
\(407\) −26.0531 −1.29141
\(408\) 15.3284i 0.758871i
\(409\) 2.63015i 0.130052i −0.997884 0.0650262i \(-0.979287\pi\)
0.997884 0.0650262i \(-0.0207131\pi\)
\(410\) 5.76334i 0.284631i
\(411\) 20.1055i 0.991732i
\(412\) 12.1560 0.598882
\(413\) −0.431398 −0.0212277
\(414\) 43.5826i 2.14197i
\(415\) −42.4647 −2.08451
\(416\) 1.66611 + 3.19751i 0.0816875 + 0.156771i
\(417\) 37.9224 1.85707
\(418\) 2.38888i 0.116844i
\(419\) −21.0823 −1.02994 −0.514970 0.857208i \(-0.672197\pi\)
−0.514970 + 0.857208i \(0.672197\pi\)
\(420\) 1.75902 0.0858316
\(421\) 29.9487i 1.45961i 0.683654 + 0.729806i \(0.260390\pi\)
−0.683654 + 0.729806i \(0.739610\pi\)
\(422\) 7.54866i 0.367463i
\(423\) 55.3171i 2.68961i
\(424\) 2.39084i 0.116110i
\(425\) 34.9605 1.69583
\(426\) 10.3446 0.501196
\(427\) 0.630547i 0.0305143i
\(428\) −3.42816 −0.165706
\(429\) −13.1227 25.1844i −0.633569 1.21592i
\(430\) −37.3051 −1.79901
\(431\) 28.3577i 1.36594i 0.730446 + 0.682971i \(0.239312\pi\)
−0.730446 + 0.682971i \(0.760688\pi\)
\(432\) −16.0584 −0.772611
\(433\) 26.4624 1.27170 0.635851 0.771812i \(-0.280649\pi\)
0.635851 + 0.771812i \(0.280649\pi\)
\(434\) 0.827394i 0.0397162i
\(435\) 52.3655i 2.51073i
\(436\) 4.98056i 0.238525i
\(437\) 5.53743i 0.264891i
\(438\) 6.85579 0.327582
\(439\) −2.22341 −0.106117 −0.0530587 0.998591i \(-0.516897\pi\)
−0.0530587 + 0.998591i \(0.516897\pi\)
\(440\) 8.45265i 0.402964i
\(441\) 54.9149 2.61499
\(442\) −7.74595 14.8657i −0.368437 0.707088i
\(443\) 17.6039 0.836387 0.418194 0.908358i \(-0.362663\pi\)
0.418194 + 0.908358i \(0.362663\pi\)
\(444\) 35.9577i 1.70647i
\(445\) 66.6669 3.16031
\(446\) −28.7643 −1.36203
\(447\) 7.08056i 0.334899i
\(448\) 0.150781i 0.00712375i
\(449\) 27.8127i 1.31256i 0.754516 + 0.656282i \(0.227872\pi\)
−0.754516 + 0.656282i \(0.772128\pi\)
\(450\) 59.1848i 2.79000i
\(451\) 3.89108 0.183224
\(452\) −4.29254 −0.201904
\(453\) 36.7682i 1.72752i
\(454\) 1.92833 0.0905010
\(455\) −1.70592 + 0.888891i −0.0799747 + 0.0416719i
\(456\) −3.29705 −0.154399
\(457\) 33.2600i 1.55584i −0.628366 0.777918i \(-0.716276\pi\)
0.628366 0.777918i \(-0.283724\pi\)
\(458\) 17.3072 0.808711
\(459\) 74.6578 3.48473
\(460\) 19.5933i 0.913541i
\(461\) 19.6577i 0.915553i −0.889067 0.457776i \(-0.848646\pi\)
0.889067 0.457776i \(-0.151354\pi\)
\(462\) 1.18759i 0.0552518i
\(463\) 9.51924i 0.442396i −0.975229 0.221198i \(-0.929003\pi\)
0.975229 0.221198i \(-0.0709968\pi\)
\(464\) −4.48871 −0.208383
\(465\) −64.0161 −2.96867
\(466\) 23.2739i 1.07814i
\(467\) 3.59653 0.166428 0.0832138 0.996532i \(-0.473482\pi\)
0.0832138 + 0.996532i \(0.473482\pi\)
\(468\) 25.1662 13.1132i 1.16331 0.606156i
\(469\) −1.39652 −0.0644853
\(470\) 24.8687i 1.14711i
\(471\) 44.3425 2.04320
\(472\) 2.86108 0.131692
\(473\) 25.1863i 1.15807i
\(474\) 17.4687i 0.802362i
\(475\) 7.51979i 0.345032i
\(476\) 0.701003i 0.0321304i
\(477\) 18.8172 0.861581
\(478\) −14.6296 −0.669144
\(479\) 28.3976i 1.29752i 0.760994 + 0.648759i \(0.224712\pi\)
−0.760994 + 0.648759i \(0.775288\pi\)
\(480\) −11.6661 −0.532480
\(481\) 18.1706 + 34.8721i 0.828506 + 1.59003i
\(482\) 14.5700 0.663644
\(483\) 2.75284i 0.125259i
\(484\) −5.29325 −0.240602
\(485\) −44.4700 −2.01928
\(486\) 48.5398i 2.20181i
\(487\) 32.9147i 1.49151i 0.666222 + 0.745754i \(0.267910\pi\)
−0.666222 + 0.745754i \(0.732090\pi\)
\(488\) 4.18186i 0.189304i
\(489\) 2.81479i 0.127289i
\(490\) 24.6879 1.11528
\(491\) −0.282195 −0.0127353 −0.00636764 0.999980i \(-0.502027\pi\)
−0.00636764 + 0.999980i \(0.502027\pi\)
\(492\) 5.37034i 0.242113i
\(493\) 20.8686 0.939875
\(494\) 3.19751 1.66611i 0.143863 0.0749616i
\(495\) 66.5269 2.99016
\(496\) 5.48738i 0.246391i
\(497\) −0.473080 −0.0212205
\(498\) −39.5690 −1.77313
\(499\) 29.4739i 1.31944i 0.751514 + 0.659718i \(0.229324\pi\)
−0.751514 + 0.659718i \(0.770676\pi\)
\(500\) 8.91584i 0.398729i
\(501\) 20.7492i 0.927005i
\(502\) 22.4809i 1.00337i
\(503\) −0.929384 −0.0414392 −0.0207196 0.999785i \(-0.506596\pi\)
−0.0207196 + 0.999785i \(0.506596\pi\)
\(504\) 1.18673 0.0528612
\(505\) 31.0927i 1.38361i
\(506\) −13.2283 −0.588068
\(507\) −24.5570 + 35.1294i −1.09062 + 1.56015i
\(508\) 18.5562 0.823296
\(509\) 10.8326i 0.480145i 0.970755 + 0.240072i \(0.0771712\pi\)
−0.970755 + 0.240072i \(0.922829\pi\)
\(510\) 54.2371 2.40166
\(511\) −0.313531 −0.0138698
\(512\) 1.00000i 0.0441942i
\(513\) 16.0584i 0.708997i
\(514\) 6.16163i 0.271778i
\(515\) 43.0119i 1.89533i
\(516\) −34.7613 −1.53028
\(517\) −16.7899 −0.738420
\(518\) 1.64442i 0.0722518i
\(519\) −27.7320 −1.21730
\(520\) 11.3139 5.89523i 0.496146 0.258523i
\(521\) −14.6684 −0.642634 −0.321317 0.946972i \(-0.604126\pi\)
−0.321317 + 0.946972i \(0.604126\pi\)
\(522\) 35.3286i 1.54629i
\(523\) 44.7432 1.95648 0.978241 0.207471i \(-0.0665234\pi\)
0.978241 + 0.207471i \(0.0665234\pi\)
\(524\) −6.91047 −0.301885
\(525\) 3.73834i 0.163155i
\(526\) 11.3849i 0.496404i
\(527\) 25.5116i 1.11130i
\(528\) 7.87626i 0.342770i
\(529\) 7.66315 0.333181
\(530\) 8.45959 0.367461
\(531\) 22.5183i 0.977209i
\(532\) 0.150781 0.00653720
\(533\) −2.71380 5.20821i −0.117548 0.225593i
\(534\) 62.1208 2.68823
\(535\) 12.1300i 0.524424i
\(536\) 9.26189 0.400053
\(537\) 33.7410 1.45603
\(538\) 1.99978i 0.0862166i
\(539\) 16.6678i 0.717935i
\(540\) 56.8200i 2.44514i
\(541\) 3.61109i 0.155253i 0.996983 + 0.0776265i \(0.0247342\pi\)
−0.996983 + 0.0776265i \(0.975266\pi\)
\(542\) −23.7845 −1.02163
\(543\) 46.1718 1.98142
\(544\) 4.64914i 0.199330i
\(545\) −17.6229 −0.754880
\(546\) −1.58959 + 0.828277i −0.0680283 + 0.0354470i
\(547\) 24.1186 1.03124 0.515618 0.856819i \(-0.327563\pi\)
0.515618 + 0.856819i \(0.327563\pi\)
\(548\) 6.09803i 0.260495i
\(549\) −32.9135 −1.40471
\(550\) 17.9639 0.765982
\(551\) 4.48871i 0.191225i
\(552\) 18.2572i 0.777078i
\(553\) 0.798880i 0.0339719i
\(554\) 1.25069i 0.0531366i
\(555\) −127.230 −5.40062
\(556\) 11.5019 0.487789
\(557\) 0.381806i 0.0161777i 0.999967 + 0.00808883i \(0.00257478\pi\)
−0.999967 + 0.00808883i \(0.997425\pi\)
\(558\) −43.1886 −1.82832
\(559\) 33.7119 17.5660i 1.42586 0.742962i
\(560\) 0.533514 0.0225451
\(561\) 36.6178i 1.54600i
\(562\) −27.4423 −1.15758
\(563\) −13.4387 −0.566372 −0.283186 0.959065i \(-0.591391\pi\)
−0.283186 + 0.959065i \(0.591391\pi\)
\(564\) 23.1729i 0.975755i
\(565\) 15.1884i 0.638982i
\(566\) 20.5950i 0.865671i
\(567\) 4.42299i 0.185748i
\(568\) 3.13752 0.131648
\(569\) −26.7295 −1.12056 −0.560278 0.828304i \(-0.689306\pi\)
−0.560278 + 0.828304i \(0.689306\pi\)
\(570\) 11.6661i 0.488637i
\(571\) −23.7707 −0.994774 −0.497387 0.867529i \(-0.665707\pi\)
−0.497387 + 0.867529i \(0.665707\pi\)
\(572\) −3.98013 7.63848i −0.166417 0.319381i
\(573\) −16.6616 −0.696049
\(574\) 0.245597i 0.0102510i
\(575\) −41.6403 −1.73652
\(576\) −7.87054 −0.327939
\(577\) 43.6306i 1.81636i −0.418575 0.908182i \(-0.637470\pi\)
0.418575 0.908182i \(-0.362530\pi\)
\(578\) 4.61446i 0.191936i
\(579\) 40.0678i 1.66516i
\(580\) 15.8825i 0.659486i
\(581\) 1.80958 0.0750739
\(582\) −41.4376 −1.71764
\(583\) 5.71143i 0.236543i
\(584\) 2.07937 0.0860450
\(585\) −46.3987 89.0462i −1.91835 3.68161i
\(586\) −9.00761 −0.372101
\(587\) 4.46031i 0.184097i −0.995755 0.0920483i \(-0.970659\pi\)
0.995755 0.0920483i \(-0.0293414\pi\)
\(588\) 23.0044 0.948685
\(589\) −5.48738 −0.226103
\(590\) 10.1235i 0.416776i
\(591\) 26.4046i 1.08614i
\(592\) 10.9060i 0.448234i
\(593\) 13.3387i 0.547753i −0.961765 0.273877i \(-0.911694\pi\)
0.961765 0.273877i \(-0.0883060\pi\)
\(594\) 38.3616 1.57400
\(595\) −2.48038 −0.101686
\(596\) 2.14754i 0.0879668i
\(597\) 57.2041 2.34121
\(598\) 9.22595 + 17.7060i 0.377277 + 0.724053i
\(599\) 37.0831 1.51517 0.757587 0.652734i \(-0.226378\pi\)
0.757587 + 0.652734i \(0.226378\pi\)
\(600\) 24.7931i 1.01217i
\(601\) −10.1680 −0.414761 −0.207381 0.978260i \(-0.566494\pi\)
−0.207381 + 0.978260i \(0.566494\pi\)
\(602\) 1.58971 0.0647918
\(603\) 72.8961i 2.96856i
\(604\) 11.1518i 0.453762i
\(605\) 18.7293i 0.761453i
\(606\) 28.9725i 1.17693i
\(607\) 22.2624 0.903601 0.451800 0.892119i \(-0.350782\pi\)
0.451800 + 0.892119i \(0.350782\pi\)
\(608\) −1.00000 −0.0405554
\(609\) 2.23149i 0.0904245i
\(610\) −14.7968 −0.599105
\(611\) 11.7100 + 22.4733i 0.473736 + 0.909173i
\(612\) 36.5912 1.47911
\(613\) 27.2117i 1.09907i 0.835471 + 0.549535i \(0.185195\pi\)
−0.835471 + 0.549535i \(0.814805\pi\)
\(614\) 5.40794 0.218247
\(615\) 19.0020 0.766236
\(616\) 0.360199i 0.0145128i
\(617\) 40.4879i 1.62998i −0.579473 0.814992i \(-0.696741\pi\)
0.579473 0.814992i \(-0.303259\pi\)
\(618\) 40.0789i 1.61221i
\(619\) 1.63008i 0.0655183i −0.999463 0.0327591i \(-0.989571\pi\)
0.999463 0.0327591i \(-0.0104294\pi\)
\(620\) −19.4162 −0.779772
\(621\) −88.9224 −3.56833
\(622\) 9.55248i 0.383020i
\(623\) −2.84092 −0.113819
\(624\) 10.5424 5.49323i 0.422032 0.219905i
\(625\) −6.05173 −0.242069
\(626\) 15.7527i 0.629605i
\(627\) 7.87626 0.314547
\(628\) 13.4492 0.536680
\(629\) 50.7035i 2.02168i
\(630\) 4.19905i 0.167294i
\(631\) 1.05111i 0.0418439i 0.999781 + 0.0209220i \(0.00666015\pi\)
−0.999781 + 0.0209220i \(0.993340\pi\)
\(632\) 5.29827i 0.210754i
\(633\) 24.8883 0.989222
\(634\) 3.14485 0.124898
\(635\) 65.6578i 2.60555i
\(636\) 7.88273 0.312570
\(637\) −22.3099 + 11.6249i −0.883950 + 0.460594i
\(638\) 10.7230 0.424527
\(639\) 24.6940i 0.976880i
\(640\) −3.53833 −0.139865
\(641\) 18.0793 0.714091 0.357045 0.934087i \(-0.383784\pi\)
0.357045 + 0.934087i \(0.383784\pi\)
\(642\) 11.3028i 0.446087i
\(643\) 10.2623i 0.404705i −0.979313 0.202352i \(-0.935141\pi\)
0.979313 0.202352i \(-0.0648586\pi\)
\(644\) 0.834942i 0.0329013i
\(645\) 122.997i 4.84300i
\(646\) 4.64914 0.182918
\(647\) 3.53071 0.138807 0.0694033 0.997589i \(-0.477890\pi\)
0.0694033 + 0.997589i \(0.477890\pi\)
\(648\) 29.3338i 1.15234i
\(649\) −6.83478 −0.268289
\(650\) −12.5288 24.0446i −0.491418 0.943108i
\(651\) 2.72796 0.106917
\(652\) 0.853731i 0.0334347i
\(653\) −10.1156 −0.395855 −0.197928 0.980217i \(-0.563421\pi\)
−0.197928 + 0.980217i \(0.563421\pi\)
\(654\) −16.4211 −0.642118
\(655\) 24.4515i 0.955400i
\(656\) 1.62883i 0.0635951i
\(657\) 16.3658i 0.638490i
\(658\) 1.05975i 0.0413132i
\(659\) −17.5458 −0.683486 −0.341743 0.939794i \(-0.611017\pi\)
−0.341743 + 0.939794i \(0.611017\pi\)
\(660\) 27.8688 1.08479
\(661\) 14.0163i 0.545171i −0.962132 0.272586i \(-0.912121\pi\)
0.962132 0.272586i \(-0.0878788\pi\)
\(662\) 0.269421 0.0104714
\(663\) −49.0129 + 25.5388i −1.90350 + 0.991844i
\(664\) −12.0013 −0.465742
\(665\) 0.533514i 0.0206888i
\(666\) −85.8362 −3.32608
\(667\) −24.8559 −0.962425
\(668\) 6.29325i 0.243493i
\(669\) 94.8373i 3.66662i
\(670\) 32.7716i 1.26608i
\(671\) 9.98996i 0.385658i
\(672\) 0.497134 0.0191774
\(673\) −31.1907 −1.20231 −0.601157 0.799131i \(-0.705293\pi\)
−0.601157 + 0.799131i \(0.705293\pi\)
\(674\) 2.80206i 0.107931i
\(675\) 120.756 4.64790
\(676\) −7.44819 + 10.6548i −0.286469 + 0.409800i
\(677\) 13.2383 0.508789 0.254394 0.967101i \(-0.418124\pi\)
0.254394 + 0.967101i \(0.418124\pi\)
\(678\) 14.1527i 0.543532i
\(679\) 1.89503 0.0727247
\(680\) 16.4502 0.630836
\(681\) 6.35780i 0.243632i
\(682\) 13.1087i 0.501958i
\(683\) 11.3659i 0.434905i −0.976071 0.217453i \(-0.930225\pi\)
0.976071 0.217453i \(-0.0697748\pi\)
\(684\) 7.87054i 0.300938i
\(685\) −21.5768 −0.824409
\(686\) −2.10751 −0.0804651
\(687\) 57.0626i 2.17708i
\(688\) −10.5431 −0.401954
\(689\) −7.64475 + 3.98339i −0.291242 + 0.151755i
\(690\) −64.6000 −2.45928
\(691\) 37.7882i 1.43753i −0.695253 0.718765i \(-0.744708\pi\)
0.695253 0.718765i \(-0.255292\pi\)
\(692\) −8.41116 −0.319744
\(693\) −2.83496 −0.107691
\(694\) 26.5610i 1.00824i
\(695\) 40.6976i 1.54375i
\(696\) 14.7995i 0.560974i
\(697\) 7.57265i 0.286835i
\(698\) −12.9895 −0.491659
\(699\) 76.7353 2.90239
\(700\) 1.13384i 0.0428553i
\(701\) 29.1278 1.10014 0.550070 0.835118i \(-0.314601\pi\)
0.550070 + 0.835118i \(0.314601\pi\)
\(702\) −26.7550 51.3470i −1.00980 1.93797i
\(703\) −10.9060 −0.411328
\(704\) 2.38888i 0.0900343i
\(705\) −81.9934 −3.08805
\(706\) 12.7132 0.478468
\(707\) 1.32498i 0.0498308i
\(708\) 9.43313i 0.354519i
\(709\) 45.5773i 1.71169i −0.517230 0.855846i \(-0.673037\pi\)
0.517230 0.855846i \(-0.326963\pi\)
\(710\) 11.1016i 0.416635i
\(711\) −41.7003 −1.56388
\(712\) 18.8413 0.706109
\(713\) 30.3860i 1.13796i
\(714\) −2.31124 −0.0864961
\(715\) −27.0275 + 14.0830i −1.01077 + 0.526674i
\(716\) 10.2337 0.382451
\(717\) 48.2347i 1.80136i
\(718\) −1.98013 −0.0738976
\(719\) −1.91188 −0.0713012 −0.0356506 0.999364i \(-0.511350\pi\)
−0.0356506 + 0.999364i \(0.511350\pi\)
\(720\) 27.8486i 1.03786i
\(721\) 1.83290i 0.0682606i
\(722\) 1.00000i 0.0372161i
\(723\) 48.0379i 1.78655i
\(724\) 14.0040 0.520454
\(725\) 33.7541 1.25360
\(726\) 17.4521i 0.647709i
\(727\) −27.5738 −1.02265 −0.511327 0.859386i \(-0.670846\pi\)
−0.511327 + 0.859386i \(0.670846\pi\)
\(728\) −0.482125 + 0.251218i −0.0178688 + 0.00931075i
\(729\) 72.0367 2.66802
\(730\) 7.35751i 0.272314i
\(731\) 49.0165 1.81294
\(732\) −13.7878 −0.509612
\(733\) 47.5901i 1.75778i −0.477025 0.878890i \(-0.658285\pi\)
0.477025 0.878890i \(-0.341715\pi\)
\(734\) 30.9704i 1.14314i
\(735\) 81.3972i 3.00238i
\(736\) 5.53743i 0.204112i
\(737\) −22.1255 −0.815005
\(738\) 12.8198 0.471903
\(739\) 12.4006i 0.456162i −0.973642 0.228081i \(-0.926755\pi\)
0.973642 0.228081i \(-0.0732450\pi\)
\(740\) −38.5891 −1.41856
\(741\) −5.49323 10.5424i −0.201799 0.387283i
\(742\) −0.360494 −0.0132342
\(743\) 1.90025i 0.0697135i −0.999392 0.0348568i \(-0.988902\pi\)
0.999392 0.0348568i \(-0.0110975\pi\)
\(744\) −18.0922 −0.663291
\(745\) 7.59872 0.278395
\(746\) 18.5731i 0.680011i
\(747\) 94.4569i 3.45600i
\(748\) 11.1062i 0.406084i
\(749\) 0.516903i 0.0188872i
\(750\) 29.3960 1.07339
\(751\) −44.9955 −1.64191 −0.820955 0.570993i \(-0.806558\pi\)
−0.820955 + 0.570993i \(0.806558\pi\)
\(752\) 7.02837i 0.256298i
\(753\) −74.1206 −2.70111
\(754\) −7.47866 14.3527i −0.272357 0.522695i
\(755\) −39.4589 −1.43606
\(756\) 2.42131i 0.0880622i
\(757\) 9.53993 0.346735 0.173367 0.984857i \(-0.444535\pi\)
0.173367 + 0.984857i \(0.444535\pi\)
\(758\) −19.3298 −0.702088
\(759\) 43.6142i 1.58310i
\(760\) 3.53833i 0.128349i
\(761\) 23.0991i 0.837343i 0.908138 + 0.418671i \(0.137504\pi\)
−0.908138 + 0.418671i \(0.862496\pi\)
\(762\) 61.1806i 2.21634i
\(763\) 0.750975 0.0271871
\(764\) −5.05349 −0.182829
\(765\) 129.472i 4.68106i
\(766\) 18.9244 0.683766
\(767\) 4.76686 + 9.14835i 0.172121 + 0.330328i
\(768\) −3.29705 −0.118972
\(769\) 33.4512i 1.20628i 0.797634 + 0.603141i \(0.206084\pi\)
−0.797634 + 0.603141i \(0.793916\pi\)
\(770\) −1.27450 −0.0459299
\(771\) 20.3152 0.731634
\(772\) 12.1526i 0.437382i
\(773\) 14.1395i 0.508564i −0.967130 0.254282i \(-0.918161\pi\)
0.967130 0.254282i \(-0.0818391\pi\)
\(774\) 82.9803i 2.98266i
\(775\) 41.2639i 1.48224i
\(776\) −12.5681 −0.451168
\(777\) 5.42174 0.194504
\(778\) 30.1046i 1.07930i
\(779\) 1.62883 0.0583589
\(780\) −19.4369 37.3024i −0.695952 1.33564i
\(781\) −7.49517 −0.268198
\(782\) 25.7443i 0.920613i
\(783\) 72.0816 2.57599
\(784\) 6.97726 0.249188
\(785\) 47.5876i 1.69847i
\(786\) 22.7842i 0.812684i
\(787\) 44.7650i 1.59570i 0.602855 + 0.797851i \(0.294030\pi\)
−0.602855 + 0.797851i \(0.705970\pi\)
\(788\) 8.00854i 0.285293i
\(789\) 37.5365 1.33633
\(790\) −18.7470 −0.666990
\(791\) 0.647235i 0.0230130i
\(792\) 18.8018 0.668092
\(793\) 13.3716 6.96742i 0.474838 0.247420i
\(794\) −19.7312 −0.700233
\(795\) 27.8917i 0.989216i
\(796\) 17.3501 0.614957
\(797\) −8.86399 −0.313979 −0.156989 0.987600i \(-0.550179\pi\)
−0.156989 + 0.987600i \(0.550179\pi\)
\(798\) 0.497134i 0.0175983i
\(799\) 32.6758i 1.15599i
\(800\) 7.51979i 0.265865i
\(801\) 148.291i 5.23962i
\(802\) 38.5836 1.36243
\(803\) −4.96737 −0.175295
\(804\) 30.5369i 1.07695i
\(805\) 2.95430 0.104125
\(806\) 17.5460 9.14255i 0.618030 0.322033i
\(807\) −6.59338 −0.232098
\(808\) 8.78739i 0.309139i
\(809\) −11.5701 −0.406783 −0.203392 0.979097i \(-0.565196\pi\)
−0.203392 + 0.979097i \(0.565196\pi\)
\(810\) 103.793 3.64690
\(811\) 42.2403i 1.48326i 0.670811 + 0.741629i \(0.265946\pi\)
−0.670811 + 0.741629i \(0.734054\pi\)
\(812\) 0.676814i 0.0237515i
\(813\) 78.4186i 2.75026i
\(814\) 26.0531i 0.913162i
\(815\) 3.02078 0.105813
\(816\) 15.3284 0.536603
\(817\) 10.5431i 0.368858i
\(818\) −2.63015 −0.0919609
\(819\) 1.97722 + 3.79459i 0.0690896 + 0.132594i
\(820\) 5.76334 0.201265
\(821\) 54.5203i 1.90277i 0.308001 + 0.951386i \(0.400340\pi\)
−0.308001 + 0.951386i \(0.599660\pi\)
\(822\) −20.1055 −0.701260
\(823\) −10.0705 −0.351034 −0.175517 0.984476i \(-0.556160\pi\)
−0.175517 + 0.984476i \(0.556160\pi\)
\(824\) 12.1560i 0.423474i
\(825\) 59.2278i 2.06205i
\(826\) 0.431398i 0.0150102i
\(827\) 10.9110i 0.379411i 0.981841 + 0.189706i \(0.0607533\pi\)
−0.981841 + 0.189706i \(0.939247\pi\)
\(828\) −43.5826 −1.51460
\(829\) −53.0765 −1.84342 −0.921711 0.387877i \(-0.873209\pi\)
−0.921711 + 0.387877i \(0.873209\pi\)
\(830\) 42.4647i 1.47397i
\(831\) 4.12358 0.143045
\(832\) 3.19751 1.66611i 0.110854 0.0577618i
\(833\) −32.4382 −1.12392
\(834\) 37.9224i 1.31314i
\(835\) −22.2676 −0.770602
\(836\) 2.38888 0.0826211
\(837\) 88.1186i 3.04583i
\(838\) 21.0823i 0.728277i
\(839\) 16.1528i 0.557658i 0.960341 + 0.278829i \(0.0899462\pi\)
−0.960341 + 0.278829i \(0.910054\pi\)
\(840\) 1.75902i 0.0606921i
\(841\) −8.85150 −0.305224
\(842\) 29.9487 1.03210
\(843\) 90.4787i 3.11625i
\(844\) 7.54866 0.259836
\(845\) 37.7002 + 26.3541i 1.29693 + 0.906610i
\(846\) −55.3171 −1.90184
\(847\) 0.798124i 0.0274239i
\(848\) 2.39084 0.0821018
\(849\) 67.9026 2.33041
\(850\) 34.9605i 1.19914i
\(851\) 60.3913i 2.07019i
\(852\) 10.3446i 0.354399i
\(853\) 32.2364i 1.10375i −0.833926 0.551877i \(-0.813912\pi\)
0.833926 0.551877i \(-0.186088\pi\)
\(854\) 0.630547 0.0215769
\(855\) 27.8486 0.952401
\(856\) 3.42816i 0.117172i
\(857\) 14.4059 0.492095 0.246048 0.969258i \(-0.420868\pi\)
0.246048 + 0.969258i \(0.420868\pi\)
\(858\) −25.1844 + 13.1227i −0.859783 + 0.448001i
\(859\) 14.0342 0.478842 0.239421 0.970916i \(-0.423042\pi\)
0.239421 + 0.970916i \(0.423042\pi\)
\(860\) 37.3051i 1.27210i
\(861\) −0.809747 −0.0275961
\(862\) 28.3577 0.965866
\(863\) 2.54991i 0.0868000i −0.999058 0.0434000i \(-0.986181\pi\)
0.999058 0.0434000i \(-0.0138190\pi\)
\(864\) 16.0584i 0.546319i
\(865\) 29.7615i 1.01192i
\(866\) 26.4624i 0.899229i
\(867\) −15.2141 −0.516698
\(868\) 0.827394 0.0280836
\(869\) 12.6569i 0.429357i
\(870\) 52.3655 1.77536
\(871\) 15.4313 + 29.6150i 0.522869 + 1.00347i
\(872\) −4.98056 −0.168663
\(873\) 98.9176i 3.34785i
\(874\) −5.53743 −0.187306
\(875\) −1.34434 −0.0454471
\(876\) 6.85579i 0.231636i
\(877\) 47.0463i 1.58864i −0.607499 0.794320i \(-0.707827\pi\)
0.607499 0.794320i \(-0.292173\pi\)
\(878\) 2.22341i 0.0750364i
\(879\) 29.6985i 1.00171i
\(880\) 8.45265 0.284939
\(881\) 45.2418 1.52423 0.762117 0.647440i \(-0.224160\pi\)
0.762117 + 0.647440i \(0.224160\pi\)
\(882\) 54.9149i 1.84908i
\(883\) 6.45909 0.217366 0.108683 0.994076i \(-0.465337\pi\)
0.108683 + 0.994076i \(0.465337\pi\)
\(884\) −14.8657 + 7.74595i −0.499987 + 0.260524i
\(885\) −33.3775 −1.12197
\(886\) 17.6039i 0.591415i
\(887\) −27.7245 −0.930899 −0.465449 0.885074i \(-0.654107\pi\)
−0.465449 + 0.885074i \(0.654107\pi\)
\(888\) −35.9577 −1.20666
\(889\) 2.79792i 0.0938393i
\(890\) 66.6669i 2.23468i
\(891\) 70.0749i 2.34760i
\(892\) 28.7643i 0.963099i
\(893\) −7.02837 −0.235195
\(894\) 7.08056 0.236809
\(895\) 36.2102i 1.21037i
\(896\) 0.150781 0.00503725
\(897\) 58.3776 30.4184i 1.94917 1.01564i
\(898\) 27.8127 0.928123
\(899\) 24.6312i 0.821498i
\(900\) 59.1848 1.97283
\(901\) −11.1153 −0.370306
\(902\) 3.89108i 0.129559i
\(903\) 5.24135i 0.174421i
\(904\) 4.29254i 0.142768i
\(905\) 49.5507i 1.64712i
\(906\) −36.7682 −1.22154
\(907\) 20.0680 0.666348 0.333174 0.942865i \(-0.391880\pi\)
0.333174 + 0.942865i \(0.391880\pi\)
\(908\) 1.92833i 0.0639939i
\(909\) 69.1616 2.29394
\(910\) 0.888891 + 1.70592i 0.0294665 + 0.0565507i
\(911\) −57.8610 −1.91702 −0.958510 0.285059i \(-0.907987\pi\)
−0.958510 + 0.285059i \(0.907987\pi\)
\(912\) 3.29705i 0.109176i
\(913\) 28.6697 0.948829
\(914\) −33.2600 −1.10014
\(915\) 48.7858i 1.61281i
\(916\) 17.3072i 0.571845i
\(917\) 1.04197i 0.0344089i
\(918\) 74.6578i 2.46407i
\(919\) 33.5024 1.10514 0.552572 0.833465i \(-0.313646\pi\)
0.552572 + 0.833465i \(0.313646\pi\)
\(920\) −19.5933 −0.645971
\(921\) 17.8302i 0.587526i
\(922\) −19.6577 −0.647393
\(923\) 5.22744 + 10.0323i 0.172063 + 0.330216i
\(924\) −1.18759 −0.0390689
\(925\) 82.0109i 2.69650i
\(926\) −9.51924 −0.312822
\(927\) −95.6742 −3.14235
\(928\) 4.48871i 0.147349i
\(929\) 44.0193i 1.44423i −0.691775 0.722113i \(-0.743171\pi\)
0.691775 0.722113i \(-0.256829\pi\)
\(930\) 64.0161i 2.09917i
\(931\) 6.97726i 0.228671i
\(932\) 23.2739 0.762362
\(933\) 31.4950 1.03110
\(934\) 3.59653i 0.117682i
\(935\) −39.2975 −1.28517
\(936\) −13.1132 25.1662i −0.428617 0.822582i
\(937\) 23.9226 0.781519 0.390759 0.920493i \(-0.372212\pi\)
0.390759 + 0.920493i \(0.372212\pi\)
\(938\) 1.39652i 0.0455980i
\(939\) −51.9375 −1.69492
\(940\) −24.8687 −0.811128
\(941\) 11.9315i 0.388955i 0.980907 + 0.194478i \(0.0623012\pi\)
−0.980907 + 0.194478i \(0.937699\pi\)
\(942\) 44.3425i 1.44476i
\(943\) 9.01954i 0.293717i
\(944\) 2.86108i 0.0931203i
\(945\) −8.56740 −0.278698
\(946\) 25.1863 0.818878
\(947\) 44.4175i 1.44338i 0.692219 + 0.721688i \(0.256633\pi\)
−0.692219 + 0.721688i \(0.743367\pi\)
\(948\) −17.4687 −0.567356
\(949\) 3.46445 + 6.64882i 0.112461 + 0.215830i
\(950\) 7.51979 0.243974
\(951\) 10.3687i 0.336229i
\(952\) −0.701003 −0.0227196
\(953\) −19.1284 −0.619631 −0.309816 0.950797i \(-0.600267\pi\)
−0.309816 + 0.950797i \(0.600267\pi\)
\(954\) 18.8172i 0.609230i
\(955\) 17.8809i 0.578613i
\(956\) 14.6296i 0.473156i
\(957\) 35.3542i 1.14284i
\(958\) 28.3976 0.917484
\(959\) 0.919469 0.0296912
\(960\) 11.6661i 0.376520i
\(961\) 0.888682 0.0286672
\(962\) 34.8721 18.1706i 1.12432 0.585842i
\(963\) 26.9815 0.869466
\(964\) 14.5700i 0.469267i
\(965\) −43.0000 −1.38422
\(966\) 2.75284 0.0885713
\(967\) 25.1740i 0.809543i 0.914418 + 0.404771i \(0.132649\pi\)
−0.914418 + 0.404771i \(0.867351\pi\)
\(968\) 5.29325i 0.170132i
\(969\) 15.3284i 0.492420i
\(970\) 44.4700i 1.42785i
\(971\) −36.4759 −1.17057 −0.585284 0.810828i \(-0.699017\pi\)
−0.585284 + 0.810828i \(0.699017\pi\)
\(972\) 48.5398 1.55691
\(973\) 1.73427i 0.0555982i
\(974\) 32.9147 1.05465
\(975\) −79.2763 + 41.3080i −2.53887 + 1.32291i
\(976\) −4.18186 −0.133858
\(977\) 3.72604i 0.119206i −0.998222 0.0596032i \(-0.981016\pi\)
0.998222 0.0596032i \(-0.0189836\pi\)
\(978\) 2.81479 0.0900072
\(979\) −45.0097 −1.43852
\(980\) 24.6879i 0.788625i
\(981\) 39.1997i 1.25155i
\(982\) 0.282195i 0.00900521i
\(983\) 2.94137i 0.0938151i −0.998899 0.0469075i \(-0.985063\pi\)
0.998899 0.0469075i \(-0.0149366\pi\)
\(984\) 5.37034 0.171200
\(985\) 28.3369 0.902888
\(986\) 20.8686i 0.664592i
\(987\) 3.49404 0.111217
\(988\) −1.66611 3.19751i −0.0530059 0.101726i
\(989\) −58.3820 −1.85644
\(990\) 66.5269i 2.11436i
\(991\) −0.474014 −0.0150575 −0.00752877 0.999972i \(-0.502397\pi\)
−0.00752877 + 0.999972i \(0.502397\pi\)
\(992\) −5.48738 −0.174224
\(993\) 0.888295i 0.0281892i
\(994\) 0.473080i 0.0150052i
\(995\) 61.3903i 1.94620i
\(996\) 39.5690i 1.25379i
\(997\) −27.5785 −0.873421 −0.436711 0.899602i \(-0.643857\pi\)
−0.436711 + 0.899602i \(0.643857\pi\)
\(998\) 29.4739 0.932981
\(999\) 175.133i 5.54097i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 494.2.d.c.77.1 14
13.5 odd 4 6422.2.a.be.1.1 7
13.8 odd 4 6422.2.a.bf.1.1 7
13.12 even 2 inner 494.2.d.c.77.8 yes 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
494.2.d.c.77.1 14 1.1 even 1 trivial
494.2.d.c.77.8 yes 14 13.12 even 2 inner
6422.2.a.be.1.1 7 13.5 odd 4
6422.2.a.bf.1.1 7 13.8 odd 4