Properties

Label 4925.2.a.s.1.36
Level $4925$
Weight $2$
Character 4925.1
Self dual yes
Analytic conductor $39.326$
Analytic rank $0$
Dimension $49$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4925,2,Mod(1,4925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4925.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4925, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4925 = 5^{2} \cdot 197 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4925.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [49,5,22] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(39.3263229955\)
Analytic rank: \(0\)
Dimension: \(49\)
Twist minimal: no (minimal twist has level 985)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.36
Character \(\chi\) \(=\) 4925.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.45182 q^{2} +0.257058 q^{3} +0.107768 q^{4} +0.373200 q^{6} +4.95623 q^{7} -2.74717 q^{8} -2.93392 q^{9} +4.28184 q^{11} +0.0277025 q^{12} +0.0395948 q^{13} +7.19553 q^{14} -4.20392 q^{16} -2.35942 q^{17} -4.25951 q^{18} -0.622913 q^{19} +1.27404 q^{21} +6.21644 q^{22} +4.49034 q^{23} -0.706181 q^{24} +0.0574844 q^{26} -1.52536 q^{27} +0.534122 q^{28} -0.366538 q^{29} +5.71743 q^{31} -0.608974 q^{32} +1.10068 q^{33} -3.42545 q^{34} -0.316182 q^{36} +0.447300 q^{37} -0.904355 q^{38} +0.0101782 q^{39} -1.30887 q^{41} +1.84967 q^{42} +11.6799 q^{43} +0.461444 q^{44} +6.51915 q^{46} +2.91457 q^{47} -1.08065 q^{48} +17.5642 q^{49} -0.606508 q^{51} +0.00426704 q^{52} -5.77092 q^{53} -2.21454 q^{54} -13.6156 q^{56} -0.160125 q^{57} -0.532146 q^{58} +1.75917 q^{59} +6.71285 q^{61} +8.30066 q^{62} -14.5412 q^{63} +7.52373 q^{64} +1.59798 q^{66} -10.5271 q^{67} -0.254270 q^{68} +1.15428 q^{69} -2.65514 q^{71} +8.05999 q^{72} +0.622508 q^{73} +0.649396 q^{74} -0.0671299 q^{76} +21.2218 q^{77} +0.0147768 q^{78} +14.8361 q^{79} +8.40966 q^{81} -1.90024 q^{82} -9.41793 q^{83} +0.137300 q^{84} +16.9570 q^{86} -0.0942214 q^{87} -11.7630 q^{88} -10.5409 q^{89} +0.196241 q^{91} +0.483914 q^{92} +1.46971 q^{93} +4.23142 q^{94} -0.156541 q^{96} -4.20242 q^{97} +25.5000 q^{98} -12.5626 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 49 q + 5 q^{2} + 22 q^{3} + 49 q^{4} + 2 q^{6} + 32 q^{7} + 15 q^{8} + 51 q^{9} - 2 q^{11} + 44 q^{12} + 32 q^{13} - 8 q^{14} + 49 q^{16} + 14 q^{17} + 25 q^{18} + 4 q^{19} + 10 q^{21} + 38 q^{22} + 24 q^{23}+ \cdots + 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.45182 1.02659 0.513294 0.858213i \(-0.328425\pi\)
0.513294 + 0.858213i \(0.328425\pi\)
\(3\) 0.257058 0.148412 0.0742061 0.997243i \(-0.476358\pi\)
0.0742061 + 0.997243i \(0.476358\pi\)
\(4\) 0.107768 0.0538838
\(5\) 0 0
\(6\) 0.373200 0.152358
\(7\) 4.95623 1.87328 0.936640 0.350294i \(-0.113918\pi\)
0.936640 + 0.350294i \(0.113918\pi\)
\(8\) −2.74717 −0.971272
\(9\) −2.93392 −0.977974
\(10\) 0 0
\(11\) 4.28184 1.29102 0.645512 0.763750i \(-0.276644\pi\)
0.645512 + 0.763750i \(0.276644\pi\)
\(12\) 0.0277025 0.00799702
\(13\) 0.0395948 0.0109816 0.00549082 0.999985i \(-0.498252\pi\)
0.00549082 + 0.999985i \(0.498252\pi\)
\(14\) 7.19553 1.92309
\(15\) 0 0
\(16\) −4.20392 −1.05098
\(17\) −2.35942 −0.572244 −0.286122 0.958193i \(-0.592366\pi\)
−0.286122 + 0.958193i \(0.592366\pi\)
\(18\) −4.25951 −1.00398
\(19\) −0.622913 −0.142906 −0.0714531 0.997444i \(-0.522764\pi\)
−0.0714531 + 0.997444i \(0.522764\pi\)
\(20\) 0 0
\(21\) 1.27404 0.278018
\(22\) 6.21644 1.32535
\(23\) 4.49034 0.936302 0.468151 0.883649i \(-0.344920\pi\)
0.468151 + 0.883649i \(0.344920\pi\)
\(24\) −0.706181 −0.144149
\(25\) 0 0
\(26\) 0.0574844 0.0112736
\(27\) −1.52536 −0.293556
\(28\) 0.534122 0.100939
\(29\) −0.366538 −0.0680645 −0.0340322 0.999421i \(-0.510835\pi\)
−0.0340322 + 0.999421i \(0.510835\pi\)
\(30\) 0 0
\(31\) 5.71743 1.02688 0.513441 0.858125i \(-0.328371\pi\)
0.513441 + 0.858125i \(0.328371\pi\)
\(32\) −0.608974 −0.107652
\(33\) 1.10068 0.191604
\(34\) −3.42545 −0.587459
\(35\) 0 0
\(36\) −0.316182 −0.0526970
\(37\) 0.447300 0.0735356 0.0367678 0.999324i \(-0.488294\pi\)
0.0367678 + 0.999324i \(0.488294\pi\)
\(38\) −0.904355 −0.146706
\(39\) 0.0101782 0.00162981
\(40\) 0 0
\(41\) −1.30887 −0.204411 −0.102205 0.994763i \(-0.532590\pi\)
−0.102205 + 0.994763i \(0.532590\pi\)
\(42\) 1.84967 0.285410
\(43\) 11.6799 1.78116 0.890581 0.454825i \(-0.150298\pi\)
0.890581 + 0.454825i \(0.150298\pi\)
\(44\) 0.461444 0.0695653
\(45\) 0 0
\(46\) 6.51915 0.961196
\(47\) 2.91457 0.425134 0.212567 0.977146i \(-0.431818\pi\)
0.212567 + 0.977146i \(0.431818\pi\)
\(48\) −1.08065 −0.155978
\(49\) 17.5642 2.50918
\(50\) 0 0
\(51\) −0.606508 −0.0849280
\(52\) 0.00426704 0.000591733 0
\(53\) −5.77092 −0.792697 −0.396348 0.918100i \(-0.629723\pi\)
−0.396348 + 0.918100i \(0.629723\pi\)
\(54\) −2.21454 −0.301361
\(55\) 0 0
\(56\) −13.6156 −1.81946
\(57\) −0.160125 −0.0212090
\(58\) −0.532146 −0.0698742
\(59\) 1.75917 0.229024 0.114512 0.993422i \(-0.463470\pi\)
0.114512 + 0.993422i \(0.463470\pi\)
\(60\) 0 0
\(61\) 6.71285 0.859493 0.429746 0.902950i \(-0.358603\pi\)
0.429746 + 0.902950i \(0.358603\pi\)
\(62\) 8.30066 1.05418
\(63\) −14.5412 −1.83202
\(64\) 7.52373 0.940466
\(65\) 0 0
\(66\) 1.59798 0.196698
\(67\) −10.5271 −1.28609 −0.643044 0.765829i \(-0.722329\pi\)
−0.643044 + 0.765829i \(0.722329\pi\)
\(68\) −0.254270 −0.0308347
\(69\) 1.15428 0.138959
\(70\) 0 0
\(71\) −2.65514 −0.315107 −0.157554 0.987510i \(-0.550361\pi\)
−0.157554 + 0.987510i \(0.550361\pi\)
\(72\) 8.05999 0.949878
\(73\) 0.622508 0.0728590 0.0364295 0.999336i \(-0.488402\pi\)
0.0364295 + 0.999336i \(0.488402\pi\)
\(74\) 0.649396 0.0754908
\(75\) 0 0
\(76\) −0.0671299 −0.00770033
\(77\) 21.2218 2.41845
\(78\) 0.0147768 0.00167314
\(79\) 14.8361 1.66919 0.834594 0.550865i \(-0.185702\pi\)
0.834594 + 0.550865i \(0.185702\pi\)
\(80\) 0 0
\(81\) 8.40966 0.934407
\(82\) −1.90024 −0.209846
\(83\) −9.41793 −1.03375 −0.516876 0.856060i \(-0.672905\pi\)
−0.516876 + 0.856060i \(0.672905\pi\)
\(84\) 0.137300 0.0149807
\(85\) 0 0
\(86\) 16.9570 1.82852
\(87\) −0.0942214 −0.0101016
\(88\) −11.7630 −1.25393
\(89\) −10.5409 −1.11733 −0.558667 0.829392i \(-0.688687\pi\)
−0.558667 + 0.829392i \(0.688687\pi\)
\(90\) 0 0
\(91\) 0.196241 0.0205717
\(92\) 0.483914 0.0504515
\(93\) 1.46971 0.152402
\(94\) 4.23142 0.436438
\(95\) 0 0
\(96\) −0.156541 −0.0159769
\(97\) −4.20242 −0.426691 −0.213345 0.976977i \(-0.568436\pi\)
−0.213345 + 0.976977i \(0.568436\pi\)
\(98\) 25.5000 2.57589
\(99\) −12.5626 −1.26259
\(100\) 0 0
\(101\) 9.19741 0.915177 0.457588 0.889164i \(-0.348713\pi\)
0.457588 + 0.889164i \(0.348713\pi\)
\(102\) −0.880537 −0.0871862
\(103\) 12.3007 1.21202 0.606012 0.795456i \(-0.292768\pi\)
0.606012 + 0.795456i \(0.292768\pi\)
\(104\) −0.108774 −0.0106662
\(105\) 0 0
\(106\) −8.37831 −0.813773
\(107\) −0.189655 −0.0183346 −0.00916732 0.999958i \(-0.502918\pi\)
−0.00916732 + 0.999958i \(0.502918\pi\)
\(108\) −0.164384 −0.0158179
\(109\) 9.03968 0.865844 0.432922 0.901431i \(-0.357483\pi\)
0.432922 + 0.901431i \(0.357483\pi\)
\(110\) 0 0
\(111\) 0.114982 0.0109136
\(112\) −20.8356 −1.96878
\(113\) 2.29175 0.215590 0.107795 0.994173i \(-0.465621\pi\)
0.107795 + 0.994173i \(0.465621\pi\)
\(114\) −0.232471 −0.0217729
\(115\) 0 0
\(116\) −0.0395010 −0.00366757
\(117\) −0.116168 −0.0107398
\(118\) 2.55399 0.235114
\(119\) −11.6938 −1.07197
\(120\) 0 0
\(121\) 7.33416 0.666742
\(122\) 9.74583 0.882346
\(123\) −0.336455 −0.0303371
\(124\) 0.616155 0.0553323
\(125\) 0 0
\(126\) −21.1111 −1.88073
\(127\) −10.6800 −0.947694 −0.473847 0.880607i \(-0.657135\pi\)
−0.473847 + 0.880607i \(0.657135\pi\)
\(128\) 12.1410 1.07312
\(129\) 3.00240 0.264346
\(130\) 0 0
\(131\) −11.3072 −0.987916 −0.493958 0.869486i \(-0.664450\pi\)
−0.493958 + 0.869486i \(0.664450\pi\)
\(132\) 0.118618 0.0103243
\(133\) −3.08730 −0.267703
\(134\) −15.2834 −1.32028
\(135\) 0 0
\(136\) 6.48174 0.555805
\(137\) −15.4681 −1.32153 −0.660764 0.750593i \(-0.729768\pi\)
−0.660764 + 0.750593i \(0.729768\pi\)
\(138\) 1.67580 0.142653
\(139\) 10.7058 0.908053 0.454027 0.890988i \(-0.349987\pi\)
0.454027 + 0.890988i \(0.349987\pi\)
\(140\) 0 0
\(141\) 0.749213 0.0630951
\(142\) −3.85477 −0.323485
\(143\) 0.169539 0.0141775
\(144\) 12.3340 1.02783
\(145\) 0 0
\(146\) 0.903766 0.0747962
\(147\) 4.51502 0.372392
\(148\) 0.0482044 0.00396238
\(149\) −0.487807 −0.0399627 −0.0199813 0.999800i \(-0.506361\pi\)
−0.0199813 + 0.999800i \(0.506361\pi\)
\(150\) 0 0
\(151\) −3.38077 −0.275123 −0.137562 0.990493i \(-0.543927\pi\)
−0.137562 + 0.990493i \(0.543927\pi\)
\(152\) 1.71125 0.138801
\(153\) 6.92236 0.559640
\(154\) 30.8101 2.48275
\(155\) 0 0
\(156\) 0.00109688 8.78204e−5 0
\(157\) 15.3820 1.22762 0.613808 0.789456i \(-0.289637\pi\)
0.613808 + 0.789456i \(0.289637\pi\)
\(158\) 21.5392 1.71357
\(159\) −1.48346 −0.117646
\(160\) 0 0
\(161\) 22.2552 1.75395
\(162\) 12.2093 0.959251
\(163\) 15.6399 1.22501 0.612505 0.790467i \(-0.290162\pi\)
0.612505 + 0.790467i \(0.290162\pi\)
\(164\) −0.141054 −0.0110144
\(165\) 0 0
\(166\) −13.6731 −1.06124
\(167\) 21.8447 1.69040 0.845199 0.534452i \(-0.179482\pi\)
0.845199 + 0.534452i \(0.179482\pi\)
\(168\) −3.50000 −0.270031
\(169\) −12.9984 −0.999879
\(170\) 0 0
\(171\) 1.82758 0.139758
\(172\) 1.25871 0.0959758
\(173\) 14.1366 1.07478 0.537392 0.843333i \(-0.319410\pi\)
0.537392 + 0.843333i \(0.319410\pi\)
\(174\) −0.136792 −0.0103702
\(175\) 0 0
\(176\) −18.0005 −1.35684
\(177\) 0.452207 0.0339900
\(178\) −15.3035 −1.14704
\(179\) −22.8075 −1.70471 −0.852356 0.522961i \(-0.824827\pi\)
−0.852356 + 0.522961i \(0.824827\pi\)
\(180\) 0 0
\(181\) 5.65631 0.420430 0.210215 0.977655i \(-0.432584\pi\)
0.210215 + 0.977655i \(0.432584\pi\)
\(182\) 0.284906 0.0211186
\(183\) 1.72559 0.127559
\(184\) −12.3357 −0.909403
\(185\) 0 0
\(186\) 2.13375 0.156454
\(187\) −10.1027 −0.738781
\(188\) 0.314097 0.0229078
\(189\) −7.56003 −0.549911
\(190\) 0 0
\(191\) 19.8821 1.43862 0.719308 0.694692i \(-0.244459\pi\)
0.719308 + 0.694692i \(0.244459\pi\)
\(192\) 1.93403 0.139577
\(193\) 13.4667 0.969353 0.484677 0.874693i \(-0.338937\pi\)
0.484677 + 0.874693i \(0.338937\pi\)
\(194\) −6.10113 −0.438036
\(195\) 0 0
\(196\) 1.89286 0.135204
\(197\) −1.00000 −0.0712470
\(198\) −18.2386 −1.29616
\(199\) −7.23463 −0.512849 −0.256425 0.966564i \(-0.582545\pi\)
−0.256425 + 0.966564i \(0.582545\pi\)
\(200\) 0 0
\(201\) −2.70607 −0.190871
\(202\) 13.3529 0.939510
\(203\) −1.81665 −0.127504
\(204\) −0.0653619 −0.00457625
\(205\) 0 0
\(206\) 17.8583 1.24425
\(207\) −13.1743 −0.915678
\(208\) −0.166454 −0.0115415
\(209\) −2.66722 −0.184495
\(210\) 0 0
\(211\) −10.3252 −0.710814 −0.355407 0.934712i \(-0.615658\pi\)
−0.355407 + 0.934712i \(0.615658\pi\)
\(212\) −0.621918 −0.0427135
\(213\) −0.682524 −0.0467658
\(214\) −0.275344 −0.0188221
\(215\) 0 0
\(216\) 4.19042 0.285122
\(217\) 28.3369 1.92364
\(218\) 13.1239 0.888866
\(219\) 0.160020 0.0108132
\(220\) 0 0
\(221\) −0.0934210 −0.00628418
\(222\) 0.166932 0.0112038
\(223\) −25.7382 −1.72356 −0.861779 0.507284i \(-0.830649\pi\)
−0.861779 + 0.507284i \(0.830649\pi\)
\(224\) −3.01822 −0.201663
\(225\) 0 0
\(226\) 3.32720 0.221322
\(227\) 26.6219 1.76696 0.883478 0.468473i \(-0.155196\pi\)
0.883478 + 0.468473i \(0.155196\pi\)
\(228\) −0.0172563 −0.00114282
\(229\) −0.747925 −0.0494243 −0.0247121 0.999695i \(-0.507867\pi\)
−0.0247121 + 0.999695i \(0.507867\pi\)
\(230\) 0 0
\(231\) 5.45522 0.358927
\(232\) 1.00694 0.0661091
\(233\) 6.30576 0.413104 0.206552 0.978436i \(-0.433776\pi\)
0.206552 + 0.978436i \(0.433776\pi\)
\(234\) −0.168655 −0.0110253
\(235\) 0 0
\(236\) 0.189581 0.0123407
\(237\) 3.81372 0.247728
\(238\) −16.9773 −1.10048
\(239\) 5.24997 0.339593 0.169796 0.985479i \(-0.445689\pi\)
0.169796 + 0.985479i \(0.445689\pi\)
\(240\) 0 0
\(241\) −4.37801 −0.282012 −0.141006 0.990009i \(-0.545034\pi\)
−0.141006 + 0.990009i \(0.545034\pi\)
\(242\) 10.6478 0.684470
\(243\) 6.73784 0.432233
\(244\) 0.723429 0.0463128
\(245\) 0 0
\(246\) −0.488470 −0.0311437
\(247\) −0.0246642 −0.00156934
\(248\) −15.7068 −0.997381
\(249\) −2.42095 −0.153422
\(250\) 0 0
\(251\) −13.0903 −0.826255 −0.413127 0.910673i \(-0.635564\pi\)
−0.413127 + 0.910673i \(0.635564\pi\)
\(252\) −1.56707 −0.0987162
\(253\) 19.2269 1.20879
\(254\) −15.5053 −0.972891
\(255\) 0 0
\(256\) 2.57905 0.161191
\(257\) 24.5117 1.52900 0.764499 0.644625i \(-0.222987\pi\)
0.764499 + 0.644625i \(0.222987\pi\)
\(258\) 4.35892 0.271375
\(259\) 2.21692 0.137753
\(260\) 0 0
\(261\) 1.07539 0.0665653
\(262\) −16.4160 −1.01418
\(263\) −18.5522 −1.14398 −0.571988 0.820262i \(-0.693827\pi\)
−0.571988 + 0.820262i \(0.693827\pi\)
\(264\) −3.02376 −0.186099
\(265\) 0 0
\(266\) −4.48219 −0.274821
\(267\) −2.70962 −0.165826
\(268\) −1.13448 −0.0692993
\(269\) 22.8633 1.39400 0.697000 0.717071i \(-0.254518\pi\)
0.697000 + 0.717071i \(0.254518\pi\)
\(270\) 0 0
\(271\) −25.1564 −1.52815 −0.764073 0.645130i \(-0.776803\pi\)
−0.764073 + 0.645130i \(0.776803\pi\)
\(272\) 9.91883 0.601417
\(273\) 0.0504453 0.00305309
\(274\) −22.4568 −1.35667
\(275\) 0 0
\(276\) 0.124394 0.00748762
\(277\) 4.86686 0.292421 0.146211 0.989253i \(-0.453292\pi\)
0.146211 + 0.989253i \(0.453292\pi\)
\(278\) 15.5428 0.932197
\(279\) −16.7745 −1.00426
\(280\) 0 0
\(281\) 30.6294 1.82720 0.913599 0.406616i \(-0.133291\pi\)
0.913599 + 0.406616i \(0.133291\pi\)
\(282\) 1.08772 0.0647727
\(283\) −33.4865 −1.99057 −0.995283 0.0970176i \(-0.969070\pi\)
−0.995283 + 0.0970176i \(0.969070\pi\)
\(284\) −0.286138 −0.0169792
\(285\) 0 0
\(286\) 0.246139 0.0145545
\(287\) −6.48706 −0.382919
\(288\) 1.78668 0.105281
\(289\) −11.4331 −0.672537
\(290\) 0 0
\(291\) −1.08026 −0.0633261
\(292\) 0.0670862 0.00392592
\(293\) 15.1265 0.883697 0.441849 0.897090i \(-0.354323\pi\)
0.441849 + 0.897090i \(0.354323\pi\)
\(294\) 6.55497 0.382294
\(295\) 0 0
\(296\) −1.22881 −0.0714231
\(297\) −6.53135 −0.378987
\(298\) −0.708205 −0.0410252
\(299\) 0.177795 0.0102821
\(300\) 0 0
\(301\) 57.8881 3.33661
\(302\) −4.90826 −0.282439
\(303\) 2.36426 0.135823
\(304\) 2.61868 0.150192
\(305\) 0 0
\(306\) 10.0500 0.574520
\(307\) 16.5626 0.945276 0.472638 0.881257i \(-0.343302\pi\)
0.472638 + 0.881257i \(0.343302\pi\)
\(308\) 2.28702 0.130315
\(309\) 3.16199 0.179879
\(310\) 0 0
\(311\) −11.7823 −0.668112 −0.334056 0.942553i \(-0.608418\pi\)
−0.334056 + 0.942553i \(0.608418\pi\)
\(312\) −0.0279611 −0.00158299
\(313\) 11.5586 0.653333 0.326666 0.945140i \(-0.394075\pi\)
0.326666 + 0.945140i \(0.394075\pi\)
\(314\) 22.3318 1.26026
\(315\) 0 0
\(316\) 1.59885 0.0899423
\(317\) −20.0168 −1.12425 −0.562127 0.827051i \(-0.690017\pi\)
−0.562127 + 0.827051i \(0.690017\pi\)
\(318\) −2.15371 −0.120774
\(319\) −1.56946 −0.0878728
\(320\) 0 0
\(321\) −0.0487523 −0.00272109
\(322\) 32.3104 1.80059
\(323\) 1.46972 0.0817772
\(324\) 0.906289 0.0503494
\(325\) 0 0
\(326\) 22.7062 1.25758
\(327\) 2.32372 0.128502
\(328\) 3.59569 0.198539
\(329\) 14.4453 0.796395
\(330\) 0 0
\(331\) −14.1397 −0.777186 −0.388593 0.921410i \(-0.627039\pi\)
−0.388593 + 0.921410i \(0.627039\pi\)
\(332\) −1.01495 −0.0557025
\(333\) −1.31234 −0.0719159
\(334\) 31.7145 1.73534
\(335\) 0 0
\(336\) −5.35595 −0.292191
\(337\) −24.6996 −1.34547 −0.672737 0.739882i \(-0.734882\pi\)
−0.672737 + 0.739882i \(0.734882\pi\)
\(338\) −18.8713 −1.02646
\(339\) 0.589112 0.0319962
\(340\) 0 0
\(341\) 24.4811 1.32573
\(342\) 2.65331 0.143474
\(343\) 52.3588 2.82711
\(344\) −32.0866 −1.72999
\(345\) 0 0
\(346\) 20.5237 1.10336
\(347\) 33.1998 1.78226 0.891130 0.453749i \(-0.149914\pi\)
0.891130 + 0.453749i \(0.149914\pi\)
\(348\) −0.0101540 −0.000544313 0
\(349\) −3.85836 −0.206533 −0.103267 0.994654i \(-0.532929\pi\)
−0.103267 + 0.994654i \(0.532929\pi\)
\(350\) 0 0
\(351\) −0.0603964 −0.00322372
\(352\) −2.60753 −0.138982
\(353\) −28.5121 −1.51754 −0.758772 0.651356i \(-0.774200\pi\)
−0.758772 + 0.651356i \(0.774200\pi\)
\(354\) 0.656522 0.0348937
\(355\) 0 0
\(356\) −1.13597 −0.0602063
\(357\) −3.00599 −0.159094
\(358\) −33.1123 −1.75004
\(359\) −13.5351 −0.714354 −0.357177 0.934037i \(-0.616261\pi\)
−0.357177 + 0.934037i \(0.616261\pi\)
\(360\) 0 0
\(361\) −18.6120 −0.979578
\(362\) 8.21192 0.431609
\(363\) 1.88530 0.0989527
\(364\) 0.0211485 0.00110848
\(365\) 0 0
\(366\) 2.50524 0.130951
\(367\) −5.02879 −0.262501 −0.131250 0.991349i \(-0.541899\pi\)
−0.131250 + 0.991349i \(0.541899\pi\)
\(368\) −18.8771 −0.984035
\(369\) 3.84012 0.199909
\(370\) 0 0
\(371\) −28.6020 −1.48494
\(372\) 0.158387 0.00821199
\(373\) −2.49864 −0.129375 −0.0646874 0.997906i \(-0.520605\pi\)
−0.0646874 + 0.997906i \(0.520605\pi\)
\(374\) −14.6672 −0.758424
\(375\) 0 0
\(376\) −8.00683 −0.412921
\(377\) −0.0145130 −0.000747459 0
\(378\) −10.9758 −0.564533
\(379\) 30.1669 1.54957 0.774785 0.632225i \(-0.217858\pi\)
0.774785 + 0.632225i \(0.217858\pi\)
\(380\) 0 0
\(381\) −2.74537 −0.140649
\(382\) 28.8651 1.47687
\(383\) −21.7802 −1.11292 −0.556459 0.830875i \(-0.687840\pi\)
−0.556459 + 0.830875i \(0.687840\pi\)
\(384\) 3.12094 0.159265
\(385\) 0 0
\(386\) 19.5511 0.995127
\(387\) −34.2678 −1.74193
\(388\) −0.452885 −0.0229917
\(389\) −13.3871 −0.678755 −0.339377 0.940650i \(-0.610216\pi\)
−0.339377 + 0.940650i \(0.610216\pi\)
\(390\) 0 0
\(391\) −10.5946 −0.535793
\(392\) −48.2520 −2.43709
\(393\) −2.90660 −0.146619
\(394\) −1.45182 −0.0731414
\(395\) 0 0
\(396\) −1.35384 −0.0680330
\(397\) −15.9000 −0.797996 −0.398998 0.916952i \(-0.630642\pi\)
−0.398998 + 0.916952i \(0.630642\pi\)
\(398\) −10.5033 −0.526485
\(399\) −0.793614 −0.0397304
\(400\) 0 0
\(401\) −30.1704 −1.50664 −0.753319 0.657655i \(-0.771548\pi\)
−0.753319 + 0.657655i \(0.771548\pi\)
\(402\) −3.92871 −0.195946
\(403\) 0.226381 0.0112768
\(404\) 0.991184 0.0493132
\(405\) 0 0
\(406\) −2.63744 −0.130894
\(407\) 1.91527 0.0949362
\(408\) 1.66618 0.0824882
\(409\) −10.5035 −0.519367 −0.259683 0.965694i \(-0.583618\pi\)
−0.259683 + 0.965694i \(0.583618\pi\)
\(410\) 0 0
\(411\) −3.97619 −0.196131
\(412\) 1.32562 0.0653085
\(413\) 8.71884 0.429026
\(414\) −19.1267 −0.940025
\(415\) 0 0
\(416\) −0.0241122 −0.00118220
\(417\) 2.75200 0.134766
\(418\) −3.87230 −0.189401
\(419\) −12.8054 −0.625586 −0.312793 0.949821i \(-0.601265\pi\)
−0.312793 + 0.949821i \(0.601265\pi\)
\(420\) 0 0
\(421\) −10.0841 −0.491469 −0.245734 0.969337i \(-0.579029\pi\)
−0.245734 + 0.969337i \(0.579029\pi\)
\(422\) −14.9902 −0.729713
\(423\) −8.55112 −0.415770
\(424\) 15.8537 0.769924
\(425\) 0 0
\(426\) −0.990899 −0.0480092
\(427\) 33.2705 1.61007
\(428\) −0.0204387 −0.000987941 0
\(429\) 0.0435812 0.00210412
\(430\) 0 0
\(431\) 16.4580 0.792753 0.396376 0.918088i \(-0.370268\pi\)
0.396376 + 0.918088i \(0.370268\pi\)
\(432\) 6.41249 0.308521
\(433\) 33.8333 1.62593 0.812963 0.582315i \(-0.197853\pi\)
0.812963 + 0.582315i \(0.197853\pi\)
\(434\) 41.1400 1.97478
\(435\) 0 0
\(436\) 0.974185 0.0466550
\(437\) −2.79710 −0.133803
\(438\) 0.232320 0.0111007
\(439\) −28.6744 −1.36856 −0.684278 0.729221i \(-0.739882\pi\)
−0.684278 + 0.729221i \(0.739882\pi\)
\(440\) 0 0
\(441\) −51.5321 −2.45391
\(442\) −0.135630 −0.00645126
\(443\) −18.6714 −0.887104 −0.443552 0.896249i \(-0.646282\pi\)
−0.443552 + 0.896249i \(0.646282\pi\)
\(444\) 0.0123913 0.000588066 0
\(445\) 0 0
\(446\) −37.3671 −1.76938
\(447\) −0.125394 −0.00593095
\(448\) 37.2893 1.76175
\(449\) −22.7683 −1.07450 −0.537250 0.843423i \(-0.680537\pi\)
−0.537250 + 0.843423i \(0.680537\pi\)
\(450\) 0 0
\(451\) −5.60437 −0.263899
\(452\) 0.246977 0.0116168
\(453\) −0.869053 −0.0408317
\(454\) 38.6500 1.81394
\(455\) 0 0
\(456\) 0.439890 0.0205997
\(457\) −4.08443 −0.191062 −0.0955309 0.995426i \(-0.530455\pi\)
−0.0955309 + 0.995426i \(0.530455\pi\)
\(458\) −1.08585 −0.0507384
\(459\) 3.59897 0.167985
\(460\) 0 0
\(461\) −25.3244 −1.17947 −0.589737 0.807595i \(-0.700769\pi\)
−0.589737 + 0.807595i \(0.700769\pi\)
\(462\) 7.91997 0.368471
\(463\) 29.3448 1.36377 0.681883 0.731461i \(-0.261161\pi\)
0.681883 + 0.731461i \(0.261161\pi\)
\(464\) 1.54090 0.0715344
\(465\) 0 0
\(466\) 9.15480 0.424088
\(467\) −29.7840 −1.37824 −0.689119 0.724648i \(-0.742002\pi\)
−0.689119 + 0.724648i \(0.742002\pi\)
\(468\) −0.0125192 −0.000578699 0
\(469\) −52.1746 −2.40920
\(470\) 0 0
\(471\) 3.95405 0.182193
\(472\) −4.83274 −0.222445
\(473\) 50.0113 2.29952
\(474\) 5.53682 0.254315
\(475\) 0 0
\(476\) −1.26022 −0.0577620
\(477\) 16.9314 0.775236
\(478\) 7.62199 0.348622
\(479\) 17.1420 0.783238 0.391619 0.920127i \(-0.371915\pi\)
0.391619 + 0.920127i \(0.371915\pi\)
\(480\) 0 0
\(481\) 0.0177108 0.000807541 0
\(482\) −6.35606 −0.289510
\(483\) 5.72086 0.260308
\(484\) 0.790385 0.0359266
\(485\) 0 0
\(486\) 9.78211 0.443725
\(487\) 16.0308 0.726423 0.363212 0.931707i \(-0.381680\pi\)
0.363212 + 0.931707i \(0.381680\pi\)
\(488\) −18.4414 −0.834801
\(489\) 4.02035 0.181807
\(490\) 0 0
\(491\) −42.9924 −1.94022 −0.970109 0.242669i \(-0.921977\pi\)
−0.970109 + 0.242669i \(0.921977\pi\)
\(492\) −0.0362589 −0.00163468
\(493\) 0.864819 0.0389495
\(494\) −0.0358078 −0.00161107
\(495\) 0 0
\(496\) −24.0356 −1.07923
\(497\) −13.1595 −0.590284
\(498\) −3.51477 −0.157501
\(499\) −25.7746 −1.15383 −0.576915 0.816804i \(-0.695744\pi\)
−0.576915 + 0.816804i \(0.695744\pi\)
\(500\) 0 0
\(501\) 5.61536 0.250876
\(502\) −19.0047 −0.848223
\(503\) 31.3319 1.39702 0.698510 0.715600i \(-0.253847\pi\)
0.698510 + 0.715600i \(0.253847\pi\)
\(504\) 39.9472 1.77939
\(505\) 0 0
\(506\) 27.9140 1.24093
\(507\) −3.34135 −0.148394
\(508\) −1.15095 −0.0510654
\(509\) −0.670154 −0.0297041 −0.0148520 0.999890i \(-0.504728\pi\)
−0.0148520 + 0.999890i \(0.504728\pi\)
\(510\) 0 0
\(511\) 3.08529 0.136485
\(512\) −20.5377 −0.907647
\(513\) 0.950167 0.0419509
\(514\) 35.5865 1.56965
\(515\) 0 0
\(516\) 0.323561 0.0142440
\(517\) 12.4797 0.548858
\(518\) 3.21856 0.141415
\(519\) 3.63391 0.159511
\(520\) 0 0
\(521\) −34.2371 −1.49995 −0.749976 0.661465i \(-0.769935\pi\)
−0.749976 + 0.661465i \(0.769935\pi\)
\(522\) 1.56127 0.0683351
\(523\) 14.6338 0.639893 0.319947 0.947436i \(-0.396335\pi\)
0.319947 + 0.947436i \(0.396335\pi\)
\(524\) −1.21855 −0.0532327
\(525\) 0 0
\(526\) −26.9343 −1.17439
\(527\) −13.4898 −0.587627
\(528\) −4.62717 −0.201372
\(529\) −2.83681 −0.123339
\(530\) 0 0
\(531\) −5.16126 −0.223980
\(532\) −0.332711 −0.0144249
\(533\) −0.0518245 −0.00224477
\(534\) −3.93387 −0.170235
\(535\) 0 0
\(536\) 28.9197 1.24914
\(537\) −5.86284 −0.253000
\(538\) 33.1933 1.43106
\(539\) 75.2072 3.23940
\(540\) 0 0
\(541\) 26.9024 1.15663 0.578313 0.815815i \(-0.303711\pi\)
0.578313 + 0.815815i \(0.303711\pi\)
\(542\) −36.5225 −1.56878
\(543\) 1.45400 0.0623970
\(544\) 1.43683 0.0616035
\(545\) 0 0
\(546\) 0.0732372 0.00313426
\(547\) 13.7772 0.589071 0.294535 0.955641i \(-0.404835\pi\)
0.294535 + 0.955641i \(0.404835\pi\)
\(548\) −1.66696 −0.0712090
\(549\) −19.6950 −0.840562
\(550\) 0 0
\(551\) 0.228322 0.00972683
\(552\) −3.17100 −0.134967
\(553\) 73.5310 3.12686
\(554\) 7.06578 0.300196
\(555\) 0 0
\(556\) 1.15374 0.0489294
\(557\) 40.8747 1.73192 0.865959 0.500115i \(-0.166709\pi\)
0.865959 + 0.500115i \(0.166709\pi\)
\(558\) −24.3535 −1.03096
\(559\) 0.462462 0.0195601
\(560\) 0 0
\(561\) −2.59697 −0.109644
\(562\) 44.4683 1.87578
\(563\) −36.5476 −1.54030 −0.770149 0.637864i \(-0.779818\pi\)
−0.770149 + 0.637864i \(0.779818\pi\)
\(564\) 0.0807409 0.00339981
\(565\) 0 0
\(566\) −48.6162 −2.04349
\(567\) 41.6802 1.75040
\(568\) 7.29413 0.306055
\(569\) −0.561509 −0.0235397 −0.0117698 0.999931i \(-0.503747\pi\)
−0.0117698 + 0.999931i \(0.503747\pi\)
\(570\) 0 0
\(571\) −10.8440 −0.453807 −0.226904 0.973917i \(-0.572860\pi\)
−0.226904 + 0.973917i \(0.572860\pi\)
\(572\) 0.0182708 0.000763941 0
\(573\) 5.11083 0.213508
\(574\) −9.41801 −0.393100
\(575\) 0 0
\(576\) −22.0740 −0.919751
\(577\) −19.9454 −0.830338 −0.415169 0.909744i \(-0.636277\pi\)
−0.415169 + 0.909744i \(0.636277\pi\)
\(578\) −16.5988 −0.690418
\(579\) 3.46171 0.143864
\(580\) 0 0
\(581\) −46.6775 −1.93651
\(582\) −1.56834 −0.0650099
\(583\) −24.7102 −1.02339
\(584\) −1.71014 −0.0707659
\(585\) 0 0
\(586\) 21.9608 0.907194
\(587\) −34.0002 −1.40334 −0.701668 0.712504i \(-0.747561\pi\)
−0.701668 + 0.712504i \(0.747561\pi\)
\(588\) 0.486573 0.0200659
\(589\) −3.56147 −0.146748
\(590\) 0 0
\(591\) −0.257058 −0.0105739
\(592\) −1.88041 −0.0772845
\(593\) 0.289835 0.0119021 0.00595105 0.999982i \(-0.498106\pi\)
0.00595105 + 0.999982i \(0.498106\pi\)
\(594\) −9.48231 −0.389064
\(595\) 0 0
\(596\) −0.0525698 −0.00215334
\(597\) −1.85972 −0.0761131
\(598\) 0.258125 0.0105555
\(599\) −23.3847 −0.955473 −0.477736 0.878503i \(-0.658543\pi\)
−0.477736 + 0.878503i \(0.658543\pi\)
\(600\) 0 0
\(601\) 47.2544 1.92755 0.963773 0.266725i \(-0.0859417\pi\)
0.963773 + 0.266725i \(0.0859417\pi\)
\(602\) 84.0428 3.42533
\(603\) 30.8856 1.25776
\(604\) −0.364338 −0.0148247
\(605\) 0 0
\(606\) 3.43247 0.139435
\(607\) 41.4883 1.68396 0.841980 0.539509i \(-0.181390\pi\)
0.841980 + 0.539509i \(0.181390\pi\)
\(608\) 0.379338 0.0153842
\(609\) −0.466983 −0.0189231
\(610\) 0 0
\(611\) 0.115402 0.00466867
\(612\) 0.746007 0.0301555
\(613\) −39.8431 −1.60925 −0.804625 0.593784i \(-0.797634\pi\)
−0.804625 + 0.593784i \(0.797634\pi\)
\(614\) 24.0458 0.970409
\(615\) 0 0
\(616\) −58.2999 −2.34897
\(617\) 10.8488 0.436758 0.218379 0.975864i \(-0.429923\pi\)
0.218379 + 0.975864i \(0.429923\pi\)
\(618\) 4.59062 0.184662
\(619\) 14.3789 0.577937 0.288969 0.957339i \(-0.406688\pi\)
0.288969 + 0.957339i \(0.406688\pi\)
\(620\) 0 0
\(621\) −6.84939 −0.274857
\(622\) −17.1057 −0.685876
\(623\) −52.2432 −2.09308
\(624\) −0.0427882 −0.00171290
\(625\) 0 0
\(626\) 16.7810 0.670704
\(627\) −0.685628 −0.0273813
\(628\) 1.65768 0.0661486
\(629\) −1.05537 −0.0420803
\(630\) 0 0
\(631\) −29.2361 −1.16387 −0.581935 0.813236i \(-0.697704\pi\)
−0.581935 + 0.813236i \(0.697704\pi\)
\(632\) −40.7572 −1.62124
\(633\) −2.65416 −0.105494
\(634\) −29.0607 −1.15415
\(635\) 0 0
\(636\) −0.159869 −0.00633921
\(637\) 0.695453 0.0275548
\(638\) −2.27856 −0.0902092
\(639\) 7.78997 0.308167
\(640\) 0 0
\(641\) −5.02891 −0.198630 −0.0993149 0.995056i \(-0.531665\pi\)
−0.0993149 + 0.995056i \(0.531665\pi\)
\(642\) −0.0707793 −0.00279344
\(643\) −21.5016 −0.847940 −0.423970 0.905676i \(-0.639364\pi\)
−0.423970 + 0.905676i \(0.639364\pi\)
\(644\) 2.39839 0.0945098
\(645\) 0 0
\(646\) 2.13376 0.0839515
\(647\) −16.0881 −0.632487 −0.316243 0.948678i \(-0.602422\pi\)
−0.316243 + 0.948678i \(0.602422\pi\)
\(648\) −23.1028 −0.907563
\(649\) 7.53248 0.295676
\(650\) 0 0
\(651\) 7.28422 0.285491
\(652\) 1.68547 0.0660083
\(653\) 29.9566 1.17229 0.586146 0.810205i \(-0.300644\pi\)
0.586146 + 0.810205i \(0.300644\pi\)
\(654\) 3.37361 0.131919
\(655\) 0 0
\(656\) 5.50238 0.214832
\(657\) −1.82639 −0.0712542
\(658\) 20.9719 0.817570
\(659\) 14.8597 0.578853 0.289426 0.957200i \(-0.406535\pi\)
0.289426 + 0.957200i \(0.406535\pi\)
\(660\) 0 0
\(661\) 10.7252 0.417161 0.208581 0.978005i \(-0.433116\pi\)
0.208581 + 0.978005i \(0.433116\pi\)
\(662\) −20.5282 −0.797850
\(663\) −0.0240146 −0.000932649 0
\(664\) 25.8727 1.00405
\(665\) 0 0
\(666\) −1.90528 −0.0738280
\(667\) −1.64588 −0.0637289
\(668\) 2.35416 0.0910851
\(669\) −6.61620 −0.255797
\(670\) 0 0
\(671\) 28.7434 1.10963
\(672\) −0.775855 −0.0299293
\(673\) −17.9563 −0.692164 −0.346082 0.938204i \(-0.612488\pi\)
−0.346082 + 0.938204i \(0.612488\pi\)
\(674\) −35.8593 −1.38125
\(675\) 0 0
\(676\) −1.40081 −0.0538773
\(677\) −21.3175 −0.819298 −0.409649 0.912243i \(-0.634349\pi\)
−0.409649 + 0.912243i \(0.634349\pi\)
\(678\) 0.855281 0.0328469
\(679\) −20.8281 −0.799311
\(680\) 0 0
\(681\) 6.84335 0.262238
\(682\) 35.5421 1.36098
\(683\) 2.40314 0.0919538 0.0459769 0.998943i \(-0.485360\pi\)
0.0459769 + 0.998943i \(0.485360\pi\)
\(684\) 0.196954 0.00753072
\(685\) 0 0
\(686\) 76.0152 2.90228
\(687\) −0.192260 −0.00733517
\(688\) −49.1012 −1.87197
\(689\) −0.228499 −0.00870510
\(690\) 0 0
\(691\) −3.06820 −0.116720 −0.0583599 0.998296i \(-0.518587\pi\)
−0.0583599 + 0.998296i \(0.518587\pi\)
\(692\) 1.52346 0.0579134
\(693\) −62.2631 −2.36518
\(694\) 48.2000 1.82965
\(695\) 0 0
\(696\) 0.258842 0.00981140
\(697\) 3.08818 0.116973
\(698\) −5.60162 −0.212024
\(699\) 1.62094 0.0613097
\(700\) 0 0
\(701\) 21.7249 0.820537 0.410268 0.911965i \(-0.365435\pi\)
0.410268 + 0.911965i \(0.365435\pi\)
\(702\) −0.0876844 −0.00330943
\(703\) −0.278629 −0.0105087
\(704\) 32.2154 1.21416
\(705\) 0 0
\(706\) −41.3943 −1.55789
\(707\) 45.5845 1.71438
\(708\) 0.0487333 0.00183151
\(709\) −0.452624 −0.0169986 −0.00849932 0.999964i \(-0.502705\pi\)
−0.00849932 + 0.999964i \(0.502705\pi\)
\(710\) 0 0
\(711\) −43.5279 −1.63242
\(712\) 28.9577 1.08524
\(713\) 25.6732 0.961471
\(714\) −4.36414 −0.163324
\(715\) 0 0
\(716\) −2.45791 −0.0918565
\(717\) 1.34955 0.0503997
\(718\) −19.6504 −0.733348
\(719\) −40.8858 −1.52478 −0.762392 0.647115i \(-0.775975\pi\)
−0.762392 + 0.647115i \(0.775975\pi\)
\(720\) 0 0
\(721\) 60.9651 2.27046
\(722\) −27.0212 −1.00562
\(723\) −1.12540 −0.0418541
\(724\) 0.609567 0.0226544
\(725\) 0 0
\(726\) 2.73711 0.101584
\(727\) −29.9609 −1.11119 −0.555594 0.831454i \(-0.687509\pi\)
−0.555594 + 0.831454i \(0.687509\pi\)
\(728\) −0.539108 −0.0199807
\(729\) −23.4970 −0.870258
\(730\) 0 0
\(731\) −27.5577 −1.01926
\(732\) 0.185963 0.00687338
\(733\) −32.6206 −1.20487 −0.602434 0.798169i \(-0.705802\pi\)
−0.602434 + 0.798169i \(0.705802\pi\)
\(734\) −7.30087 −0.269480
\(735\) 0 0
\(736\) −2.73450 −0.100795
\(737\) −45.0753 −1.66037
\(738\) 5.57514 0.205224
\(739\) −36.0853 −1.32742 −0.663709 0.747991i \(-0.731019\pi\)
−0.663709 + 0.747991i \(0.731019\pi\)
\(740\) 0 0
\(741\) −0.00634011 −0.000232910 0
\(742\) −41.5248 −1.52442
\(743\) 3.64167 0.133600 0.0668000 0.997766i \(-0.478721\pi\)
0.0668000 + 0.997766i \(0.478721\pi\)
\(744\) −4.03754 −0.148024
\(745\) 0 0
\(746\) −3.62757 −0.132815
\(747\) 27.6315 1.01098
\(748\) −1.08874 −0.0398083
\(749\) −0.939974 −0.0343459
\(750\) 0 0
\(751\) −53.2512 −1.94316 −0.971582 0.236704i \(-0.923933\pi\)
−0.971582 + 0.236704i \(0.923933\pi\)
\(752\) −12.2526 −0.446807
\(753\) −3.36497 −0.122626
\(754\) −0.0210702 −0.000767333 0
\(755\) 0 0
\(756\) −0.814727 −0.0296313
\(757\) 32.1949 1.17014 0.585072 0.810982i \(-0.301066\pi\)
0.585072 + 0.810982i \(0.301066\pi\)
\(758\) 43.7968 1.59077
\(759\) 4.94243 0.179399
\(760\) 0 0
\(761\) −15.9438 −0.577961 −0.288981 0.957335i \(-0.593316\pi\)
−0.288981 + 0.957335i \(0.593316\pi\)
\(762\) −3.98576 −0.144389
\(763\) 44.8027 1.62197
\(764\) 2.14264 0.0775181
\(765\) 0 0
\(766\) −31.6209 −1.14251
\(767\) 0.0696540 0.00251506
\(768\) 0.662964 0.0239227
\(769\) −11.4972 −0.414598 −0.207299 0.978278i \(-0.566467\pi\)
−0.207299 + 0.978278i \(0.566467\pi\)
\(770\) 0 0
\(771\) 6.30092 0.226922
\(772\) 1.45127 0.0522325
\(773\) −17.9213 −0.644583 −0.322292 0.946640i \(-0.604453\pi\)
−0.322292 + 0.946640i \(0.604453\pi\)
\(774\) −49.7505 −1.78824
\(775\) 0 0
\(776\) 11.5448 0.414433
\(777\) 0.569876 0.0204442
\(778\) −19.4356 −0.696802
\(779\) 0.815312 0.0292116
\(780\) 0 0
\(781\) −11.3689 −0.406811
\(782\) −15.3814 −0.550039
\(783\) 0.559103 0.0199807
\(784\) −73.8386 −2.63709
\(785\) 0 0
\(786\) −4.21985 −0.150517
\(787\) 15.1463 0.539906 0.269953 0.962873i \(-0.412992\pi\)
0.269953 + 0.962873i \(0.412992\pi\)
\(788\) −0.107768 −0.00383906
\(789\) −4.76897 −0.169780
\(790\) 0 0
\(791\) 11.3584 0.403860
\(792\) 34.5116 1.22632
\(793\) 0.265794 0.00943864
\(794\) −23.0838 −0.819214
\(795\) 0 0
\(796\) −0.779659 −0.0276343
\(797\) −10.5416 −0.373403 −0.186701 0.982417i \(-0.559780\pi\)
−0.186701 + 0.982417i \(0.559780\pi\)
\(798\) −1.15218 −0.0407868
\(799\) −6.87671 −0.243280
\(800\) 0 0
\(801\) 30.9262 1.09272
\(802\) −43.8019 −1.54670
\(803\) 2.66548 0.0940627
\(804\) −0.291626 −0.0102849
\(805\) 0 0
\(806\) 0.328663 0.0115767
\(807\) 5.87718 0.206887
\(808\) −25.2669 −0.888885
\(809\) −22.7520 −0.799917 −0.399959 0.916533i \(-0.630976\pi\)
−0.399959 + 0.916533i \(0.630976\pi\)
\(810\) 0 0
\(811\) −46.8973 −1.64679 −0.823394 0.567470i \(-0.807922\pi\)
−0.823394 + 0.567470i \(0.807922\pi\)
\(812\) −0.195776 −0.00687039
\(813\) −6.46665 −0.226795
\(814\) 2.78061 0.0974604
\(815\) 0 0
\(816\) 2.54971 0.0892577
\(817\) −7.27554 −0.254539
\(818\) −15.2492 −0.533176
\(819\) −0.575756 −0.0201186
\(820\) 0 0
\(821\) −16.1605 −0.564007 −0.282003 0.959413i \(-0.590999\pi\)
−0.282003 + 0.959413i \(0.590999\pi\)
\(822\) −5.77269 −0.201346
\(823\) 36.7619 1.28144 0.640719 0.767775i \(-0.278636\pi\)
0.640719 + 0.767775i \(0.278636\pi\)
\(824\) −33.7921 −1.17720
\(825\) 0 0
\(826\) 12.6581 0.440433
\(827\) −11.0539 −0.384381 −0.192190 0.981358i \(-0.561559\pi\)
−0.192190 + 0.981358i \(0.561559\pi\)
\(828\) −1.41977 −0.0493403
\(829\) 44.8204 1.55668 0.778339 0.627845i \(-0.216063\pi\)
0.778339 + 0.627845i \(0.216063\pi\)
\(830\) 0 0
\(831\) 1.25106 0.0433989
\(832\) 0.297901 0.0103279
\(833\) −41.4415 −1.43586
\(834\) 3.99540 0.138349
\(835\) 0 0
\(836\) −0.287440 −0.00994131
\(837\) −8.72114 −0.301447
\(838\) −18.5911 −0.642219
\(839\) 46.6571 1.61078 0.805391 0.592744i \(-0.201955\pi\)
0.805391 + 0.592744i \(0.201955\pi\)
\(840\) 0 0
\(841\) −28.8656 −0.995367
\(842\) −14.6403 −0.504536
\(843\) 7.87352 0.271179
\(844\) −1.11272 −0.0383014
\(845\) 0 0
\(846\) −12.4147 −0.426825
\(847\) 36.3498 1.24899
\(848\) 24.2605 0.833109
\(849\) −8.60796 −0.295424
\(850\) 0 0
\(851\) 2.00853 0.0688515
\(852\) −0.0735540 −0.00251992
\(853\) −9.30749 −0.318682 −0.159341 0.987224i \(-0.550937\pi\)
−0.159341 + 0.987224i \(0.550937\pi\)
\(854\) 48.3026 1.65288
\(855\) 0 0
\(856\) 0.521015 0.0178079
\(857\) −3.16972 −0.108276 −0.0541378 0.998533i \(-0.517241\pi\)
−0.0541378 + 0.998533i \(0.517241\pi\)
\(858\) 0.0632719 0.00216007
\(859\) 23.8272 0.812973 0.406486 0.913657i \(-0.366754\pi\)
0.406486 + 0.913657i \(0.366754\pi\)
\(860\) 0 0
\(861\) −1.66755 −0.0568298
\(862\) 23.8939 0.813831
\(863\) −1.45888 −0.0496608 −0.0248304 0.999692i \(-0.507905\pi\)
−0.0248304 + 0.999692i \(0.507905\pi\)
\(864\) 0.928904 0.0316020
\(865\) 0 0
\(866\) 49.1198 1.66916
\(867\) −2.93897 −0.0998127
\(868\) 3.05380 0.103653
\(869\) 63.5257 2.15496
\(870\) 0 0
\(871\) −0.416818 −0.0141233
\(872\) −24.8335 −0.840970
\(873\) 12.3296 0.417292
\(874\) −4.06087 −0.137361
\(875\) 0 0
\(876\) 0.0172450 0.000582655 0
\(877\) −31.0847 −1.04966 −0.524828 0.851208i \(-0.675870\pi\)
−0.524828 + 0.851208i \(0.675870\pi\)
\(878\) −41.6300 −1.40494
\(879\) 3.88837 0.131152
\(880\) 0 0
\(881\) 16.2242 0.546608 0.273304 0.961928i \(-0.411884\pi\)
0.273304 + 0.961928i \(0.411884\pi\)
\(882\) −74.8150 −2.51915
\(883\) 36.7133 1.23550 0.617751 0.786374i \(-0.288044\pi\)
0.617751 + 0.786374i \(0.288044\pi\)
\(884\) −0.0100678 −0.000338616 0
\(885\) 0 0
\(886\) −27.1074 −0.910691
\(887\) −55.8502 −1.87527 −0.937633 0.347627i \(-0.886988\pi\)
−0.937633 + 0.347627i \(0.886988\pi\)
\(888\) −0.315875 −0.0106001
\(889\) −52.9324 −1.77529
\(890\) 0 0
\(891\) 36.0088 1.20634
\(892\) −2.77375 −0.0928719
\(893\) −1.81553 −0.0607542
\(894\) −0.182050 −0.00608865
\(895\) 0 0
\(896\) 60.1736 2.01026
\(897\) 0.0457034 0.00152599
\(898\) −33.0553 −1.10307
\(899\) −2.09566 −0.0698941
\(900\) 0 0
\(901\) 13.6160 0.453616
\(902\) −8.13651 −0.270916
\(903\) 14.8806 0.495194
\(904\) −6.29583 −0.209396
\(905\) 0 0
\(906\) −1.26170 −0.0419173
\(907\) −43.3615 −1.43979 −0.719897 0.694081i \(-0.755811\pi\)
−0.719897 + 0.694081i \(0.755811\pi\)
\(908\) 2.86898 0.0952104
\(909\) −26.9845 −0.895019
\(910\) 0 0
\(911\) −35.9819 −1.19214 −0.596068 0.802934i \(-0.703271\pi\)
−0.596068 + 0.802934i \(0.703271\pi\)
\(912\) 0.673151 0.0222903
\(913\) −40.3261 −1.33460
\(914\) −5.92984 −0.196142
\(915\) 0 0
\(916\) −0.0806022 −0.00266317
\(917\) −56.0411 −1.85064
\(918\) 5.22504 0.172452
\(919\) 41.1384 1.35703 0.678514 0.734587i \(-0.262624\pi\)
0.678514 + 0.734587i \(0.262624\pi\)
\(920\) 0 0
\(921\) 4.25753 0.140291
\(922\) −36.7663 −1.21083
\(923\) −0.105130 −0.00346039
\(924\) 0.587897 0.0193404
\(925\) 0 0
\(926\) 42.6032 1.40003
\(927\) −36.0893 −1.18533
\(928\) 0.223212 0.00732730
\(929\) −25.6149 −0.840398 −0.420199 0.907432i \(-0.638040\pi\)
−0.420199 + 0.907432i \(0.638040\pi\)
\(930\) 0 0
\(931\) −10.9410 −0.358577
\(932\) 0.679557 0.0222596
\(933\) −3.02873 −0.0991560
\(934\) −43.2408 −1.41488
\(935\) 0 0
\(936\) 0.319134 0.0104312
\(937\) −4.63318 −0.151359 −0.0756797 0.997132i \(-0.524113\pi\)
−0.0756797 + 0.997132i \(0.524113\pi\)
\(938\) −75.7479 −2.47326
\(939\) 2.97124 0.0969626
\(940\) 0 0
\(941\) 24.1346 0.786766 0.393383 0.919375i \(-0.371305\pi\)
0.393383 + 0.919375i \(0.371305\pi\)
\(942\) 5.74056 0.187037
\(943\) −5.87727 −0.191390
\(944\) −7.39540 −0.240700
\(945\) 0 0
\(946\) 72.6072 2.36066
\(947\) −18.2542 −0.593183 −0.296592 0.955004i \(-0.595850\pi\)
−0.296592 + 0.955004i \(0.595850\pi\)
\(948\) 0.410996 0.0133485
\(949\) 0.0246481 0.000800111 0
\(950\) 0 0
\(951\) −5.14546 −0.166853
\(952\) 32.1250 1.04118
\(953\) −20.7642 −0.672618 −0.336309 0.941752i \(-0.609179\pi\)
−0.336309 + 0.941752i \(0.609179\pi\)
\(954\) 24.5813 0.795849
\(955\) 0 0
\(956\) 0.565778 0.0182986
\(957\) −0.403441 −0.0130414
\(958\) 24.8870 0.804063
\(959\) −76.6635 −2.47559
\(960\) 0 0
\(961\) 1.68905 0.0544854
\(962\) 0.0257128 0.000829012 0
\(963\) 0.556433 0.0179308
\(964\) −0.471808 −0.0151959
\(965\) 0 0
\(966\) 8.30564 0.267229
\(967\) 15.2969 0.491914 0.245957 0.969281i \(-0.420898\pi\)
0.245957 + 0.969281i \(0.420898\pi\)
\(968\) −20.1482 −0.647588
\(969\) 0.377802 0.0121367
\(970\) 0 0
\(971\) −7.87646 −0.252768 −0.126384 0.991981i \(-0.540337\pi\)
−0.126384 + 0.991981i \(0.540337\pi\)
\(972\) 0.726122 0.0232904
\(973\) 53.0604 1.70104
\(974\) 23.2737 0.745738
\(975\) 0 0
\(976\) −28.2203 −0.903310
\(977\) 22.9232 0.733378 0.366689 0.930344i \(-0.380491\pi\)
0.366689 + 0.930344i \(0.380491\pi\)
\(978\) 5.83681 0.186641
\(979\) −45.1345 −1.44250
\(980\) 0 0
\(981\) −26.5217 −0.846773
\(982\) −62.4170 −1.99181
\(983\) −10.5939 −0.337893 −0.168947 0.985625i \(-0.554037\pi\)
−0.168947 + 0.985625i \(0.554037\pi\)
\(984\) 0.924299 0.0294656
\(985\) 0 0
\(986\) 1.25556 0.0399851
\(987\) 3.71327 0.118195
\(988\) −0.00265800 −8.45622e−5 0
\(989\) 52.4466 1.66770
\(990\) 0 0
\(991\) −5.87151 −0.186515 −0.0932573 0.995642i \(-0.529728\pi\)
−0.0932573 + 0.995642i \(0.529728\pi\)
\(992\) −3.48177 −0.110546
\(993\) −3.63470 −0.115344
\(994\) −19.1052 −0.605979
\(995\) 0 0
\(996\) −0.260900 −0.00826694
\(997\) 13.2653 0.420116 0.210058 0.977689i \(-0.432635\pi\)
0.210058 + 0.977689i \(0.432635\pi\)
\(998\) −37.4200 −1.18451
\(999\) −0.682293 −0.0215868
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4925.2.a.s.1.36 49
5.2 odd 4 985.2.b.a.789.73 yes 98
5.3 odd 4 985.2.b.a.789.26 98
5.4 even 2 4925.2.a.r.1.14 49
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
985.2.b.a.789.26 98 5.3 odd 4
985.2.b.a.789.73 yes 98 5.2 odd 4
4925.2.a.r.1.14 49 5.4 even 2
4925.2.a.s.1.36 49 1.1 even 1 trivial