Properties

Label 4925.2.a.r.1.14
Level $4925$
Weight $2$
Character 4925.1
Self dual yes
Analytic conductor $39.326$
Analytic rank $1$
Dimension $49$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4925,2,Mod(1,4925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4925.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4925, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4925 = 5^{2} \cdot 197 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4925.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [49,-5,-22] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(39.3263229955\)
Analytic rank: \(1\)
Dimension: \(49\)
Twist minimal: no (minimal twist has level 985)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.14
Character \(\chi\) \(=\) 4925.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.45182 q^{2} -0.257058 q^{3} +0.107768 q^{4} +0.373200 q^{6} -4.95623 q^{7} +2.74717 q^{8} -2.93392 q^{9} +4.28184 q^{11} -0.0277025 q^{12} -0.0395948 q^{13} +7.19553 q^{14} -4.20392 q^{16} +2.35942 q^{17} +4.25951 q^{18} -0.622913 q^{19} +1.27404 q^{21} -6.21644 q^{22} -4.49034 q^{23} -0.706181 q^{24} +0.0574844 q^{26} +1.52536 q^{27} -0.534122 q^{28} -0.366538 q^{29} +5.71743 q^{31} +0.608974 q^{32} -1.10068 q^{33} -3.42545 q^{34} -0.316182 q^{36} -0.447300 q^{37} +0.904355 q^{38} +0.0101782 q^{39} -1.30887 q^{41} -1.84967 q^{42} -11.6799 q^{43} +0.461444 q^{44} +6.51915 q^{46} -2.91457 q^{47} +1.08065 q^{48} +17.5642 q^{49} -0.606508 q^{51} -0.00426704 q^{52} +5.77092 q^{53} -2.21454 q^{54} -13.6156 q^{56} +0.160125 q^{57} +0.532146 q^{58} +1.75917 q^{59} +6.71285 q^{61} -8.30066 q^{62} +14.5412 q^{63} +7.52373 q^{64} +1.59798 q^{66} +10.5271 q^{67} +0.254270 q^{68} +1.15428 q^{69} -2.65514 q^{71} -8.05999 q^{72} -0.622508 q^{73} +0.649396 q^{74} -0.0671299 q^{76} -21.2218 q^{77} -0.0147768 q^{78} +14.8361 q^{79} +8.40966 q^{81} +1.90024 q^{82} +9.41793 q^{83} +0.137300 q^{84} +16.9570 q^{86} +0.0942214 q^{87} +11.7630 q^{88} -10.5409 q^{89} +0.196241 q^{91} -0.483914 q^{92} -1.46971 q^{93} +4.23142 q^{94} -0.156541 q^{96} +4.20242 q^{97} -25.5000 q^{98} -12.5626 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 49 q - 5 q^{2} - 22 q^{3} + 49 q^{4} + 2 q^{6} - 32 q^{7} - 15 q^{8} + 51 q^{9} - 2 q^{11} - 44 q^{12} - 32 q^{13} - 8 q^{14} + 49 q^{16} - 14 q^{17} - 25 q^{18} + 4 q^{19} + 10 q^{21} - 38 q^{22} - 24 q^{23}+ \cdots + 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.45182 −1.02659 −0.513294 0.858213i \(-0.671575\pi\)
−0.513294 + 0.858213i \(0.671575\pi\)
\(3\) −0.257058 −0.148412 −0.0742061 0.997243i \(-0.523642\pi\)
−0.0742061 + 0.997243i \(0.523642\pi\)
\(4\) 0.107768 0.0538838
\(5\) 0 0
\(6\) 0.373200 0.152358
\(7\) −4.95623 −1.87328 −0.936640 0.350294i \(-0.886082\pi\)
−0.936640 + 0.350294i \(0.886082\pi\)
\(8\) 2.74717 0.971272
\(9\) −2.93392 −0.977974
\(10\) 0 0
\(11\) 4.28184 1.29102 0.645512 0.763750i \(-0.276644\pi\)
0.645512 + 0.763750i \(0.276644\pi\)
\(12\) −0.0277025 −0.00799702
\(13\) −0.0395948 −0.0109816 −0.00549082 0.999985i \(-0.501748\pi\)
−0.00549082 + 0.999985i \(0.501748\pi\)
\(14\) 7.19553 1.92309
\(15\) 0 0
\(16\) −4.20392 −1.05098
\(17\) 2.35942 0.572244 0.286122 0.958193i \(-0.407634\pi\)
0.286122 + 0.958193i \(0.407634\pi\)
\(18\) 4.25951 1.00398
\(19\) −0.622913 −0.142906 −0.0714531 0.997444i \(-0.522764\pi\)
−0.0714531 + 0.997444i \(0.522764\pi\)
\(20\) 0 0
\(21\) 1.27404 0.278018
\(22\) −6.21644 −1.32535
\(23\) −4.49034 −0.936302 −0.468151 0.883649i \(-0.655080\pi\)
−0.468151 + 0.883649i \(0.655080\pi\)
\(24\) −0.706181 −0.144149
\(25\) 0 0
\(26\) 0.0574844 0.0112736
\(27\) 1.52536 0.293556
\(28\) −0.534122 −0.100939
\(29\) −0.366538 −0.0680645 −0.0340322 0.999421i \(-0.510835\pi\)
−0.0340322 + 0.999421i \(0.510835\pi\)
\(30\) 0 0
\(31\) 5.71743 1.02688 0.513441 0.858125i \(-0.328371\pi\)
0.513441 + 0.858125i \(0.328371\pi\)
\(32\) 0.608974 0.107652
\(33\) −1.10068 −0.191604
\(34\) −3.42545 −0.587459
\(35\) 0 0
\(36\) −0.316182 −0.0526970
\(37\) −0.447300 −0.0735356 −0.0367678 0.999324i \(-0.511706\pi\)
−0.0367678 + 0.999324i \(0.511706\pi\)
\(38\) 0.904355 0.146706
\(39\) 0.0101782 0.00162981
\(40\) 0 0
\(41\) −1.30887 −0.204411 −0.102205 0.994763i \(-0.532590\pi\)
−0.102205 + 0.994763i \(0.532590\pi\)
\(42\) −1.84967 −0.285410
\(43\) −11.6799 −1.78116 −0.890581 0.454825i \(-0.849702\pi\)
−0.890581 + 0.454825i \(0.849702\pi\)
\(44\) 0.461444 0.0695653
\(45\) 0 0
\(46\) 6.51915 0.961196
\(47\) −2.91457 −0.425134 −0.212567 0.977146i \(-0.568182\pi\)
−0.212567 + 0.977146i \(0.568182\pi\)
\(48\) 1.08065 0.155978
\(49\) 17.5642 2.50918
\(50\) 0 0
\(51\) −0.606508 −0.0849280
\(52\) −0.00426704 −0.000591733 0
\(53\) 5.77092 0.792697 0.396348 0.918100i \(-0.370277\pi\)
0.396348 + 0.918100i \(0.370277\pi\)
\(54\) −2.21454 −0.301361
\(55\) 0 0
\(56\) −13.6156 −1.81946
\(57\) 0.160125 0.0212090
\(58\) 0.532146 0.0698742
\(59\) 1.75917 0.229024 0.114512 0.993422i \(-0.463470\pi\)
0.114512 + 0.993422i \(0.463470\pi\)
\(60\) 0 0
\(61\) 6.71285 0.859493 0.429746 0.902950i \(-0.358603\pi\)
0.429746 + 0.902950i \(0.358603\pi\)
\(62\) −8.30066 −1.05418
\(63\) 14.5412 1.83202
\(64\) 7.52373 0.940466
\(65\) 0 0
\(66\) 1.59798 0.196698
\(67\) 10.5271 1.28609 0.643044 0.765829i \(-0.277671\pi\)
0.643044 + 0.765829i \(0.277671\pi\)
\(68\) 0.254270 0.0308347
\(69\) 1.15428 0.138959
\(70\) 0 0
\(71\) −2.65514 −0.315107 −0.157554 0.987510i \(-0.550361\pi\)
−0.157554 + 0.987510i \(0.550361\pi\)
\(72\) −8.05999 −0.949878
\(73\) −0.622508 −0.0728590 −0.0364295 0.999336i \(-0.511598\pi\)
−0.0364295 + 0.999336i \(0.511598\pi\)
\(74\) 0.649396 0.0754908
\(75\) 0 0
\(76\) −0.0671299 −0.00770033
\(77\) −21.2218 −2.41845
\(78\) −0.0147768 −0.00167314
\(79\) 14.8361 1.66919 0.834594 0.550865i \(-0.185702\pi\)
0.834594 + 0.550865i \(0.185702\pi\)
\(80\) 0 0
\(81\) 8.40966 0.934407
\(82\) 1.90024 0.209846
\(83\) 9.41793 1.03375 0.516876 0.856060i \(-0.327095\pi\)
0.516876 + 0.856060i \(0.327095\pi\)
\(84\) 0.137300 0.0149807
\(85\) 0 0
\(86\) 16.9570 1.82852
\(87\) 0.0942214 0.0101016
\(88\) 11.7630 1.25393
\(89\) −10.5409 −1.11733 −0.558667 0.829392i \(-0.688687\pi\)
−0.558667 + 0.829392i \(0.688687\pi\)
\(90\) 0 0
\(91\) 0.196241 0.0205717
\(92\) −0.483914 −0.0504515
\(93\) −1.46971 −0.152402
\(94\) 4.23142 0.436438
\(95\) 0 0
\(96\) −0.156541 −0.0159769
\(97\) 4.20242 0.426691 0.213345 0.976977i \(-0.431564\pi\)
0.213345 + 0.976977i \(0.431564\pi\)
\(98\) −25.5000 −2.57589
\(99\) −12.5626 −1.26259
\(100\) 0 0
\(101\) 9.19741 0.915177 0.457588 0.889164i \(-0.348713\pi\)
0.457588 + 0.889164i \(0.348713\pi\)
\(102\) 0.880537 0.0871862
\(103\) −12.3007 −1.21202 −0.606012 0.795456i \(-0.707232\pi\)
−0.606012 + 0.795456i \(0.707232\pi\)
\(104\) −0.108774 −0.0106662
\(105\) 0 0
\(106\) −8.37831 −0.813773
\(107\) 0.189655 0.0183346 0.00916732 0.999958i \(-0.497082\pi\)
0.00916732 + 0.999958i \(0.497082\pi\)
\(108\) 0.164384 0.0158179
\(109\) 9.03968 0.865844 0.432922 0.901431i \(-0.357483\pi\)
0.432922 + 0.901431i \(0.357483\pi\)
\(110\) 0 0
\(111\) 0.114982 0.0109136
\(112\) 20.8356 1.96878
\(113\) −2.29175 −0.215590 −0.107795 0.994173i \(-0.534379\pi\)
−0.107795 + 0.994173i \(0.534379\pi\)
\(114\) −0.232471 −0.0217729
\(115\) 0 0
\(116\) −0.0395010 −0.00366757
\(117\) 0.116168 0.0107398
\(118\) −2.55399 −0.235114
\(119\) −11.6938 −1.07197
\(120\) 0 0
\(121\) 7.33416 0.666742
\(122\) −9.74583 −0.882346
\(123\) 0.336455 0.0303371
\(124\) 0.616155 0.0553323
\(125\) 0 0
\(126\) −21.1111 −1.88073
\(127\) 10.6800 0.947694 0.473847 0.880607i \(-0.342865\pi\)
0.473847 + 0.880607i \(0.342865\pi\)
\(128\) −12.1410 −1.07312
\(129\) 3.00240 0.264346
\(130\) 0 0
\(131\) −11.3072 −0.987916 −0.493958 0.869486i \(-0.664450\pi\)
−0.493958 + 0.869486i \(0.664450\pi\)
\(132\) −0.118618 −0.0103243
\(133\) 3.08730 0.267703
\(134\) −15.2834 −1.32028
\(135\) 0 0
\(136\) 6.48174 0.555805
\(137\) 15.4681 1.32153 0.660764 0.750593i \(-0.270232\pi\)
0.660764 + 0.750593i \(0.270232\pi\)
\(138\) −1.67580 −0.142653
\(139\) 10.7058 0.908053 0.454027 0.890988i \(-0.349987\pi\)
0.454027 + 0.890988i \(0.349987\pi\)
\(140\) 0 0
\(141\) 0.749213 0.0630951
\(142\) 3.85477 0.323485
\(143\) −0.169539 −0.0141775
\(144\) 12.3340 1.02783
\(145\) 0 0
\(146\) 0.903766 0.0747962
\(147\) −4.51502 −0.372392
\(148\) −0.0482044 −0.00396238
\(149\) −0.487807 −0.0399627 −0.0199813 0.999800i \(-0.506361\pi\)
−0.0199813 + 0.999800i \(0.506361\pi\)
\(150\) 0 0
\(151\) −3.38077 −0.275123 −0.137562 0.990493i \(-0.543927\pi\)
−0.137562 + 0.990493i \(0.543927\pi\)
\(152\) −1.71125 −0.138801
\(153\) −6.92236 −0.559640
\(154\) 30.8101 2.48275
\(155\) 0 0
\(156\) 0.00109688 8.78204e−5 0
\(157\) −15.3820 −1.22762 −0.613808 0.789456i \(-0.710363\pi\)
−0.613808 + 0.789456i \(0.710363\pi\)
\(158\) −21.5392 −1.71357
\(159\) −1.48346 −0.117646
\(160\) 0 0
\(161\) 22.2552 1.75395
\(162\) −12.2093 −0.959251
\(163\) −15.6399 −1.22501 −0.612505 0.790467i \(-0.709838\pi\)
−0.612505 + 0.790467i \(0.709838\pi\)
\(164\) −0.141054 −0.0110144
\(165\) 0 0
\(166\) −13.6731 −1.06124
\(167\) −21.8447 −1.69040 −0.845199 0.534452i \(-0.820518\pi\)
−0.845199 + 0.534452i \(0.820518\pi\)
\(168\) 3.50000 0.270031
\(169\) −12.9984 −0.999879
\(170\) 0 0
\(171\) 1.82758 0.139758
\(172\) −1.25871 −0.0959758
\(173\) −14.1366 −1.07478 −0.537392 0.843333i \(-0.680590\pi\)
−0.537392 + 0.843333i \(0.680590\pi\)
\(174\) −0.136792 −0.0103702
\(175\) 0 0
\(176\) −18.0005 −1.35684
\(177\) −0.452207 −0.0339900
\(178\) 15.3035 1.14704
\(179\) −22.8075 −1.70471 −0.852356 0.522961i \(-0.824827\pi\)
−0.852356 + 0.522961i \(0.824827\pi\)
\(180\) 0 0
\(181\) 5.65631 0.420430 0.210215 0.977655i \(-0.432584\pi\)
0.210215 + 0.977655i \(0.432584\pi\)
\(182\) −0.284906 −0.0211186
\(183\) −1.72559 −0.127559
\(184\) −12.3357 −0.909403
\(185\) 0 0
\(186\) 2.13375 0.156454
\(187\) 10.1027 0.738781
\(188\) −0.314097 −0.0229078
\(189\) −7.56003 −0.549911
\(190\) 0 0
\(191\) 19.8821 1.43862 0.719308 0.694692i \(-0.244459\pi\)
0.719308 + 0.694692i \(0.244459\pi\)
\(192\) −1.93403 −0.139577
\(193\) −13.4667 −0.969353 −0.484677 0.874693i \(-0.661063\pi\)
−0.484677 + 0.874693i \(0.661063\pi\)
\(194\) −6.10113 −0.438036
\(195\) 0 0
\(196\) 1.89286 0.135204
\(197\) 1.00000 0.0712470
\(198\) 18.2386 1.29616
\(199\) −7.23463 −0.512849 −0.256425 0.966564i \(-0.582545\pi\)
−0.256425 + 0.966564i \(0.582545\pi\)
\(200\) 0 0
\(201\) −2.70607 −0.190871
\(202\) −13.3529 −0.939510
\(203\) 1.81665 0.127504
\(204\) −0.0653619 −0.00457625
\(205\) 0 0
\(206\) 17.8583 1.24425
\(207\) 13.1743 0.915678
\(208\) 0.166454 0.0115415
\(209\) −2.66722 −0.184495
\(210\) 0 0
\(211\) −10.3252 −0.710814 −0.355407 0.934712i \(-0.615658\pi\)
−0.355407 + 0.934712i \(0.615658\pi\)
\(212\) 0.621918 0.0427135
\(213\) 0.682524 0.0467658
\(214\) −0.275344 −0.0188221
\(215\) 0 0
\(216\) 4.19042 0.285122
\(217\) −28.3369 −1.92364
\(218\) −13.1239 −0.888866
\(219\) 0.160020 0.0108132
\(220\) 0 0
\(221\) −0.0934210 −0.00628418
\(222\) −0.166932 −0.0112038
\(223\) 25.7382 1.72356 0.861779 0.507284i \(-0.169351\pi\)
0.861779 + 0.507284i \(0.169351\pi\)
\(224\) −3.01822 −0.201663
\(225\) 0 0
\(226\) 3.32720 0.221322
\(227\) −26.6219 −1.76696 −0.883478 0.468473i \(-0.844804\pi\)
−0.883478 + 0.468473i \(0.844804\pi\)
\(228\) 0.0172563 0.00114282
\(229\) −0.747925 −0.0494243 −0.0247121 0.999695i \(-0.507867\pi\)
−0.0247121 + 0.999695i \(0.507867\pi\)
\(230\) 0 0
\(231\) 5.45522 0.358927
\(232\) −1.00694 −0.0661091
\(233\) −6.30576 −0.413104 −0.206552 0.978436i \(-0.566224\pi\)
−0.206552 + 0.978436i \(0.566224\pi\)
\(234\) −0.168655 −0.0110253
\(235\) 0 0
\(236\) 0.189581 0.0123407
\(237\) −3.81372 −0.247728
\(238\) 16.9773 1.10048
\(239\) 5.24997 0.339593 0.169796 0.985479i \(-0.445689\pi\)
0.169796 + 0.985479i \(0.445689\pi\)
\(240\) 0 0
\(241\) −4.37801 −0.282012 −0.141006 0.990009i \(-0.545034\pi\)
−0.141006 + 0.990009i \(0.545034\pi\)
\(242\) −10.6478 −0.684470
\(243\) −6.73784 −0.432233
\(244\) 0.723429 0.0463128
\(245\) 0 0
\(246\) −0.488470 −0.0311437
\(247\) 0.0246642 0.00156934
\(248\) 15.7068 0.997381
\(249\) −2.42095 −0.153422
\(250\) 0 0
\(251\) −13.0903 −0.826255 −0.413127 0.910673i \(-0.635564\pi\)
−0.413127 + 0.910673i \(0.635564\pi\)
\(252\) 1.56707 0.0987162
\(253\) −19.2269 −1.20879
\(254\) −15.5053 −0.972891
\(255\) 0 0
\(256\) 2.57905 0.161191
\(257\) −24.5117 −1.52900 −0.764499 0.644625i \(-0.777013\pi\)
−0.764499 + 0.644625i \(0.777013\pi\)
\(258\) −4.35892 −0.271375
\(259\) 2.21692 0.137753
\(260\) 0 0
\(261\) 1.07539 0.0665653
\(262\) 16.4160 1.01418
\(263\) 18.5522 1.14398 0.571988 0.820262i \(-0.306173\pi\)
0.571988 + 0.820262i \(0.306173\pi\)
\(264\) −3.02376 −0.186099
\(265\) 0 0
\(266\) −4.48219 −0.274821
\(267\) 2.70962 0.165826
\(268\) 1.13448 0.0692993
\(269\) 22.8633 1.39400 0.697000 0.717071i \(-0.254518\pi\)
0.697000 + 0.717071i \(0.254518\pi\)
\(270\) 0 0
\(271\) −25.1564 −1.52815 −0.764073 0.645130i \(-0.776803\pi\)
−0.764073 + 0.645130i \(0.776803\pi\)
\(272\) −9.91883 −0.601417
\(273\) −0.0504453 −0.00305309
\(274\) −22.4568 −1.35667
\(275\) 0 0
\(276\) 0.124394 0.00748762
\(277\) −4.86686 −0.292421 −0.146211 0.989253i \(-0.546708\pi\)
−0.146211 + 0.989253i \(0.546708\pi\)
\(278\) −15.5428 −0.932197
\(279\) −16.7745 −1.00426
\(280\) 0 0
\(281\) 30.6294 1.82720 0.913599 0.406616i \(-0.133291\pi\)
0.913599 + 0.406616i \(0.133291\pi\)
\(282\) −1.08772 −0.0647727
\(283\) 33.4865 1.99057 0.995283 0.0970176i \(-0.0309303\pi\)
0.995283 + 0.0970176i \(0.0309303\pi\)
\(284\) −0.286138 −0.0169792
\(285\) 0 0
\(286\) 0.246139 0.0145545
\(287\) 6.48706 0.382919
\(288\) −1.78668 −0.105281
\(289\) −11.4331 −0.672537
\(290\) 0 0
\(291\) −1.08026 −0.0633261
\(292\) −0.0670862 −0.00392592
\(293\) −15.1265 −0.883697 −0.441849 0.897090i \(-0.645677\pi\)
−0.441849 + 0.897090i \(0.645677\pi\)
\(294\) 6.55497 0.382294
\(295\) 0 0
\(296\) −1.22881 −0.0714231
\(297\) 6.53135 0.378987
\(298\) 0.708205 0.0410252
\(299\) 0.177795 0.0102821
\(300\) 0 0
\(301\) 57.8881 3.33661
\(302\) 4.90826 0.282439
\(303\) −2.36426 −0.135823
\(304\) 2.61868 0.150192
\(305\) 0 0
\(306\) 10.0500 0.574520
\(307\) −16.5626 −0.945276 −0.472638 0.881257i \(-0.656698\pi\)
−0.472638 + 0.881257i \(0.656698\pi\)
\(308\) −2.28702 −0.130315
\(309\) 3.16199 0.179879
\(310\) 0 0
\(311\) −11.7823 −0.668112 −0.334056 0.942553i \(-0.608418\pi\)
−0.334056 + 0.942553i \(0.608418\pi\)
\(312\) 0.0279611 0.00158299
\(313\) −11.5586 −0.653333 −0.326666 0.945140i \(-0.605925\pi\)
−0.326666 + 0.945140i \(0.605925\pi\)
\(314\) 22.3318 1.26026
\(315\) 0 0
\(316\) 1.59885 0.0899423
\(317\) 20.0168 1.12425 0.562127 0.827051i \(-0.309983\pi\)
0.562127 + 0.827051i \(0.309983\pi\)
\(318\) 2.15371 0.120774
\(319\) −1.56946 −0.0878728
\(320\) 0 0
\(321\) −0.0487523 −0.00272109
\(322\) −32.3104 −1.80059
\(323\) −1.46972 −0.0817772
\(324\) 0.906289 0.0503494
\(325\) 0 0
\(326\) 22.7062 1.25758
\(327\) −2.32372 −0.128502
\(328\) −3.59569 −0.198539
\(329\) 14.4453 0.796395
\(330\) 0 0
\(331\) −14.1397 −0.777186 −0.388593 0.921410i \(-0.627039\pi\)
−0.388593 + 0.921410i \(0.627039\pi\)
\(332\) 1.01495 0.0557025
\(333\) 1.31234 0.0719159
\(334\) 31.7145 1.73534
\(335\) 0 0
\(336\) −5.35595 −0.292191
\(337\) 24.6996 1.34547 0.672737 0.739882i \(-0.265118\pi\)
0.672737 + 0.739882i \(0.265118\pi\)
\(338\) 18.8713 1.02646
\(339\) 0.589112 0.0319962
\(340\) 0 0
\(341\) 24.4811 1.32573
\(342\) −2.65331 −0.143474
\(343\) −52.3588 −2.82711
\(344\) −32.0866 −1.72999
\(345\) 0 0
\(346\) 20.5237 1.10336
\(347\) −33.1998 −1.78226 −0.891130 0.453749i \(-0.850086\pi\)
−0.891130 + 0.453749i \(0.850086\pi\)
\(348\) 0.0101540 0.000544313 0
\(349\) −3.85836 −0.206533 −0.103267 0.994654i \(-0.532929\pi\)
−0.103267 + 0.994654i \(0.532929\pi\)
\(350\) 0 0
\(351\) −0.0603964 −0.00322372
\(352\) 2.60753 0.138982
\(353\) 28.5121 1.51754 0.758772 0.651356i \(-0.225800\pi\)
0.758772 + 0.651356i \(0.225800\pi\)
\(354\) 0.656522 0.0348937
\(355\) 0 0
\(356\) −1.13597 −0.0602063
\(357\) 3.00599 0.159094
\(358\) 33.1123 1.75004
\(359\) −13.5351 −0.714354 −0.357177 0.934037i \(-0.616261\pi\)
−0.357177 + 0.934037i \(0.616261\pi\)
\(360\) 0 0
\(361\) −18.6120 −0.979578
\(362\) −8.21192 −0.431609
\(363\) −1.88530 −0.0989527
\(364\) 0.0211485 0.00110848
\(365\) 0 0
\(366\) 2.50524 0.130951
\(367\) 5.02879 0.262501 0.131250 0.991349i \(-0.458101\pi\)
0.131250 + 0.991349i \(0.458101\pi\)
\(368\) 18.8771 0.984035
\(369\) 3.84012 0.199909
\(370\) 0 0
\(371\) −28.6020 −1.48494
\(372\) −0.158387 −0.00821199
\(373\) 2.49864 0.129375 0.0646874 0.997906i \(-0.479395\pi\)
0.0646874 + 0.997906i \(0.479395\pi\)
\(374\) −14.6672 −0.758424
\(375\) 0 0
\(376\) −8.00683 −0.412921
\(377\) 0.0145130 0.000747459 0
\(378\) 10.9758 0.564533
\(379\) 30.1669 1.54957 0.774785 0.632225i \(-0.217858\pi\)
0.774785 + 0.632225i \(0.217858\pi\)
\(380\) 0 0
\(381\) −2.74537 −0.140649
\(382\) −28.8651 −1.47687
\(383\) 21.7802 1.11292 0.556459 0.830875i \(-0.312160\pi\)
0.556459 + 0.830875i \(0.312160\pi\)
\(384\) 3.12094 0.159265
\(385\) 0 0
\(386\) 19.5511 0.995127
\(387\) 34.2678 1.74193
\(388\) 0.452885 0.0229917
\(389\) −13.3871 −0.678755 −0.339377 0.940650i \(-0.610216\pi\)
−0.339377 + 0.940650i \(0.610216\pi\)
\(390\) 0 0
\(391\) −10.5946 −0.535793
\(392\) 48.2520 2.43709
\(393\) 2.90660 0.146619
\(394\) −1.45182 −0.0731414
\(395\) 0 0
\(396\) −1.35384 −0.0680330
\(397\) 15.9000 0.797996 0.398998 0.916952i \(-0.369358\pi\)
0.398998 + 0.916952i \(0.369358\pi\)
\(398\) 10.5033 0.526485
\(399\) −0.793614 −0.0397304
\(400\) 0 0
\(401\) −30.1704 −1.50664 −0.753319 0.657655i \(-0.771548\pi\)
−0.753319 + 0.657655i \(0.771548\pi\)
\(402\) 3.92871 0.195946
\(403\) −0.226381 −0.0112768
\(404\) 0.991184 0.0493132
\(405\) 0 0
\(406\) −2.63744 −0.130894
\(407\) −1.91527 −0.0949362
\(408\) −1.66618 −0.0824882
\(409\) −10.5035 −0.519367 −0.259683 0.965694i \(-0.583618\pi\)
−0.259683 + 0.965694i \(0.583618\pi\)
\(410\) 0 0
\(411\) −3.97619 −0.196131
\(412\) −1.32562 −0.0653085
\(413\) −8.71884 −0.429026
\(414\) −19.1267 −0.940025
\(415\) 0 0
\(416\) −0.0241122 −0.00118220
\(417\) −2.75200 −0.134766
\(418\) 3.87230 0.189401
\(419\) −12.8054 −0.625586 −0.312793 0.949821i \(-0.601265\pi\)
−0.312793 + 0.949821i \(0.601265\pi\)
\(420\) 0 0
\(421\) −10.0841 −0.491469 −0.245734 0.969337i \(-0.579029\pi\)
−0.245734 + 0.969337i \(0.579029\pi\)
\(422\) 14.9902 0.729713
\(423\) 8.55112 0.415770
\(424\) 15.8537 0.769924
\(425\) 0 0
\(426\) −0.990899 −0.0480092
\(427\) −33.2705 −1.61007
\(428\) 0.0204387 0.000987941 0
\(429\) 0.0435812 0.00210412
\(430\) 0 0
\(431\) 16.4580 0.792753 0.396376 0.918088i \(-0.370268\pi\)
0.396376 + 0.918088i \(0.370268\pi\)
\(432\) −6.41249 −0.308521
\(433\) −33.8333 −1.62593 −0.812963 0.582315i \(-0.802147\pi\)
−0.812963 + 0.582315i \(0.802147\pi\)
\(434\) 41.1400 1.97478
\(435\) 0 0
\(436\) 0.974185 0.0466550
\(437\) 2.79710 0.133803
\(438\) −0.232320 −0.0111007
\(439\) −28.6744 −1.36856 −0.684278 0.729221i \(-0.739882\pi\)
−0.684278 + 0.729221i \(0.739882\pi\)
\(440\) 0 0
\(441\) −51.5321 −2.45391
\(442\) 0.135630 0.00645126
\(443\) 18.6714 0.887104 0.443552 0.896249i \(-0.353718\pi\)
0.443552 + 0.896249i \(0.353718\pi\)
\(444\) 0.0123913 0.000588066 0
\(445\) 0 0
\(446\) −37.3671 −1.76938
\(447\) 0.125394 0.00593095
\(448\) −37.2893 −1.76175
\(449\) −22.7683 −1.07450 −0.537250 0.843423i \(-0.680537\pi\)
−0.537250 + 0.843423i \(0.680537\pi\)
\(450\) 0 0
\(451\) −5.60437 −0.263899
\(452\) −0.246977 −0.0116168
\(453\) 0.869053 0.0408317
\(454\) 38.6500 1.81394
\(455\) 0 0
\(456\) 0.439890 0.0205997
\(457\) 4.08443 0.191062 0.0955309 0.995426i \(-0.469545\pi\)
0.0955309 + 0.995426i \(0.469545\pi\)
\(458\) 1.08585 0.0507384
\(459\) 3.59897 0.167985
\(460\) 0 0
\(461\) −25.3244 −1.17947 −0.589737 0.807595i \(-0.700769\pi\)
−0.589737 + 0.807595i \(0.700769\pi\)
\(462\) −7.91997 −0.368471
\(463\) −29.3448 −1.36377 −0.681883 0.731461i \(-0.738839\pi\)
−0.681883 + 0.731461i \(0.738839\pi\)
\(464\) 1.54090 0.0715344
\(465\) 0 0
\(466\) 9.15480 0.424088
\(467\) 29.7840 1.37824 0.689119 0.724648i \(-0.257998\pi\)
0.689119 + 0.724648i \(0.257998\pi\)
\(468\) 0.0125192 0.000578699 0
\(469\) −52.1746 −2.40920
\(470\) 0 0
\(471\) 3.95405 0.182193
\(472\) 4.83274 0.222445
\(473\) −50.0113 −2.29952
\(474\) 5.53682 0.254315
\(475\) 0 0
\(476\) −1.26022 −0.0577620
\(477\) −16.9314 −0.775236
\(478\) −7.62199 −0.348622
\(479\) 17.1420 0.783238 0.391619 0.920127i \(-0.371915\pi\)
0.391619 + 0.920127i \(0.371915\pi\)
\(480\) 0 0
\(481\) 0.0177108 0.000807541 0
\(482\) 6.35606 0.289510
\(483\) −5.72086 −0.260308
\(484\) 0.790385 0.0359266
\(485\) 0 0
\(486\) 9.78211 0.443725
\(487\) −16.0308 −0.726423 −0.363212 0.931707i \(-0.618320\pi\)
−0.363212 + 0.931707i \(0.618320\pi\)
\(488\) 18.4414 0.834801
\(489\) 4.02035 0.181807
\(490\) 0 0
\(491\) −42.9924 −1.94022 −0.970109 0.242669i \(-0.921977\pi\)
−0.970109 + 0.242669i \(0.921977\pi\)
\(492\) 0.0362589 0.00163468
\(493\) −0.864819 −0.0389495
\(494\) −0.0358078 −0.00161107
\(495\) 0 0
\(496\) −24.0356 −1.07923
\(497\) 13.1595 0.590284
\(498\) 3.51477 0.157501
\(499\) −25.7746 −1.15383 −0.576915 0.816804i \(-0.695744\pi\)
−0.576915 + 0.816804i \(0.695744\pi\)
\(500\) 0 0
\(501\) 5.61536 0.250876
\(502\) 19.0047 0.848223
\(503\) −31.3319 −1.39702 −0.698510 0.715600i \(-0.746153\pi\)
−0.698510 + 0.715600i \(0.746153\pi\)
\(504\) 39.9472 1.77939
\(505\) 0 0
\(506\) 27.9140 1.24093
\(507\) 3.34135 0.148394
\(508\) 1.15095 0.0510654
\(509\) −0.670154 −0.0297041 −0.0148520 0.999890i \(-0.504728\pi\)
−0.0148520 + 0.999890i \(0.504728\pi\)
\(510\) 0 0
\(511\) 3.08529 0.136485
\(512\) 20.5377 0.907647
\(513\) −0.950167 −0.0419509
\(514\) 35.5865 1.56965
\(515\) 0 0
\(516\) 0.323561 0.0142440
\(517\) −12.4797 −0.548858
\(518\) −3.21856 −0.141415
\(519\) 3.63391 0.159511
\(520\) 0 0
\(521\) −34.2371 −1.49995 −0.749976 0.661465i \(-0.769935\pi\)
−0.749976 + 0.661465i \(0.769935\pi\)
\(522\) −1.56127 −0.0683351
\(523\) −14.6338 −0.639893 −0.319947 0.947436i \(-0.603665\pi\)
−0.319947 + 0.947436i \(0.603665\pi\)
\(524\) −1.21855 −0.0532327
\(525\) 0 0
\(526\) −26.9343 −1.17439
\(527\) 13.4898 0.587627
\(528\) 4.62717 0.201372
\(529\) −2.83681 −0.123339
\(530\) 0 0
\(531\) −5.16126 −0.223980
\(532\) 0.332711 0.0144249
\(533\) 0.0518245 0.00224477
\(534\) −3.93387 −0.170235
\(535\) 0 0
\(536\) 28.9197 1.24914
\(537\) 5.86284 0.253000
\(538\) −33.1933 −1.43106
\(539\) 75.2072 3.23940
\(540\) 0 0
\(541\) 26.9024 1.15663 0.578313 0.815815i \(-0.303711\pi\)
0.578313 + 0.815815i \(0.303711\pi\)
\(542\) 36.5225 1.56878
\(543\) −1.45400 −0.0623970
\(544\) 1.43683 0.0616035
\(545\) 0 0
\(546\) 0.0732372 0.00313426
\(547\) −13.7772 −0.589071 −0.294535 0.955641i \(-0.595165\pi\)
−0.294535 + 0.955641i \(0.595165\pi\)
\(548\) 1.66696 0.0712090
\(549\) −19.6950 −0.840562
\(550\) 0 0
\(551\) 0.228322 0.00972683
\(552\) 3.17100 0.134967
\(553\) −73.5310 −3.12686
\(554\) 7.06578 0.300196
\(555\) 0 0
\(556\) 1.15374 0.0489294
\(557\) −40.8747 −1.73192 −0.865959 0.500115i \(-0.833291\pi\)
−0.865959 + 0.500115i \(0.833291\pi\)
\(558\) 24.3535 1.03096
\(559\) 0.462462 0.0195601
\(560\) 0 0
\(561\) −2.59697 −0.109644
\(562\) −44.4683 −1.87578
\(563\) 36.5476 1.54030 0.770149 0.637864i \(-0.220182\pi\)
0.770149 + 0.637864i \(0.220182\pi\)
\(564\) 0.0807409 0.00339981
\(565\) 0 0
\(566\) −48.6162 −2.04349
\(567\) −41.6802 −1.75040
\(568\) −7.29413 −0.306055
\(569\) −0.561509 −0.0235397 −0.0117698 0.999931i \(-0.503747\pi\)
−0.0117698 + 0.999931i \(0.503747\pi\)
\(570\) 0 0
\(571\) −10.8440 −0.453807 −0.226904 0.973917i \(-0.572860\pi\)
−0.226904 + 0.973917i \(0.572860\pi\)
\(572\) −0.0182708 −0.000763941 0
\(573\) −5.11083 −0.213508
\(574\) −9.41801 −0.393100
\(575\) 0 0
\(576\) −22.0740 −0.919751
\(577\) 19.9454 0.830338 0.415169 0.909744i \(-0.363723\pi\)
0.415169 + 0.909744i \(0.363723\pi\)
\(578\) 16.5988 0.690418
\(579\) 3.46171 0.143864
\(580\) 0 0
\(581\) −46.6775 −1.93651
\(582\) 1.56834 0.0650099
\(583\) 24.7102 1.02339
\(584\) −1.71014 −0.0707659
\(585\) 0 0
\(586\) 21.9608 0.907194
\(587\) 34.0002 1.40334 0.701668 0.712504i \(-0.252439\pi\)
0.701668 + 0.712504i \(0.252439\pi\)
\(588\) −0.486573 −0.0200659
\(589\) −3.56147 −0.146748
\(590\) 0 0
\(591\) −0.257058 −0.0105739
\(592\) 1.88041 0.0772845
\(593\) −0.289835 −0.0119021 −0.00595105 0.999982i \(-0.501894\pi\)
−0.00595105 + 0.999982i \(0.501894\pi\)
\(594\) −9.48231 −0.389064
\(595\) 0 0
\(596\) −0.0525698 −0.00215334
\(597\) 1.85972 0.0761131
\(598\) −0.258125 −0.0105555
\(599\) −23.3847 −0.955473 −0.477736 0.878503i \(-0.658543\pi\)
−0.477736 + 0.878503i \(0.658543\pi\)
\(600\) 0 0
\(601\) 47.2544 1.92755 0.963773 0.266725i \(-0.0859417\pi\)
0.963773 + 0.266725i \(0.0859417\pi\)
\(602\) −84.0428 −3.42533
\(603\) −30.8856 −1.25776
\(604\) −0.364338 −0.0148247
\(605\) 0 0
\(606\) 3.43247 0.139435
\(607\) −41.4883 −1.68396 −0.841980 0.539509i \(-0.818610\pi\)
−0.841980 + 0.539509i \(0.818610\pi\)
\(608\) −0.379338 −0.0153842
\(609\) −0.466983 −0.0189231
\(610\) 0 0
\(611\) 0.115402 0.00466867
\(612\) −0.746007 −0.0301555
\(613\) 39.8431 1.60925 0.804625 0.593784i \(-0.202366\pi\)
0.804625 + 0.593784i \(0.202366\pi\)
\(614\) 24.0458 0.970409
\(615\) 0 0
\(616\) −58.2999 −2.34897
\(617\) −10.8488 −0.436758 −0.218379 0.975864i \(-0.570077\pi\)
−0.218379 + 0.975864i \(0.570077\pi\)
\(618\) −4.59062 −0.184662
\(619\) 14.3789 0.577937 0.288969 0.957339i \(-0.406688\pi\)
0.288969 + 0.957339i \(0.406688\pi\)
\(620\) 0 0
\(621\) −6.84939 −0.274857
\(622\) 17.1057 0.685876
\(623\) 52.2432 2.09308
\(624\) −0.0427882 −0.00171290
\(625\) 0 0
\(626\) 16.7810 0.670704
\(627\) 0.685628 0.0273813
\(628\) −1.65768 −0.0661486
\(629\) −1.05537 −0.0420803
\(630\) 0 0
\(631\) −29.2361 −1.16387 −0.581935 0.813236i \(-0.697704\pi\)
−0.581935 + 0.813236i \(0.697704\pi\)
\(632\) 40.7572 1.62124
\(633\) 2.65416 0.105494
\(634\) −29.0607 −1.15415
\(635\) 0 0
\(636\) −0.159869 −0.00633921
\(637\) −0.695453 −0.0275548
\(638\) 2.27856 0.0902092
\(639\) 7.78997 0.308167
\(640\) 0 0
\(641\) −5.02891 −0.198630 −0.0993149 0.995056i \(-0.531665\pi\)
−0.0993149 + 0.995056i \(0.531665\pi\)
\(642\) 0.0707793 0.00279344
\(643\) 21.5016 0.847940 0.423970 0.905676i \(-0.360636\pi\)
0.423970 + 0.905676i \(0.360636\pi\)
\(644\) 2.39839 0.0945098
\(645\) 0 0
\(646\) 2.13376 0.0839515
\(647\) 16.0881 0.632487 0.316243 0.948678i \(-0.397578\pi\)
0.316243 + 0.948678i \(0.397578\pi\)
\(648\) 23.1028 0.907563
\(649\) 7.53248 0.295676
\(650\) 0 0
\(651\) 7.28422 0.285491
\(652\) −1.68547 −0.0660083
\(653\) −29.9566 −1.17229 −0.586146 0.810205i \(-0.699356\pi\)
−0.586146 + 0.810205i \(0.699356\pi\)
\(654\) 3.37361 0.131919
\(655\) 0 0
\(656\) 5.50238 0.214832
\(657\) 1.82639 0.0712542
\(658\) −20.9719 −0.817570
\(659\) 14.8597 0.578853 0.289426 0.957200i \(-0.406535\pi\)
0.289426 + 0.957200i \(0.406535\pi\)
\(660\) 0 0
\(661\) 10.7252 0.417161 0.208581 0.978005i \(-0.433116\pi\)
0.208581 + 0.978005i \(0.433116\pi\)
\(662\) 20.5282 0.797850
\(663\) 0.0240146 0.000932649 0
\(664\) 25.8727 1.00405
\(665\) 0 0
\(666\) −1.90528 −0.0738280
\(667\) 1.64588 0.0637289
\(668\) −2.35416 −0.0910851
\(669\) −6.61620 −0.255797
\(670\) 0 0
\(671\) 28.7434 1.10963
\(672\) 0.775855 0.0299293
\(673\) 17.9563 0.692164 0.346082 0.938204i \(-0.387512\pi\)
0.346082 + 0.938204i \(0.387512\pi\)
\(674\) −35.8593 −1.38125
\(675\) 0 0
\(676\) −1.40081 −0.0538773
\(677\) 21.3175 0.819298 0.409649 0.912243i \(-0.365651\pi\)
0.409649 + 0.912243i \(0.365651\pi\)
\(678\) −0.855281 −0.0328469
\(679\) −20.8281 −0.799311
\(680\) 0 0
\(681\) 6.84335 0.262238
\(682\) −35.5421 −1.36098
\(683\) −2.40314 −0.0919538 −0.0459769 0.998943i \(-0.514640\pi\)
−0.0459769 + 0.998943i \(0.514640\pi\)
\(684\) 0.196954 0.00753072
\(685\) 0 0
\(686\) 76.0152 2.90228
\(687\) 0.192260 0.00733517
\(688\) 49.1012 1.87197
\(689\) −0.228499 −0.00870510
\(690\) 0 0
\(691\) −3.06820 −0.116720 −0.0583599 0.998296i \(-0.518587\pi\)
−0.0583599 + 0.998296i \(0.518587\pi\)
\(692\) −1.52346 −0.0579134
\(693\) 62.2631 2.36518
\(694\) 48.2000 1.82965
\(695\) 0 0
\(696\) 0.258842 0.00981140
\(697\) −3.08818 −0.116973
\(698\) 5.60162 0.212024
\(699\) 1.62094 0.0613097
\(700\) 0 0
\(701\) 21.7249 0.820537 0.410268 0.911965i \(-0.365435\pi\)
0.410268 + 0.911965i \(0.365435\pi\)
\(702\) 0.0876844 0.00330943
\(703\) 0.278629 0.0105087
\(704\) 32.2154 1.21416
\(705\) 0 0
\(706\) −41.3943 −1.55789
\(707\) −45.5845 −1.71438
\(708\) −0.0487333 −0.00183151
\(709\) −0.452624 −0.0169986 −0.00849932 0.999964i \(-0.502705\pi\)
−0.00849932 + 0.999964i \(0.502705\pi\)
\(710\) 0 0
\(711\) −43.5279 −1.63242
\(712\) −28.9577 −1.08524
\(713\) −25.6732 −0.961471
\(714\) −4.36414 −0.163324
\(715\) 0 0
\(716\) −2.45791 −0.0918565
\(717\) −1.34955 −0.0503997
\(718\) 19.6504 0.733348
\(719\) −40.8858 −1.52478 −0.762392 0.647115i \(-0.775975\pi\)
−0.762392 + 0.647115i \(0.775975\pi\)
\(720\) 0 0
\(721\) 60.9651 2.27046
\(722\) 27.0212 1.00562
\(723\) 1.12540 0.0418541
\(724\) 0.609567 0.0226544
\(725\) 0 0
\(726\) 2.73711 0.101584
\(727\) 29.9609 1.11119 0.555594 0.831454i \(-0.312491\pi\)
0.555594 + 0.831454i \(0.312491\pi\)
\(728\) 0.539108 0.0199807
\(729\) −23.4970 −0.870258
\(730\) 0 0
\(731\) −27.5577 −1.01926
\(732\) −0.185963 −0.00687338
\(733\) 32.6206 1.20487 0.602434 0.798169i \(-0.294198\pi\)
0.602434 + 0.798169i \(0.294198\pi\)
\(734\) −7.30087 −0.269480
\(735\) 0 0
\(736\) −2.73450 −0.100795
\(737\) 45.0753 1.66037
\(738\) −5.57514 −0.205224
\(739\) −36.0853 −1.32742 −0.663709 0.747991i \(-0.731019\pi\)
−0.663709 + 0.747991i \(0.731019\pi\)
\(740\) 0 0
\(741\) −0.00634011 −0.000232910 0
\(742\) 41.5248 1.52442
\(743\) −3.64167 −0.133600 −0.0668000 0.997766i \(-0.521279\pi\)
−0.0668000 + 0.997766i \(0.521279\pi\)
\(744\) −4.03754 −0.148024
\(745\) 0 0
\(746\) −3.62757 −0.132815
\(747\) −27.6315 −1.01098
\(748\) 1.08874 0.0398083
\(749\) −0.939974 −0.0343459
\(750\) 0 0
\(751\) −53.2512 −1.94316 −0.971582 0.236704i \(-0.923933\pi\)
−0.971582 + 0.236704i \(0.923933\pi\)
\(752\) 12.2526 0.446807
\(753\) 3.36497 0.122626
\(754\) −0.0210702 −0.000767333 0
\(755\) 0 0
\(756\) −0.814727 −0.0296313
\(757\) −32.1949 −1.17014 −0.585072 0.810982i \(-0.698934\pi\)
−0.585072 + 0.810982i \(0.698934\pi\)
\(758\) −43.7968 −1.59077
\(759\) 4.94243 0.179399
\(760\) 0 0
\(761\) −15.9438 −0.577961 −0.288981 0.957335i \(-0.593316\pi\)
−0.288981 + 0.957335i \(0.593316\pi\)
\(762\) 3.98576 0.144389
\(763\) −44.8027 −1.62197
\(764\) 2.14264 0.0775181
\(765\) 0 0
\(766\) −31.6209 −1.14251
\(767\) −0.0696540 −0.00251506
\(768\) −0.662964 −0.0239227
\(769\) −11.4972 −0.414598 −0.207299 0.978278i \(-0.566467\pi\)
−0.207299 + 0.978278i \(0.566467\pi\)
\(770\) 0 0
\(771\) 6.30092 0.226922
\(772\) −1.45127 −0.0522325
\(773\) 17.9213 0.644583 0.322292 0.946640i \(-0.395547\pi\)
0.322292 + 0.946640i \(0.395547\pi\)
\(774\) −49.7505 −1.78824
\(775\) 0 0
\(776\) 11.5448 0.414433
\(777\) −0.569876 −0.0204442
\(778\) 19.4356 0.696802
\(779\) 0.815312 0.0292116
\(780\) 0 0
\(781\) −11.3689 −0.406811
\(782\) 15.3814 0.550039
\(783\) −0.559103 −0.0199807
\(784\) −73.8386 −2.63709
\(785\) 0 0
\(786\) −4.21985 −0.150517
\(787\) −15.1463 −0.539906 −0.269953 0.962873i \(-0.587008\pi\)
−0.269953 + 0.962873i \(0.587008\pi\)
\(788\) 0.107768 0.00383906
\(789\) −4.76897 −0.169780
\(790\) 0 0
\(791\) 11.3584 0.403860
\(792\) −34.5116 −1.22632
\(793\) −0.265794 −0.00943864
\(794\) −23.0838 −0.819214
\(795\) 0 0
\(796\) −0.779659 −0.0276343
\(797\) 10.5416 0.373403 0.186701 0.982417i \(-0.440220\pi\)
0.186701 + 0.982417i \(0.440220\pi\)
\(798\) 1.15218 0.0407868
\(799\) −6.87671 −0.243280
\(800\) 0 0
\(801\) 30.9262 1.09272
\(802\) 43.8019 1.54670
\(803\) −2.66548 −0.0940627
\(804\) −0.291626 −0.0102849
\(805\) 0 0
\(806\) 0.328663 0.0115767
\(807\) −5.87718 −0.206887
\(808\) 25.2669 0.888885
\(809\) −22.7520 −0.799917 −0.399959 0.916533i \(-0.630976\pi\)
−0.399959 + 0.916533i \(0.630976\pi\)
\(810\) 0 0
\(811\) −46.8973 −1.64679 −0.823394 0.567470i \(-0.807922\pi\)
−0.823394 + 0.567470i \(0.807922\pi\)
\(812\) 0.195776 0.00687039
\(813\) 6.46665 0.226795
\(814\) 2.78061 0.0974604
\(815\) 0 0
\(816\) 2.54971 0.0892577
\(817\) 7.27554 0.254539
\(818\) 15.2492 0.533176
\(819\) −0.575756 −0.0201186
\(820\) 0 0
\(821\) −16.1605 −0.564007 −0.282003 0.959413i \(-0.590999\pi\)
−0.282003 + 0.959413i \(0.590999\pi\)
\(822\) 5.77269 0.201346
\(823\) −36.7619 −1.28144 −0.640719 0.767775i \(-0.721364\pi\)
−0.640719 + 0.767775i \(0.721364\pi\)
\(824\) −33.7921 −1.17720
\(825\) 0 0
\(826\) 12.6581 0.440433
\(827\) 11.0539 0.384381 0.192190 0.981358i \(-0.438441\pi\)
0.192190 + 0.981358i \(0.438441\pi\)
\(828\) 1.41977 0.0493403
\(829\) 44.8204 1.55668 0.778339 0.627845i \(-0.216063\pi\)
0.778339 + 0.627845i \(0.216063\pi\)
\(830\) 0 0
\(831\) 1.25106 0.0433989
\(832\) −0.297901 −0.0103279
\(833\) 41.4415 1.43586
\(834\) 3.99540 0.138349
\(835\) 0 0
\(836\) −0.287440 −0.00994131
\(837\) 8.72114 0.301447
\(838\) 18.5911 0.642219
\(839\) 46.6571 1.61078 0.805391 0.592744i \(-0.201955\pi\)
0.805391 + 0.592744i \(0.201955\pi\)
\(840\) 0 0
\(841\) −28.8656 −0.995367
\(842\) 14.6403 0.504536
\(843\) −7.87352 −0.271179
\(844\) −1.11272 −0.0383014
\(845\) 0 0
\(846\) −12.4147 −0.426825
\(847\) −36.3498 −1.24899
\(848\) −24.2605 −0.833109
\(849\) −8.60796 −0.295424
\(850\) 0 0
\(851\) 2.00853 0.0688515
\(852\) 0.0735540 0.00251992
\(853\) 9.30749 0.318682 0.159341 0.987224i \(-0.449063\pi\)
0.159341 + 0.987224i \(0.449063\pi\)
\(854\) 48.3026 1.65288
\(855\) 0 0
\(856\) 0.521015 0.0178079
\(857\) 3.16972 0.108276 0.0541378 0.998533i \(-0.482759\pi\)
0.0541378 + 0.998533i \(0.482759\pi\)
\(858\) −0.0632719 −0.00216007
\(859\) 23.8272 0.812973 0.406486 0.913657i \(-0.366754\pi\)
0.406486 + 0.913657i \(0.366754\pi\)
\(860\) 0 0
\(861\) −1.66755 −0.0568298
\(862\) −23.8939 −0.813831
\(863\) 1.45888 0.0496608 0.0248304 0.999692i \(-0.492095\pi\)
0.0248304 + 0.999692i \(0.492095\pi\)
\(864\) 0.928904 0.0316020
\(865\) 0 0
\(866\) 49.1198 1.66916
\(867\) 2.93897 0.0998127
\(868\) −3.05380 −0.103653
\(869\) 63.5257 2.15496
\(870\) 0 0
\(871\) −0.416818 −0.0141233
\(872\) 24.8335 0.840970
\(873\) −12.3296 −0.417292
\(874\) −4.06087 −0.137361
\(875\) 0 0
\(876\) 0.0172450 0.000582655 0
\(877\) 31.0847 1.04966 0.524828 0.851208i \(-0.324130\pi\)
0.524828 + 0.851208i \(0.324130\pi\)
\(878\) 41.6300 1.40494
\(879\) 3.88837 0.131152
\(880\) 0 0
\(881\) 16.2242 0.546608 0.273304 0.961928i \(-0.411884\pi\)
0.273304 + 0.961928i \(0.411884\pi\)
\(882\) 74.8150 2.51915
\(883\) −36.7133 −1.23550 −0.617751 0.786374i \(-0.711956\pi\)
−0.617751 + 0.786374i \(0.711956\pi\)
\(884\) −0.0100678 −0.000338616 0
\(885\) 0 0
\(886\) −27.1074 −0.910691
\(887\) 55.8502 1.87527 0.937633 0.347627i \(-0.113012\pi\)
0.937633 + 0.347627i \(0.113012\pi\)
\(888\) 0.315875 0.0106001
\(889\) −52.9324 −1.77529
\(890\) 0 0
\(891\) 36.0088 1.20634
\(892\) 2.77375 0.0928719
\(893\) 1.81553 0.0607542
\(894\) −0.182050 −0.00608865
\(895\) 0 0
\(896\) 60.1736 2.01026
\(897\) −0.0457034 −0.00152599
\(898\) 33.0553 1.10307
\(899\) −2.09566 −0.0698941
\(900\) 0 0
\(901\) 13.6160 0.453616
\(902\) 8.13651 0.270916
\(903\) −14.8806 −0.495194
\(904\) −6.29583 −0.209396
\(905\) 0 0
\(906\) −1.26170 −0.0419173
\(907\) 43.3615 1.43979 0.719897 0.694081i \(-0.244189\pi\)
0.719897 + 0.694081i \(0.244189\pi\)
\(908\) −2.86898 −0.0952104
\(909\) −26.9845 −0.895019
\(910\) 0 0
\(911\) −35.9819 −1.19214 −0.596068 0.802934i \(-0.703271\pi\)
−0.596068 + 0.802934i \(0.703271\pi\)
\(912\) −0.673151 −0.0222903
\(913\) 40.3261 1.33460
\(914\) −5.92984 −0.196142
\(915\) 0 0
\(916\) −0.0806022 −0.00266317
\(917\) 56.0411 1.85064
\(918\) −5.22504 −0.172452
\(919\) 41.1384 1.35703 0.678514 0.734587i \(-0.262624\pi\)
0.678514 + 0.734587i \(0.262624\pi\)
\(920\) 0 0
\(921\) 4.25753 0.140291
\(922\) 36.7663 1.21083
\(923\) 0.105130 0.00346039
\(924\) 0.587897 0.0193404
\(925\) 0 0
\(926\) 42.6032 1.40003
\(927\) 36.0893 1.18533
\(928\) −0.223212 −0.00732730
\(929\) −25.6149 −0.840398 −0.420199 0.907432i \(-0.638040\pi\)
−0.420199 + 0.907432i \(0.638040\pi\)
\(930\) 0 0
\(931\) −10.9410 −0.358577
\(932\) −0.679557 −0.0222596
\(933\) 3.02873 0.0991560
\(934\) −43.2408 −1.41488
\(935\) 0 0
\(936\) 0.319134 0.0104312
\(937\) 4.63318 0.151359 0.0756797 0.997132i \(-0.475887\pi\)
0.0756797 + 0.997132i \(0.475887\pi\)
\(938\) 75.7479 2.47326
\(939\) 2.97124 0.0969626
\(940\) 0 0
\(941\) 24.1346 0.786766 0.393383 0.919375i \(-0.371305\pi\)
0.393383 + 0.919375i \(0.371305\pi\)
\(942\) −5.74056 −0.187037
\(943\) 5.87727 0.191390
\(944\) −7.39540 −0.240700
\(945\) 0 0
\(946\) 72.6072 2.36066
\(947\) 18.2542 0.593183 0.296592 0.955004i \(-0.404150\pi\)
0.296592 + 0.955004i \(0.404150\pi\)
\(948\) −0.410996 −0.0133485
\(949\) 0.0246481 0.000800111 0
\(950\) 0 0
\(951\) −5.14546 −0.166853
\(952\) −32.1250 −1.04118
\(953\) 20.7642 0.672618 0.336309 0.941752i \(-0.390821\pi\)
0.336309 + 0.941752i \(0.390821\pi\)
\(954\) 24.5813 0.795849
\(955\) 0 0
\(956\) 0.565778 0.0182986
\(957\) 0.403441 0.0130414
\(958\) −24.8870 −0.804063
\(959\) −76.6635 −2.47559
\(960\) 0 0
\(961\) 1.68905 0.0544854
\(962\) −0.0257128 −0.000829012 0
\(963\) −0.556433 −0.0179308
\(964\) −0.471808 −0.0151959
\(965\) 0 0
\(966\) 8.30564 0.267229
\(967\) −15.2969 −0.491914 −0.245957 0.969281i \(-0.579102\pi\)
−0.245957 + 0.969281i \(0.579102\pi\)
\(968\) 20.1482 0.647588
\(969\) 0.377802 0.0121367
\(970\) 0 0
\(971\) −7.87646 −0.252768 −0.126384 0.991981i \(-0.540337\pi\)
−0.126384 + 0.991981i \(0.540337\pi\)
\(972\) −0.726122 −0.0232904
\(973\) −53.0604 −1.70104
\(974\) 23.2737 0.745738
\(975\) 0 0
\(976\) −28.2203 −0.903310
\(977\) −22.9232 −0.733378 −0.366689 0.930344i \(-0.619509\pi\)
−0.366689 + 0.930344i \(0.619509\pi\)
\(978\) −5.83681 −0.186641
\(979\) −45.1345 −1.44250
\(980\) 0 0
\(981\) −26.5217 −0.846773
\(982\) 62.4170 1.99181
\(983\) 10.5939 0.337893 0.168947 0.985625i \(-0.445963\pi\)
0.168947 + 0.985625i \(0.445963\pi\)
\(984\) 0.924299 0.0294656
\(985\) 0 0
\(986\) 1.25556 0.0399851
\(987\) −3.71327 −0.118195
\(988\) 0.00265800 8.45622e−5 0
\(989\) 52.4466 1.66770
\(990\) 0 0
\(991\) −5.87151 −0.186515 −0.0932573 0.995642i \(-0.529728\pi\)
−0.0932573 + 0.995642i \(0.529728\pi\)
\(992\) 3.48177 0.110546
\(993\) 3.63470 0.115344
\(994\) −19.1052 −0.605979
\(995\) 0 0
\(996\) −0.260900 −0.00826694
\(997\) −13.2653 −0.420116 −0.210058 0.977689i \(-0.567365\pi\)
−0.210058 + 0.977689i \(0.567365\pi\)
\(998\) 37.4200 1.18451
\(999\) −0.682293 −0.0215868
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4925.2.a.r.1.14 49
5.2 odd 4 985.2.b.a.789.26 98
5.3 odd 4 985.2.b.a.789.73 yes 98
5.4 even 2 4925.2.a.s.1.36 49
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
985.2.b.a.789.26 98 5.2 odd 4
985.2.b.a.789.73 yes 98 5.3 odd 4
4925.2.a.r.1.14 49 1.1 even 1 trivial
4925.2.a.s.1.36 49 5.4 even 2