Properties

Label 4925.2.a.r.1.24
Level $4925$
Weight $2$
Character 4925.1
Self dual yes
Analytic conductor $39.326$
Analytic rank $1$
Dimension $49$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4925,2,Mod(1,4925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4925.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4925, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4925 = 5^{2} \cdot 197 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4925.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [49,-5,-22] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(39.3263229955\)
Analytic rank: \(1\)
Dimension: \(49\)
Twist minimal: no (minimal twist has level 985)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.24
Character \(\chi\) \(=\) 4925.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.321757 q^{2} +2.86064 q^{3} -1.89647 q^{4} -0.920431 q^{6} -0.829142 q^{7} +1.25372 q^{8} +5.18323 q^{9} -1.61793 q^{11} -5.42511 q^{12} -3.76162 q^{13} +0.266783 q^{14} +3.38955 q^{16} -2.25602 q^{17} -1.66774 q^{18} +5.21309 q^{19} -2.37187 q^{21} +0.520580 q^{22} +0.268138 q^{23} +3.58643 q^{24} +1.21033 q^{26} +6.24543 q^{27} +1.57245 q^{28} -6.37430 q^{29} +0.201911 q^{31} -3.59805 q^{32} -4.62830 q^{33} +0.725890 q^{34} -9.82986 q^{36} -7.50915 q^{37} -1.67735 q^{38} -10.7606 q^{39} +2.01101 q^{41} +0.763168 q^{42} -8.49353 q^{43} +3.06836 q^{44} -0.0862754 q^{46} +1.06230 q^{47} +9.69627 q^{48} -6.31252 q^{49} -6.45364 q^{51} +7.13381 q^{52} +10.6764 q^{53} -2.00951 q^{54} -1.03951 q^{56} +14.9127 q^{57} +2.05098 q^{58} -12.4971 q^{59} +1.31673 q^{61} -0.0649663 q^{62} -4.29764 q^{63} -5.62140 q^{64} +1.48919 q^{66} -2.57912 q^{67} +4.27847 q^{68} +0.767045 q^{69} +6.89919 q^{71} +6.49832 q^{72} +4.02613 q^{73} +2.41612 q^{74} -9.88647 q^{76} +1.34149 q^{77} +3.46231 q^{78} +12.1773 q^{79} +2.31621 q^{81} -0.647057 q^{82} -7.56524 q^{83} +4.49819 q^{84} +2.73286 q^{86} -18.2345 q^{87} -2.02843 q^{88} -8.82490 q^{89} +3.11892 q^{91} -0.508517 q^{92} +0.577593 q^{93} -0.341802 q^{94} -10.2927 q^{96} +1.91883 q^{97} +2.03110 q^{98} -8.38610 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 49 q - 5 q^{2} - 22 q^{3} + 49 q^{4} + 2 q^{6} - 32 q^{7} - 15 q^{8} + 51 q^{9} - 2 q^{11} - 44 q^{12} - 32 q^{13} - 8 q^{14} + 49 q^{16} - 14 q^{17} - 25 q^{18} + 4 q^{19} + 10 q^{21} - 38 q^{22} - 24 q^{23}+ \cdots + 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.321757 −0.227517 −0.113758 0.993508i \(-0.536289\pi\)
−0.113758 + 0.993508i \(0.536289\pi\)
\(3\) 2.86064 1.65159 0.825794 0.563972i \(-0.190727\pi\)
0.825794 + 0.563972i \(0.190727\pi\)
\(4\) −1.89647 −0.948236
\(5\) 0 0
\(6\) −0.920431 −0.375764
\(7\) −0.829142 −0.313386 −0.156693 0.987647i \(-0.550083\pi\)
−0.156693 + 0.987647i \(0.550083\pi\)
\(8\) 1.25372 0.443257
\(9\) 5.18323 1.72774
\(10\) 0 0
\(11\) −1.61793 −0.487824 −0.243912 0.969797i \(-0.578431\pi\)
−0.243912 + 0.969797i \(0.578431\pi\)
\(12\) −5.42511 −1.56610
\(13\) −3.76162 −1.04329 −0.521643 0.853164i \(-0.674681\pi\)
−0.521643 + 0.853164i \(0.674681\pi\)
\(14\) 0.266783 0.0713007
\(15\) 0 0
\(16\) 3.38955 0.847388
\(17\) −2.25602 −0.547165 −0.273582 0.961849i \(-0.588209\pi\)
−0.273582 + 0.961849i \(0.588209\pi\)
\(18\) −1.66774 −0.393091
\(19\) 5.21309 1.19596 0.597982 0.801510i \(-0.295969\pi\)
0.597982 + 0.801510i \(0.295969\pi\)
\(20\) 0 0
\(21\) −2.37187 −0.517585
\(22\) 0.520580 0.110988
\(23\) 0.268138 0.0559107 0.0279553 0.999609i \(-0.491100\pi\)
0.0279553 + 0.999609i \(0.491100\pi\)
\(24\) 3.58643 0.732077
\(25\) 0 0
\(26\) 1.21033 0.237365
\(27\) 6.24543 1.20193
\(28\) 1.57245 0.297164
\(29\) −6.37430 −1.18368 −0.591839 0.806056i \(-0.701598\pi\)
−0.591839 + 0.806056i \(0.701598\pi\)
\(30\) 0 0
\(31\) 0.201911 0.0362643 0.0181321 0.999836i \(-0.494228\pi\)
0.0181321 + 0.999836i \(0.494228\pi\)
\(32\) −3.59805 −0.636052
\(33\) −4.62830 −0.805684
\(34\) 0.725890 0.124489
\(35\) 0 0
\(36\) −9.82986 −1.63831
\(37\) −7.50915 −1.23450 −0.617248 0.786769i \(-0.711752\pi\)
−0.617248 + 0.786769i \(0.711752\pi\)
\(38\) −1.67735 −0.272102
\(39\) −10.7606 −1.72308
\(40\) 0 0
\(41\) 2.01101 0.314067 0.157033 0.987593i \(-0.449807\pi\)
0.157033 + 0.987593i \(0.449807\pi\)
\(42\) 0.763168 0.117759
\(43\) −8.49353 −1.29525 −0.647626 0.761959i \(-0.724238\pi\)
−0.647626 + 0.761959i \(0.724238\pi\)
\(44\) 3.06836 0.462572
\(45\) 0 0
\(46\) −0.0862754 −0.0127206
\(47\) 1.06230 0.154952 0.0774759 0.996994i \(-0.475314\pi\)
0.0774759 + 0.996994i \(0.475314\pi\)
\(48\) 9.69627 1.39954
\(49\) −6.31252 −0.901789
\(50\) 0 0
\(51\) −6.45364 −0.903691
\(52\) 7.13381 0.989282
\(53\) 10.6764 1.46652 0.733260 0.679948i \(-0.237998\pi\)
0.733260 + 0.679948i \(0.237998\pi\)
\(54\) −2.00951 −0.273460
\(55\) 0 0
\(56\) −1.03951 −0.138911
\(57\) 14.9127 1.97524
\(58\) 2.05098 0.269307
\(59\) −12.4971 −1.62699 −0.813494 0.581574i \(-0.802437\pi\)
−0.813494 + 0.581574i \(0.802437\pi\)
\(60\) 0 0
\(61\) 1.31673 0.168590 0.0842950 0.996441i \(-0.473136\pi\)
0.0842950 + 0.996441i \(0.473136\pi\)
\(62\) −0.0649663 −0.00825073
\(63\) −4.29764 −0.541451
\(64\) −5.62140 −0.702675
\(65\) 0 0
\(66\) 1.48919 0.183307
\(67\) −2.57912 −0.315090 −0.157545 0.987512i \(-0.550358\pi\)
−0.157545 + 0.987512i \(0.550358\pi\)
\(68\) 4.27847 0.518841
\(69\) 0.767045 0.0923414
\(70\) 0 0
\(71\) 6.89919 0.818783 0.409391 0.912359i \(-0.365741\pi\)
0.409391 + 0.912359i \(0.365741\pi\)
\(72\) 6.49832 0.765834
\(73\) 4.02613 0.471223 0.235611 0.971847i \(-0.424291\pi\)
0.235611 + 0.971847i \(0.424291\pi\)
\(74\) 2.41612 0.280869
\(75\) 0 0
\(76\) −9.88647 −1.13406
\(77\) 1.34149 0.152877
\(78\) 3.46231 0.392030
\(79\) 12.1773 1.37006 0.685028 0.728517i \(-0.259790\pi\)
0.685028 + 0.728517i \(0.259790\pi\)
\(80\) 0 0
\(81\) 2.31621 0.257356
\(82\) −0.647057 −0.0714555
\(83\) −7.56524 −0.830393 −0.415196 0.909732i \(-0.636287\pi\)
−0.415196 + 0.909732i \(0.636287\pi\)
\(84\) 4.49819 0.490793
\(85\) 0 0
\(86\) 2.73286 0.294692
\(87\) −18.2345 −1.95495
\(88\) −2.02843 −0.216231
\(89\) −8.82490 −0.935437 −0.467719 0.883877i \(-0.654924\pi\)
−0.467719 + 0.883877i \(0.654924\pi\)
\(90\) 0 0
\(91\) 3.11892 0.326952
\(92\) −0.508517 −0.0530165
\(93\) 0.577593 0.0598936
\(94\) −0.341802 −0.0352541
\(95\) 0 0
\(96\) −10.2927 −1.05050
\(97\) 1.91883 0.194828 0.0974140 0.995244i \(-0.468943\pi\)
0.0974140 + 0.995244i \(0.468943\pi\)
\(98\) 2.03110 0.205172
\(99\) −8.38610 −0.842835
\(100\) 0 0
\(101\) −16.5253 −1.64433 −0.822166 0.569247i \(-0.807235\pi\)
−0.822166 + 0.569247i \(0.807235\pi\)
\(102\) 2.07651 0.205605
\(103\) −14.1484 −1.39409 −0.697043 0.717029i \(-0.745501\pi\)
−0.697043 + 0.717029i \(0.745501\pi\)
\(104\) −4.71602 −0.462444
\(105\) 0 0
\(106\) −3.43522 −0.333658
\(107\) −0.511628 −0.0494610 −0.0247305 0.999694i \(-0.507873\pi\)
−0.0247305 + 0.999694i \(0.507873\pi\)
\(108\) −11.8443 −1.13972
\(109\) 7.68077 0.735685 0.367842 0.929888i \(-0.380097\pi\)
0.367842 + 0.929888i \(0.380097\pi\)
\(110\) 0 0
\(111\) −21.4809 −2.03888
\(112\) −2.81042 −0.265560
\(113\) 10.3875 0.977174 0.488587 0.872515i \(-0.337512\pi\)
0.488587 + 0.872515i \(0.337512\pi\)
\(114\) −4.79828 −0.449400
\(115\) 0 0
\(116\) 12.0887 1.12241
\(117\) −19.4974 −1.80253
\(118\) 4.02104 0.370167
\(119\) 1.87056 0.171474
\(120\) 0 0
\(121\) −8.38231 −0.762028
\(122\) −0.423668 −0.0383571
\(123\) 5.75276 0.518709
\(124\) −0.382918 −0.0343871
\(125\) 0 0
\(126\) 1.38280 0.123189
\(127\) −3.46077 −0.307093 −0.153547 0.988141i \(-0.549070\pi\)
−0.153547 + 0.988141i \(0.549070\pi\)
\(128\) 9.00483 0.795922
\(129\) −24.2969 −2.13922
\(130\) 0 0
\(131\) 3.36240 0.293774 0.146887 0.989153i \(-0.453075\pi\)
0.146887 + 0.989153i \(0.453075\pi\)
\(132\) 8.77745 0.763979
\(133\) −4.32239 −0.374799
\(134\) 0.829852 0.0716883
\(135\) 0 0
\(136\) −2.82841 −0.242534
\(137\) −10.4401 −0.891959 −0.445979 0.895043i \(-0.647145\pi\)
−0.445979 + 0.895043i \(0.647145\pi\)
\(138\) −0.246803 −0.0210092
\(139\) −17.9388 −1.52155 −0.760776 0.649015i \(-0.775181\pi\)
−0.760776 + 0.649015i \(0.775181\pi\)
\(140\) 0 0
\(141\) 3.03884 0.255917
\(142\) −2.21986 −0.186287
\(143\) 6.08603 0.508940
\(144\) 17.5688 1.46407
\(145\) 0 0
\(146\) −1.29544 −0.107211
\(147\) −18.0578 −1.48938
\(148\) 14.2409 1.17059
\(149\) −2.23651 −0.183222 −0.0916110 0.995795i \(-0.529202\pi\)
−0.0916110 + 0.995795i \(0.529202\pi\)
\(150\) 0 0
\(151\) −1.36330 −0.110944 −0.0554718 0.998460i \(-0.517666\pi\)
−0.0554718 + 0.998460i \(0.517666\pi\)
\(152\) 6.53574 0.530119
\(153\) −11.6935 −0.945360
\(154\) −0.431635 −0.0347822
\(155\) 0 0
\(156\) 20.4072 1.63389
\(157\) −22.9949 −1.83520 −0.917598 0.397510i \(-0.869874\pi\)
−0.917598 + 0.397510i \(0.869874\pi\)
\(158\) −3.91814 −0.311711
\(159\) 30.5414 2.42209
\(160\) 0 0
\(161\) −0.222325 −0.0175216
\(162\) −0.745256 −0.0585529
\(163\) −8.59975 −0.673585 −0.336792 0.941579i \(-0.609342\pi\)
−0.336792 + 0.941579i \(0.609342\pi\)
\(164\) −3.81382 −0.297810
\(165\) 0 0
\(166\) 2.43417 0.188928
\(167\) 9.06718 0.701640 0.350820 0.936443i \(-0.385903\pi\)
0.350820 + 0.936443i \(0.385903\pi\)
\(168\) −2.97366 −0.229423
\(169\) 1.14980 0.0884463
\(170\) 0 0
\(171\) 27.0206 2.06632
\(172\) 16.1077 1.22820
\(173\) −18.4600 −1.40349 −0.701745 0.712428i \(-0.747596\pi\)
−0.701745 + 0.712428i \(0.747596\pi\)
\(174\) 5.86710 0.444784
\(175\) 0 0
\(176\) −5.48405 −0.413376
\(177\) −35.7497 −2.68711
\(178\) 2.83948 0.212828
\(179\) −6.33568 −0.473551 −0.236776 0.971564i \(-0.576091\pi\)
−0.236776 + 0.971564i \(0.576091\pi\)
\(180\) 0 0
\(181\) 21.2003 1.57580 0.787902 0.615801i \(-0.211167\pi\)
0.787902 + 0.615801i \(0.211167\pi\)
\(182\) −1.00354 −0.0743870
\(183\) 3.76668 0.278441
\(184\) 0.336170 0.0247828
\(185\) 0 0
\(186\) −0.185845 −0.0136268
\(187\) 3.65007 0.266920
\(188\) −2.01461 −0.146931
\(189\) −5.17835 −0.376670
\(190\) 0 0
\(191\) 16.9636 1.22744 0.613722 0.789522i \(-0.289672\pi\)
0.613722 + 0.789522i \(0.289672\pi\)
\(192\) −16.0808 −1.16053
\(193\) 2.68943 0.193589 0.0967946 0.995304i \(-0.469141\pi\)
0.0967946 + 0.995304i \(0.469141\pi\)
\(194\) −0.617399 −0.0443267
\(195\) 0 0
\(196\) 11.9715 0.855109
\(197\) 1.00000 0.0712470
\(198\) 2.69829 0.191759
\(199\) 5.68325 0.402875 0.201438 0.979501i \(-0.435439\pi\)
0.201438 + 0.979501i \(0.435439\pi\)
\(200\) 0 0
\(201\) −7.37793 −0.520399
\(202\) 5.31715 0.374113
\(203\) 5.28520 0.370948
\(204\) 12.2392 0.856912
\(205\) 0 0
\(206\) 4.55236 0.317178
\(207\) 1.38982 0.0965993
\(208\) −12.7502 −0.884068
\(209\) −8.43440 −0.583419
\(210\) 0 0
\(211\) 24.4504 1.68324 0.841618 0.540073i \(-0.181603\pi\)
0.841618 + 0.540073i \(0.181603\pi\)
\(212\) −20.2475 −1.39061
\(213\) 19.7361 1.35229
\(214\) 0.164620 0.0112532
\(215\) 0 0
\(216\) 7.83002 0.532765
\(217\) −0.167413 −0.0113647
\(218\) −2.47135 −0.167381
\(219\) 11.5173 0.778266
\(220\) 0 0
\(221\) 8.48628 0.570849
\(222\) 6.91165 0.463879
\(223\) −11.7779 −0.788710 −0.394355 0.918958i \(-0.629032\pi\)
−0.394355 + 0.918958i \(0.629032\pi\)
\(224\) 2.98330 0.199330
\(225\) 0 0
\(226\) −3.34226 −0.222324
\(227\) −21.2068 −1.40755 −0.703773 0.710425i \(-0.748503\pi\)
−0.703773 + 0.710425i \(0.748503\pi\)
\(228\) −28.2816 −1.87299
\(229\) 2.42971 0.160560 0.0802799 0.996772i \(-0.474419\pi\)
0.0802799 + 0.996772i \(0.474419\pi\)
\(230\) 0 0
\(231\) 3.83752 0.252490
\(232\) −7.99158 −0.524673
\(233\) 16.1706 1.05937 0.529685 0.848194i \(-0.322310\pi\)
0.529685 + 0.848194i \(0.322310\pi\)
\(234\) 6.27342 0.410106
\(235\) 0 0
\(236\) 23.7004 1.54277
\(237\) 34.8349 2.26277
\(238\) −0.601866 −0.0390132
\(239\) 15.1153 0.977725 0.488862 0.872361i \(-0.337412\pi\)
0.488862 + 0.872361i \(0.337412\pi\)
\(240\) 0 0
\(241\) −26.2341 −1.68989 −0.844943 0.534856i \(-0.820366\pi\)
−0.844943 + 0.534856i \(0.820366\pi\)
\(242\) 2.69707 0.173374
\(243\) −12.1105 −0.776888
\(244\) −2.49714 −0.159863
\(245\) 0 0
\(246\) −1.85099 −0.118015
\(247\) −19.6097 −1.24773
\(248\) 0.253139 0.0160744
\(249\) −21.6414 −1.37147
\(250\) 0 0
\(251\) −14.6337 −0.923669 −0.461835 0.886966i \(-0.652809\pi\)
−0.461835 + 0.886966i \(0.652809\pi\)
\(252\) 8.15035 0.513424
\(253\) −0.433828 −0.0272745
\(254\) 1.11353 0.0698689
\(255\) 0 0
\(256\) 8.34543 0.521590
\(257\) 10.8280 0.675430 0.337715 0.941248i \(-0.390346\pi\)
0.337715 + 0.941248i \(0.390346\pi\)
\(258\) 7.81771 0.486709
\(259\) 6.22615 0.386874
\(260\) 0 0
\(261\) −33.0395 −2.04509
\(262\) −1.08188 −0.0668386
\(263\) 11.9857 0.739068 0.369534 0.929217i \(-0.379517\pi\)
0.369534 + 0.929217i \(0.379517\pi\)
\(264\) −5.80259 −0.357125
\(265\) 0 0
\(266\) 1.39076 0.0852730
\(267\) −25.2448 −1.54496
\(268\) 4.89124 0.298780
\(269\) −27.6252 −1.68434 −0.842169 0.539213i \(-0.818722\pi\)
−0.842169 + 0.539213i \(0.818722\pi\)
\(270\) 0 0
\(271\) 9.65133 0.586277 0.293138 0.956070i \(-0.405300\pi\)
0.293138 + 0.956070i \(0.405300\pi\)
\(272\) −7.64689 −0.463661
\(273\) 8.92209 0.539990
\(274\) 3.35918 0.202936
\(275\) 0 0
\(276\) −1.45468 −0.0875615
\(277\) 9.47891 0.569532 0.284766 0.958597i \(-0.408084\pi\)
0.284766 + 0.958597i \(0.408084\pi\)
\(278\) 5.77195 0.346179
\(279\) 1.04655 0.0626554
\(280\) 0 0
\(281\) 1.28220 0.0764899 0.0382449 0.999268i \(-0.487823\pi\)
0.0382449 + 0.999268i \(0.487823\pi\)
\(282\) −0.977769 −0.0582253
\(283\) −16.1549 −0.960310 −0.480155 0.877184i \(-0.659420\pi\)
−0.480155 + 0.877184i \(0.659420\pi\)
\(284\) −13.0841 −0.776399
\(285\) 0 0
\(286\) −1.95823 −0.115792
\(287\) −1.66741 −0.0984243
\(288\) −18.6495 −1.09893
\(289\) −11.9104 −0.700611
\(290\) 0 0
\(291\) 5.48908 0.321776
\(292\) −7.63544 −0.446830
\(293\) −23.3783 −1.36578 −0.682889 0.730522i \(-0.739277\pi\)
−0.682889 + 0.730522i \(0.739277\pi\)
\(294\) 5.81024 0.338860
\(295\) 0 0
\(296\) −9.41436 −0.547198
\(297\) −10.1047 −0.586332
\(298\) 0.719613 0.0416861
\(299\) −1.00863 −0.0583308
\(300\) 0 0
\(301\) 7.04235 0.405914
\(302\) 0.438651 0.0252415
\(303\) −47.2730 −2.71576
\(304\) 17.6700 1.01345
\(305\) 0 0
\(306\) 3.76246 0.215085
\(307\) 22.3400 1.27501 0.637504 0.770447i \(-0.279967\pi\)
0.637504 + 0.770447i \(0.279967\pi\)
\(308\) −2.54410 −0.144964
\(309\) −40.4735 −2.30246
\(310\) 0 0
\(311\) 23.5861 1.33745 0.668723 0.743512i \(-0.266841\pi\)
0.668723 + 0.743512i \(0.266841\pi\)
\(312\) −13.4908 −0.763766
\(313\) −21.3334 −1.20583 −0.602917 0.797804i \(-0.705995\pi\)
−0.602917 + 0.797804i \(0.705995\pi\)
\(314\) 7.39879 0.417538
\(315\) 0 0
\(316\) −23.0939 −1.29914
\(317\) −31.4080 −1.76405 −0.882025 0.471202i \(-0.843820\pi\)
−0.882025 + 0.471202i \(0.843820\pi\)
\(318\) −9.82691 −0.551066
\(319\) 10.3132 0.577426
\(320\) 0 0
\(321\) −1.46358 −0.0816891
\(322\) 0.0715346 0.00398647
\(323\) −11.7608 −0.654389
\(324\) −4.39262 −0.244034
\(325\) 0 0
\(326\) 2.76704 0.153252
\(327\) 21.9719 1.21505
\(328\) 2.52124 0.139212
\(329\) −0.880794 −0.0485598
\(330\) 0 0
\(331\) −13.1941 −0.725213 −0.362607 0.931942i \(-0.618113\pi\)
−0.362607 + 0.931942i \(0.618113\pi\)
\(332\) 14.3473 0.787408
\(333\) −38.9216 −2.13289
\(334\) −2.91743 −0.159635
\(335\) 0 0
\(336\) −8.03959 −0.438595
\(337\) −16.8702 −0.918977 −0.459488 0.888184i \(-0.651967\pi\)
−0.459488 + 0.888184i \(0.651967\pi\)
\(338\) −0.369957 −0.0201230
\(339\) 29.7149 1.61389
\(340\) 0 0
\(341\) −0.326677 −0.0176906
\(342\) −8.69409 −0.470123
\(343\) 11.0380 0.595995
\(344\) −10.6485 −0.574129
\(345\) 0 0
\(346\) 5.93965 0.319318
\(347\) 12.0168 0.645098 0.322549 0.946553i \(-0.395460\pi\)
0.322549 + 0.946553i \(0.395460\pi\)
\(348\) 34.5813 1.85375
\(349\) 9.96763 0.533555 0.266778 0.963758i \(-0.414041\pi\)
0.266778 + 0.963758i \(0.414041\pi\)
\(350\) 0 0
\(351\) −23.4930 −1.25396
\(352\) 5.82139 0.310281
\(353\) −12.5743 −0.669262 −0.334631 0.942349i \(-0.608612\pi\)
−0.334631 + 0.942349i \(0.608612\pi\)
\(354\) 11.5027 0.611364
\(355\) 0 0
\(356\) 16.7362 0.887015
\(357\) 5.35099 0.283204
\(358\) 2.03855 0.107741
\(359\) 35.1287 1.85402 0.927011 0.375034i \(-0.122369\pi\)
0.927011 + 0.375034i \(0.122369\pi\)
\(360\) 0 0
\(361\) 8.17626 0.430330
\(362\) −6.82135 −0.358522
\(363\) −23.9787 −1.25856
\(364\) −5.91494 −0.310027
\(365\) 0 0
\(366\) −1.21196 −0.0633501
\(367\) 6.50600 0.339610 0.169805 0.985478i \(-0.445686\pi\)
0.169805 + 0.985478i \(0.445686\pi\)
\(368\) 0.908868 0.0473780
\(369\) 10.4235 0.542627
\(370\) 0 0
\(371\) −8.85228 −0.459587
\(372\) −1.09539 −0.0567933
\(373\) 11.7116 0.606402 0.303201 0.952927i \(-0.401945\pi\)
0.303201 + 0.952927i \(0.401945\pi\)
\(374\) −1.17444 −0.0607288
\(375\) 0 0
\(376\) 1.33182 0.0686834
\(377\) 23.9777 1.23491
\(378\) 1.66617 0.0856987
\(379\) 26.0985 1.34059 0.670294 0.742095i \(-0.266168\pi\)
0.670294 + 0.742095i \(0.266168\pi\)
\(380\) 0 0
\(381\) −9.89999 −0.507192
\(382\) −5.45817 −0.279264
\(383\) 21.6030 1.10386 0.551931 0.833890i \(-0.313891\pi\)
0.551931 + 0.833890i \(0.313891\pi\)
\(384\) 25.7595 1.31454
\(385\) 0 0
\(386\) −0.865343 −0.0440448
\(387\) −44.0240 −2.23786
\(388\) −3.63902 −0.184743
\(389\) −7.79774 −0.395361 −0.197681 0.980266i \(-0.563341\pi\)
−0.197681 + 0.980266i \(0.563341\pi\)
\(390\) 0 0
\(391\) −0.604924 −0.0305923
\(392\) −7.91413 −0.399724
\(393\) 9.61861 0.485194
\(394\) −0.321757 −0.0162099
\(395\) 0 0
\(396\) 15.9040 0.799206
\(397\) 31.1670 1.56423 0.782113 0.623137i \(-0.214142\pi\)
0.782113 + 0.623137i \(0.214142\pi\)
\(398\) −1.82863 −0.0916609
\(399\) −12.3648 −0.619013
\(400\) 0 0
\(401\) 11.3173 0.565158 0.282579 0.959244i \(-0.408810\pi\)
0.282579 + 0.959244i \(0.408810\pi\)
\(402\) 2.37390 0.118400
\(403\) −0.759512 −0.0378340
\(404\) 31.3398 1.55922
\(405\) 0 0
\(406\) −1.70055 −0.0843970
\(407\) 12.1493 0.602216
\(408\) −8.09105 −0.400567
\(409\) −3.75436 −0.185641 −0.0928205 0.995683i \(-0.529588\pi\)
−0.0928205 + 0.995683i \(0.529588\pi\)
\(410\) 0 0
\(411\) −29.8653 −1.47315
\(412\) 26.8321 1.32192
\(413\) 10.3619 0.509875
\(414\) −0.447186 −0.0219780
\(415\) 0 0
\(416\) 13.5345 0.663584
\(417\) −51.3164 −2.51298
\(418\) 2.71383 0.132738
\(419\) −3.49970 −0.170972 −0.0854859 0.996339i \(-0.527244\pi\)
−0.0854859 + 0.996339i \(0.527244\pi\)
\(420\) 0 0
\(421\) 24.1260 1.17583 0.587914 0.808923i \(-0.299949\pi\)
0.587914 + 0.808923i \(0.299949\pi\)
\(422\) −7.86710 −0.382965
\(423\) 5.50613 0.267717
\(424\) 13.3852 0.650045
\(425\) 0 0
\(426\) −6.35022 −0.307669
\(427\) −1.09176 −0.0528338
\(428\) 0.970288 0.0469007
\(429\) 17.4099 0.840559
\(430\) 0 0
\(431\) −18.2590 −0.879505 −0.439753 0.898119i \(-0.644934\pi\)
−0.439753 + 0.898119i \(0.644934\pi\)
\(432\) 21.1692 1.01850
\(433\) 33.8382 1.62616 0.813080 0.582152i \(-0.197789\pi\)
0.813080 + 0.582152i \(0.197789\pi\)
\(434\) 0.0538663 0.00258567
\(435\) 0 0
\(436\) −14.5664 −0.697603
\(437\) 1.39783 0.0668671
\(438\) −3.70577 −0.177069
\(439\) 10.2163 0.487596 0.243798 0.969826i \(-0.421607\pi\)
0.243798 + 0.969826i \(0.421607\pi\)
\(440\) 0 0
\(441\) −32.7193 −1.55806
\(442\) −2.73053 −0.129878
\(443\) −22.6314 −1.07525 −0.537624 0.843184i \(-0.680678\pi\)
−0.537624 + 0.843184i \(0.680678\pi\)
\(444\) 40.7380 1.93334
\(445\) 0 0
\(446\) 3.78964 0.179445
\(447\) −6.39784 −0.302607
\(448\) 4.66094 0.220209
\(449\) 1.25782 0.0593604 0.0296802 0.999559i \(-0.490551\pi\)
0.0296802 + 0.999559i \(0.490551\pi\)
\(450\) 0 0
\(451\) −3.25367 −0.153209
\(452\) −19.6996 −0.926592
\(453\) −3.89989 −0.183233
\(454\) 6.82345 0.320240
\(455\) 0 0
\(456\) 18.6964 0.875538
\(457\) −12.2454 −0.572815 −0.286407 0.958108i \(-0.592461\pi\)
−0.286407 + 0.958108i \(0.592461\pi\)
\(458\) −0.781778 −0.0365301
\(459\) −14.0898 −0.657656
\(460\) 0 0
\(461\) 20.0515 0.933892 0.466946 0.884286i \(-0.345354\pi\)
0.466946 + 0.884286i \(0.345354\pi\)
\(462\) −1.23475 −0.0574458
\(463\) −4.09512 −0.190316 −0.0951582 0.995462i \(-0.530336\pi\)
−0.0951582 + 0.995462i \(0.530336\pi\)
\(464\) −21.6060 −1.00303
\(465\) 0 0
\(466\) −5.20300 −0.241025
\(467\) −17.2068 −0.796234 −0.398117 0.917335i \(-0.630336\pi\)
−0.398117 + 0.917335i \(0.630336\pi\)
\(468\) 36.9762 1.70923
\(469\) 2.13846 0.0987449
\(470\) 0 0
\(471\) −65.7801 −3.03099
\(472\) −15.6679 −0.721173
\(473\) 13.7419 0.631854
\(474\) −11.2084 −0.514818
\(475\) 0 0
\(476\) −3.54746 −0.162598
\(477\) 55.3384 2.53377
\(478\) −4.86345 −0.222449
\(479\) −2.67160 −0.122068 −0.0610342 0.998136i \(-0.519440\pi\)
−0.0610342 + 0.998136i \(0.519440\pi\)
\(480\) 0 0
\(481\) 28.2466 1.28793
\(482\) 8.44101 0.384478
\(483\) −0.635990 −0.0289385
\(484\) 15.8968 0.722582
\(485\) 0 0
\(486\) 3.89664 0.176755
\(487\) 26.5967 1.20521 0.602605 0.798040i \(-0.294130\pi\)
0.602605 + 0.798040i \(0.294130\pi\)
\(488\) 1.65081 0.0747286
\(489\) −24.6008 −1.11248
\(490\) 0 0
\(491\) −18.3164 −0.826608 −0.413304 0.910593i \(-0.635625\pi\)
−0.413304 + 0.910593i \(0.635625\pi\)
\(492\) −10.9100 −0.491859
\(493\) 14.3805 0.647666
\(494\) 6.30955 0.283880
\(495\) 0 0
\(496\) 0.684387 0.0307299
\(497\) −5.72041 −0.256595
\(498\) 6.96328 0.312032
\(499\) 9.49828 0.425201 0.212601 0.977139i \(-0.431807\pi\)
0.212601 + 0.977139i \(0.431807\pi\)
\(500\) 0 0
\(501\) 25.9379 1.15882
\(502\) 4.70849 0.210150
\(503\) −10.0197 −0.446756 −0.223378 0.974732i \(-0.571708\pi\)
−0.223378 + 0.974732i \(0.571708\pi\)
\(504\) −5.38803 −0.240002
\(505\) 0 0
\(506\) 0.139587 0.00620542
\(507\) 3.28916 0.146077
\(508\) 6.56325 0.291197
\(509\) 8.65419 0.383590 0.191795 0.981435i \(-0.438569\pi\)
0.191795 + 0.981435i \(0.438569\pi\)
\(510\) 0 0
\(511\) −3.33823 −0.147675
\(512\) −20.6949 −0.914592
\(513\) 32.5580 1.43747
\(514\) −3.48398 −0.153672
\(515\) 0 0
\(516\) 46.0784 2.02849
\(517\) −1.71872 −0.0755891
\(518\) −2.00331 −0.0880204
\(519\) −52.8074 −2.31799
\(520\) 0 0
\(521\) 9.60415 0.420765 0.210383 0.977619i \(-0.432529\pi\)
0.210383 + 0.977619i \(0.432529\pi\)
\(522\) 10.6307 0.465293
\(523\) 4.62627 0.202293 0.101146 0.994872i \(-0.467749\pi\)
0.101146 + 0.994872i \(0.467749\pi\)
\(524\) −6.37670 −0.278568
\(525\) 0 0
\(526\) −3.85648 −0.168150
\(527\) −0.455514 −0.0198425
\(528\) −15.6879 −0.682727
\(529\) −22.9281 −0.996874
\(530\) 0 0
\(531\) −64.7755 −2.81102
\(532\) 8.19729 0.355398
\(533\) −7.56466 −0.327662
\(534\) 8.12271 0.351504
\(535\) 0 0
\(536\) −3.23350 −0.139666
\(537\) −18.1241 −0.782112
\(538\) 8.88862 0.383216
\(539\) 10.2132 0.439914
\(540\) 0 0
\(541\) 21.8706 0.940290 0.470145 0.882589i \(-0.344202\pi\)
0.470145 + 0.882589i \(0.344202\pi\)
\(542\) −3.10539 −0.133388
\(543\) 60.6463 2.60258
\(544\) 8.11727 0.348025
\(545\) 0 0
\(546\) −2.87075 −0.122857
\(547\) 24.0932 1.03015 0.515076 0.857145i \(-0.327764\pi\)
0.515076 + 0.857145i \(0.327764\pi\)
\(548\) 19.7994 0.845787
\(549\) 6.82492 0.291280
\(550\) 0 0
\(551\) −33.2298 −1.41564
\(552\) 0.961659 0.0409309
\(553\) −10.0967 −0.429357
\(554\) −3.04991 −0.129578
\(555\) 0 0
\(556\) 34.0205 1.44279
\(557\) −15.3101 −0.648710 −0.324355 0.945935i \(-0.605147\pi\)
−0.324355 + 0.945935i \(0.605147\pi\)
\(558\) −0.336735 −0.0142551
\(559\) 31.9495 1.35132
\(560\) 0 0
\(561\) 10.4415 0.440842
\(562\) −0.412559 −0.0174027
\(563\) −34.1032 −1.43728 −0.718638 0.695384i \(-0.755234\pi\)
−0.718638 + 0.695384i \(0.755234\pi\)
\(564\) −5.76308 −0.242669
\(565\) 0 0
\(566\) 5.19797 0.218487
\(567\) −1.92046 −0.0806519
\(568\) 8.64964 0.362931
\(569\) 30.2451 1.26794 0.633970 0.773358i \(-0.281424\pi\)
0.633970 + 0.773358i \(0.281424\pi\)
\(570\) 0 0
\(571\) 17.6296 0.737776 0.368888 0.929474i \(-0.379739\pi\)
0.368888 + 0.929474i \(0.379739\pi\)
\(572\) −11.5420 −0.482595
\(573\) 48.5267 2.02723
\(574\) 0.536502 0.0223932
\(575\) 0 0
\(576\) −29.1370 −1.21404
\(577\) −28.4571 −1.18468 −0.592342 0.805687i \(-0.701797\pi\)
−0.592342 + 0.805687i \(0.701797\pi\)
\(578\) 3.83226 0.159401
\(579\) 7.69347 0.319730
\(580\) 0 0
\(581\) 6.27266 0.260234
\(582\) −1.76615 −0.0732094
\(583\) −17.2737 −0.715403
\(584\) 5.04763 0.208873
\(585\) 0 0
\(586\) 7.52216 0.310737
\(587\) −12.1815 −0.502785 −0.251392 0.967885i \(-0.580888\pi\)
−0.251392 + 0.967885i \(0.580888\pi\)
\(588\) 34.2462 1.41229
\(589\) 1.05258 0.0433707
\(590\) 0 0
\(591\) 2.86064 0.117671
\(592\) −25.4526 −1.04610
\(593\) 15.5316 0.637807 0.318904 0.947787i \(-0.396685\pi\)
0.318904 + 0.947787i \(0.396685\pi\)
\(594\) 3.25125 0.133400
\(595\) 0 0
\(596\) 4.24148 0.173738
\(597\) 16.2577 0.665384
\(598\) 0.324536 0.0132712
\(599\) 17.5452 0.716877 0.358438 0.933553i \(-0.383309\pi\)
0.358438 + 0.933553i \(0.383309\pi\)
\(600\) 0 0
\(601\) 0.948894 0.0387062 0.0193531 0.999813i \(-0.493839\pi\)
0.0193531 + 0.999813i \(0.493839\pi\)
\(602\) −2.26593 −0.0923523
\(603\) −13.3682 −0.544395
\(604\) 2.58545 0.105201
\(605\) 0 0
\(606\) 15.2104 0.617881
\(607\) 42.6889 1.73269 0.866345 0.499446i \(-0.166463\pi\)
0.866345 + 0.499446i \(0.166463\pi\)
\(608\) −18.7569 −0.760695
\(609\) 15.1190 0.612654
\(610\) 0 0
\(611\) −3.99596 −0.161659
\(612\) 22.1763 0.896425
\(613\) −41.1196 −1.66080 −0.830402 0.557164i \(-0.811889\pi\)
−0.830402 + 0.557164i \(0.811889\pi\)
\(614\) −7.18805 −0.290086
\(615\) 0 0
\(616\) 1.68185 0.0677638
\(617\) 37.4229 1.50659 0.753294 0.657684i \(-0.228464\pi\)
0.753294 + 0.657684i \(0.228464\pi\)
\(618\) 13.0226 0.523848
\(619\) 9.19699 0.369658 0.184829 0.982771i \(-0.440827\pi\)
0.184829 + 0.982771i \(0.440827\pi\)
\(620\) 0 0
\(621\) 1.67464 0.0672009
\(622\) −7.58901 −0.304291
\(623\) 7.31709 0.293153
\(624\) −36.4737 −1.46012
\(625\) 0 0
\(626\) 6.86417 0.274347
\(627\) −24.1277 −0.963569
\(628\) 43.6093 1.74020
\(629\) 16.9408 0.675472
\(630\) 0 0
\(631\) −19.3908 −0.771937 −0.385968 0.922512i \(-0.626133\pi\)
−0.385968 + 0.922512i \(0.626133\pi\)
\(632\) 15.2669 0.607286
\(633\) 69.9437 2.78001
\(634\) 10.1058 0.401351
\(635\) 0 0
\(636\) −57.9208 −2.29671
\(637\) 23.7453 0.940824
\(638\) −3.31834 −0.131374
\(639\) 35.7601 1.41465
\(640\) 0 0
\(641\) 13.3926 0.528977 0.264488 0.964389i \(-0.414797\pi\)
0.264488 + 0.964389i \(0.414797\pi\)
\(642\) 0.470918 0.0185857
\(643\) −25.7558 −1.01571 −0.507855 0.861442i \(-0.669562\pi\)
−0.507855 + 0.861442i \(0.669562\pi\)
\(644\) 0.421633 0.0166146
\(645\) 0 0
\(646\) 3.78413 0.148885
\(647\) −18.6648 −0.733790 −0.366895 0.930262i \(-0.619579\pi\)
−0.366895 + 0.930262i \(0.619579\pi\)
\(648\) 2.90387 0.114075
\(649\) 20.2194 0.793683
\(650\) 0 0
\(651\) −0.478907 −0.0187698
\(652\) 16.3092 0.638717
\(653\) −23.0659 −0.902638 −0.451319 0.892363i \(-0.649046\pi\)
−0.451319 + 0.892363i \(0.649046\pi\)
\(654\) −7.06962 −0.276444
\(655\) 0 0
\(656\) 6.81642 0.266136
\(657\) 20.8684 0.814153
\(658\) 0.283402 0.0110482
\(659\) 14.3959 0.560784 0.280392 0.959886i \(-0.409536\pi\)
0.280392 + 0.959886i \(0.409536\pi\)
\(660\) 0 0
\(661\) −48.3648 −1.88117 −0.940586 0.339555i \(-0.889724\pi\)
−0.940586 + 0.339555i \(0.889724\pi\)
\(662\) 4.24530 0.164998
\(663\) 24.2762 0.942808
\(664\) −9.48468 −0.368077
\(665\) 0 0
\(666\) 12.5233 0.485269
\(667\) −1.70919 −0.0661802
\(668\) −17.1957 −0.665320
\(669\) −33.6924 −1.30262
\(670\) 0 0
\(671\) −2.13037 −0.0822422
\(672\) 8.53412 0.329211
\(673\) 6.79907 0.262085 0.131042 0.991377i \(-0.458168\pi\)
0.131042 + 0.991377i \(0.458168\pi\)
\(674\) 5.42810 0.209083
\(675\) 0 0
\(676\) −2.18057 −0.0838680
\(677\) 49.8767 1.91692 0.958459 0.285230i \(-0.0920699\pi\)
0.958459 + 0.285230i \(0.0920699\pi\)
\(678\) −9.56098 −0.367187
\(679\) −1.59099 −0.0610565
\(680\) 0 0
\(681\) −60.6649 −2.32469
\(682\) 0.105111 0.00402490
\(683\) 2.51134 0.0960938 0.0480469 0.998845i \(-0.484700\pi\)
0.0480469 + 0.998845i \(0.484700\pi\)
\(684\) −51.2439 −1.95936
\(685\) 0 0
\(686\) −3.55155 −0.135599
\(687\) 6.95052 0.265179
\(688\) −28.7893 −1.09758
\(689\) −40.1607 −1.53000
\(690\) 0 0
\(691\) −23.6282 −0.898861 −0.449430 0.893315i \(-0.648373\pi\)
−0.449430 + 0.893315i \(0.648373\pi\)
\(692\) 35.0089 1.33084
\(693\) 6.95327 0.264133
\(694\) −3.86651 −0.146771
\(695\) 0 0
\(696\) −22.8610 −0.866544
\(697\) −4.53687 −0.171846
\(698\) −3.20716 −0.121393
\(699\) 46.2581 1.74964
\(700\) 0 0
\(701\) 26.3338 0.994614 0.497307 0.867575i \(-0.334322\pi\)
0.497307 + 0.867575i \(0.334322\pi\)
\(702\) 7.55903 0.285297
\(703\) −39.1458 −1.47641
\(704\) 9.09502 0.342782
\(705\) 0 0
\(706\) 4.04587 0.152268
\(707\) 13.7019 0.515311
\(708\) 67.7983 2.54802
\(709\) −31.8692 −1.19687 −0.598436 0.801170i \(-0.704211\pi\)
−0.598436 + 0.801170i \(0.704211\pi\)
\(710\) 0 0
\(711\) 63.1179 2.36710
\(712\) −11.0639 −0.414639
\(713\) 0.0541400 0.00202756
\(714\) −1.72172 −0.0644337
\(715\) 0 0
\(716\) 12.0154 0.449038
\(717\) 43.2392 1.61480
\(718\) −11.3029 −0.421821
\(719\) −20.2244 −0.754242 −0.377121 0.926164i \(-0.623086\pi\)
−0.377121 + 0.926164i \(0.623086\pi\)
\(720\) 0 0
\(721\) 11.7311 0.436887
\(722\) −2.63077 −0.0979072
\(723\) −75.0461 −2.79100
\(724\) −40.2057 −1.49423
\(725\) 0 0
\(726\) 7.71533 0.286343
\(727\) 9.29216 0.344627 0.172314 0.985042i \(-0.444876\pi\)
0.172314 + 0.985042i \(0.444876\pi\)
\(728\) 3.91025 0.144923
\(729\) −41.5923 −1.54045
\(730\) 0 0
\(731\) 19.1616 0.708716
\(732\) −7.14341 −0.264028
\(733\) −22.2835 −0.823061 −0.411530 0.911396i \(-0.635006\pi\)
−0.411530 + 0.911396i \(0.635006\pi\)
\(734\) −2.09335 −0.0772671
\(735\) 0 0
\(736\) −0.964775 −0.0355621
\(737\) 4.17284 0.153708
\(738\) −3.35385 −0.123457
\(739\) −8.92753 −0.328405 −0.164202 0.986427i \(-0.552505\pi\)
−0.164202 + 0.986427i \(0.552505\pi\)
\(740\) 0 0
\(741\) −56.0961 −2.06074
\(742\) 2.84829 0.104564
\(743\) 21.2507 0.779613 0.389807 0.920897i \(-0.372542\pi\)
0.389807 + 0.920897i \(0.372542\pi\)
\(744\) 0.724139 0.0265482
\(745\) 0 0
\(746\) −3.76828 −0.137967
\(747\) −39.2124 −1.43471
\(748\) −6.92226 −0.253103
\(749\) 0.424212 0.0155004
\(750\) 0 0
\(751\) 35.7550 1.30472 0.652360 0.757910i \(-0.273779\pi\)
0.652360 + 0.757910i \(0.273779\pi\)
\(752\) 3.60071 0.131304
\(753\) −41.8616 −1.52552
\(754\) −7.71501 −0.280964
\(755\) 0 0
\(756\) 9.82060 0.357172
\(757\) 3.60221 0.130925 0.0654623 0.997855i \(-0.479148\pi\)
0.0654623 + 0.997855i \(0.479148\pi\)
\(758\) −8.39738 −0.305007
\(759\) −1.24102 −0.0450463
\(760\) 0 0
\(761\) 38.7623 1.40513 0.702567 0.711618i \(-0.252037\pi\)
0.702567 + 0.711618i \(0.252037\pi\)
\(762\) 3.18539 0.115395
\(763\) −6.36845 −0.230554
\(764\) −32.1710 −1.16391
\(765\) 0 0
\(766\) −6.95093 −0.251147
\(767\) 47.0095 1.69741
\(768\) 23.8732 0.861451
\(769\) −23.0743 −0.832080 −0.416040 0.909346i \(-0.636582\pi\)
−0.416040 + 0.909346i \(0.636582\pi\)
\(770\) 0 0
\(771\) 30.9749 1.11553
\(772\) −5.10042 −0.183568
\(773\) −35.9068 −1.29148 −0.645738 0.763559i \(-0.723450\pi\)
−0.645738 + 0.763559i \(0.723450\pi\)
\(774\) 14.1650 0.509152
\(775\) 0 0
\(776\) 2.40568 0.0863588
\(777\) 17.8107 0.638957
\(778\) 2.50898 0.0899514
\(779\) 10.4836 0.375613
\(780\) 0 0
\(781\) −11.1624 −0.399422
\(782\) 0.194639 0.00696027
\(783\) −39.8103 −1.42270
\(784\) −21.3966 −0.764165
\(785\) 0 0
\(786\) −3.09486 −0.110390
\(787\) 47.6891 1.69993 0.849967 0.526836i \(-0.176622\pi\)
0.849967 + 0.526836i \(0.176622\pi\)
\(788\) −1.89647 −0.0675590
\(789\) 34.2866 1.22064
\(790\) 0 0
\(791\) −8.61272 −0.306233
\(792\) −10.5138 −0.373592
\(793\) −4.95304 −0.175888
\(794\) −10.0282 −0.355888
\(795\) 0 0
\(796\) −10.7781 −0.382021
\(797\) 37.3731 1.32382 0.661911 0.749582i \(-0.269745\pi\)
0.661911 + 0.749582i \(0.269745\pi\)
\(798\) 3.97846 0.140836
\(799\) −2.39656 −0.0847841
\(800\) 0 0
\(801\) −45.7415 −1.61620
\(802\) −3.64142 −0.128583
\(803\) −6.51399 −0.229874
\(804\) 13.9920 0.493461
\(805\) 0 0
\(806\) 0.244379 0.00860787
\(807\) −79.0257 −2.78183
\(808\) −20.7181 −0.728861
\(809\) 11.5270 0.405269 0.202635 0.979254i \(-0.435050\pi\)
0.202635 + 0.979254i \(0.435050\pi\)
\(810\) 0 0
\(811\) −54.6969 −1.92067 −0.960334 0.278852i \(-0.910046\pi\)
−0.960334 + 0.278852i \(0.910046\pi\)
\(812\) −10.0232 −0.351747
\(813\) 27.6089 0.968288
\(814\) −3.90911 −0.137014
\(815\) 0 0
\(816\) −21.8749 −0.765776
\(817\) −44.2775 −1.54907
\(818\) 1.20799 0.0422365
\(819\) 16.1661 0.564889
\(820\) 0 0
\(821\) 37.6766 1.31492 0.657462 0.753488i \(-0.271630\pi\)
0.657462 + 0.753488i \(0.271630\pi\)
\(822\) 9.60939 0.335166
\(823\) −42.6684 −1.48733 −0.743664 0.668554i \(-0.766914\pi\)
−0.743664 + 0.668554i \(0.766914\pi\)
\(824\) −17.7381 −0.617938
\(825\) 0 0
\(826\) −3.33402 −0.116005
\(827\) −9.65451 −0.335720 −0.167860 0.985811i \(-0.553686\pi\)
−0.167860 + 0.985811i \(0.553686\pi\)
\(828\) −2.63576 −0.0915990
\(829\) 56.0163 1.94553 0.972763 0.231803i \(-0.0744624\pi\)
0.972763 + 0.231803i \(0.0744624\pi\)
\(830\) 0 0
\(831\) 27.1157 0.940633
\(832\) 21.1456 0.733091
\(833\) 14.2412 0.493427
\(834\) 16.5114 0.571745
\(835\) 0 0
\(836\) 15.9956 0.553219
\(837\) 1.26102 0.0435872
\(838\) 1.12606 0.0388990
\(839\) −36.1692 −1.24870 −0.624350 0.781144i \(-0.714636\pi\)
−0.624350 + 0.781144i \(0.714636\pi\)
\(840\) 0 0
\(841\) 11.6317 0.401093
\(842\) −7.76271 −0.267521
\(843\) 3.66792 0.126330
\(844\) −46.3695 −1.59611
\(845\) 0 0
\(846\) −1.77164 −0.0609101
\(847\) 6.95013 0.238809
\(848\) 36.1883 1.24271
\(849\) −46.2133 −1.58604
\(850\) 0 0
\(851\) −2.01349 −0.0690215
\(852\) −37.4289 −1.28229
\(853\) 18.1371 0.621002 0.310501 0.950573i \(-0.399503\pi\)
0.310501 + 0.950573i \(0.399503\pi\)
\(854\) 0.351281 0.0120206
\(855\) 0 0
\(856\) −0.641438 −0.0219239
\(857\) −13.9610 −0.476898 −0.238449 0.971155i \(-0.576639\pi\)
−0.238449 + 0.971155i \(0.576639\pi\)
\(858\) −5.60177 −0.191241
\(859\) −5.11540 −0.174535 −0.0872676 0.996185i \(-0.527814\pi\)
−0.0872676 + 0.996185i \(0.527814\pi\)
\(860\) 0 0
\(861\) −4.76986 −0.162556
\(862\) 5.87497 0.200102
\(863\) 25.1731 0.856901 0.428451 0.903565i \(-0.359060\pi\)
0.428451 + 0.903565i \(0.359060\pi\)
\(864\) −22.4714 −0.764492
\(865\) 0 0
\(866\) −10.8877 −0.369979
\(867\) −34.0713 −1.15712
\(868\) 0.317494 0.0107764
\(869\) −19.7020 −0.668345
\(870\) 0 0
\(871\) 9.70169 0.328729
\(872\) 9.62953 0.326097
\(873\) 9.94576 0.336613
\(874\) −0.449761 −0.0152134
\(875\) 0 0
\(876\) −21.8422 −0.737980
\(877\) −11.0092 −0.371755 −0.185878 0.982573i \(-0.559513\pi\)
−0.185878 + 0.982573i \(0.559513\pi\)
\(878\) −3.28716 −0.110936
\(879\) −66.8769 −2.25570
\(880\) 0 0
\(881\) 4.71494 0.158850 0.0794252 0.996841i \(-0.474692\pi\)
0.0794252 + 0.996841i \(0.474692\pi\)
\(882\) 10.5277 0.354485
\(883\) 16.4519 0.553651 0.276826 0.960920i \(-0.410718\pi\)
0.276826 + 0.960920i \(0.410718\pi\)
\(884\) −16.0940 −0.541300
\(885\) 0 0
\(886\) 7.28181 0.244637
\(887\) −47.2680 −1.58710 −0.793552 0.608502i \(-0.791771\pi\)
−0.793552 + 0.608502i \(0.791771\pi\)
\(888\) −26.9310 −0.903747
\(889\) 2.86947 0.0962388
\(890\) 0 0
\(891\) −3.74745 −0.125544
\(892\) 22.3365 0.747883
\(893\) 5.53784 0.185317
\(894\) 2.05855 0.0688483
\(895\) 0 0
\(896\) −7.46628 −0.249431
\(897\) −2.88534 −0.0963385
\(898\) −0.404714 −0.0135055
\(899\) −1.28704 −0.0429252
\(900\) 0 0
\(901\) −24.0862 −0.802428
\(902\) 1.04689 0.0348577
\(903\) 20.1456 0.670403
\(904\) 13.0230 0.433139
\(905\) 0 0
\(906\) 1.25482 0.0416886
\(907\) 25.1296 0.834416 0.417208 0.908811i \(-0.363009\pi\)
0.417208 + 0.908811i \(0.363009\pi\)
\(908\) 40.2181 1.33469
\(909\) −85.6547 −2.84099
\(910\) 0 0
\(911\) 11.7520 0.389361 0.194681 0.980867i \(-0.437633\pi\)
0.194681 + 0.980867i \(0.437633\pi\)
\(912\) 50.5475 1.67379
\(913\) 12.2400 0.405085
\(914\) 3.94004 0.130325
\(915\) 0 0
\(916\) −4.60788 −0.152249
\(917\) −2.78791 −0.0920649
\(918\) 4.53350 0.149628
\(919\) −40.4198 −1.33333 −0.666663 0.745359i \(-0.732278\pi\)
−0.666663 + 0.745359i \(0.732278\pi\)
\(920\) 0 0
\(921\) 63.9065 2.10579
\(922\) −6.45172 −0.212476
\(923\) −25.9521 −0.854225
\(924\) −7.27775 −0.239420
\(925\) 0 0
\(926\) 1.31764 0.0433002
\(927\) −73.3346 −2.40862
\(928\) 22.9351 0.752880
\(929\) 25.2709 0.829112 0.414556 0.910024i \(-0.363937\pi\)
0.414556 + 0.910024i \(0.363937\pi\)
\(930\) 0 0
\(931\) −32.9077 −1.07851
\(932\) −30.6671 −1.00453
\(933\) 67.4713 2.20891
\(934\) 5.53641 0.181157
\(935\) 0 0
\(936\) −24.4442 −0.798984
\(937\) −47.3151 −1.54572 −0.772858 0.634579i \(-0.781174\pi\)
−0.772858 + 0.634579i \(0.781174\pi\)
\(938\) −0.688066 −0.0224661
\(939\) −61.0270 −1.99154
\(940\) 0 0
\(941\) 25.0662 0.817136 0.408568 0.912728i \(-0.366028\pi\)
0.408568 + 0.912728i \(0.366028\pi\)
\(942\) 21.1652 0.689601
\(943\) 0.539228 0.0175597
\(944\) −42.3596 −1.37869
\(945\) 0 0
\(946\) −4.42157 −0.143758
\(947\) −41.4584 −1.34722 −0.673609 0.739088i \(-0.735257\pi\)
−0.673609 + 0.739088i \(0.735257\pi\)
\(948\) −66.0633 −2.14564
\(949\) −15.1448 −0.491620
\(950\) 0 0
\(951\) −89.8469 −2.91348
\(952\) 2.34516 0.0760069
\(953\) −10.9171 −0.353640 −0.176820 0.984243i \(-0.556581\pi\)
−0.176820 + 0.984243i \(0.556581\pi\)
\(954\) −17.8055 −0.576476
\(955\) 0 0
\(956\) −28.6657 −0.927114
\(957\) 29.5022 0.953670
\(958\) 0.859606 0.0277726
\(959\) 8.65633 0.279528
\(960\) 0 0
\(961\) −30.9592 −0.998685
\(962\) −9.08854 −0.293026
\(963\) −2.65189 −0.0854559
\(964\) 49.7522 1.60241
\(965\) 0 0
\(966\) 0.204634 0.00658400
\(967\) 15.3317 0.493035 0.246517 0.969138i \(-0.420714\pi\)
0.246517 + 0.969138i \(0.420714\pi\)
\(968\) −10.5091 −0.337774
\(969\) −33.6434 −1.08078
\(970\) 0 0
\(971\) 59.2555 1.90160 0.950800 0.309804i \(-0.100264\pi\)
0.950800 + 0.309804i \(0.100264\pi\)
\(972\) 22.9672 0.736673
\(973\) 14.8738 0.476833
\(974\) −8.55767 −0.274205
\(975\) 0 0
\(976\) 4.46312 0.142861
\(977\) 40.8266 1.30616 0.653080 0.757289i \(-0.273477\pi\)
0.653080 + 0.757289i \(0.273477\pi\)
\(978\) 7.91548 0.253109
\(979\) 14.2780 0.456328
\(980\) 0 0
\(981\) 39.8112 1.27108
\(982\) 5.89344 0.188067
\(983\) 41.8978 1.33633 0.668167 0.744011i \(-0.267079\pi\)
0.668167 + 0.744011i \(0.267079\pi\)
\(984\) 7.21235 0.229921
\(985\) 0 0
\(986\) −4.62704 −0.147355
\(987\) −2.51963 −0.0802007
\(988\) 37.1892 1.18315
\(989\) −2.27744 −0.0724184
\(990\) 0 0
\(991\) 15.5921 0.495301 0.247650 0.968849i \(-0.420342\pi\)
0.247650 + 0.968849i \(0.420342\pi\)
\(992\) −0.726485 −0.0230659
\(993\) −37.7435 −1.19775
\(994\) 1.84058 0.0583798
\(995\) 0 0
\(996\) 41.0423 1.30047
\(997\) 1.65744 0.0524916 0.0262458 0.999656i \(-0.491645\pi\)
0.0262458 + 0.999656i \(0.491645\pi\)
\(998\) −3.05614 −0.0967405
\(999\) −46.8979 −1.48378
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4925.2.a.r.1.24 49
5.2 odd 4 985.2.b.a.789.45 98
5.3 odd 4 985.2.b.a.789.54 yes 98
5.4 even 2 4925.2.a.s.1.26 49
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
985.2.b.a.789.45 98 5.2 odd 4
985.2.b.a.789.54 yes 98 5.3 odd 4
4925.2.a.r.1.24 49 1.1 even 1 trivial
4925.2.a.s.1.26 49 5.4 even 2