Properties

Label 4925.2.a.p.1.30
Level $4925$
Weight $2$
Character 4925.1
Self dual yes
Analytic conductor $39.326$
Analytic rank $0$
Dimension $37$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4925,2,Mod(1,4925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4925.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4925, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4925 = 5^{2} \cdot 197 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4925.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [37,-2,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(39.3263229955\)
Analytic rank: \(0\)
Dimension: \(37\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.30
Character \(\chi\) \(=\) 4925.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.87761 q^{2} -1.07939 q^{3} +1.52542 q^{4} -2.02668 q^{6} +3.38183 q^{7} -0.891075 q^{8} -1.83491 q^{9} -3.24153 q^{11} -1.64653 q^{12} +3.82785 q^{13} +6.34976 q^{14} -4.72393 q^{16} +5.13529 q^{17} -3.44525 q^{18} +0.661045 q^{19} -3.65032 q^{21} -6.08634 q^{22} -2.86378 q^{23} +0.961820 q^{24} +7.18722 q^{26} +5.21877 q^{27} +5.15872 q^{28} +2.90516 q^{29} +1.13789 q^{31} -7.08756 q^{32} +3.49889 q^{33} +9.64207 q^{34} -2.79901 q^{36} +6.20771 q^{37} +1.24118 q^{38} -4.13176 q^{39} -7.52150 q^{41} -6.85388 q^{42} +7.75992 q^{43} -4.94470 q^{44} -5.37706 q^{46} +1.58619 q^{47} +5.09898 q^{48} +4.43678 q^{49} -5.54299 q^{51} +5.83909 q^{52} -2.16411 q^{53} +9.79881 q^{54} -3.01347 q^{56} -0.713527 q^{57} +5.45476 q^{58} -9.54872 q^{59} -0.171187 q^{61} +2.13652 q^{62} -6.20536 q^{63} -3.85980 q^{64} +6.56955 q^{66} +4.57097 q^{67} +7.83348 q^{68} +3.09114 q^{69} +8.39750 q^{71} +1.63504 q^{72} +12.6997 q^{73} +11.6557 q^{74} +1.00837 q^{76} -10.9623 q^{77} -7.75783 q^{78} +13.8668 q^{79} -0.128364 q^{81} -14.1225 q^{82} +0.00439733 q^{83} -5.56828 q^{84} +14.5701 q^{86} -3.13581 q^{87} +2.88845 q^{88} +4.78416 q^{89} +12.9452 q^{91} -4.36847 q^{92} -1.22824 q^{93} +2.97824 q^{94} +7.65025 q^{96} -2.91549 q^{97} +8.33055 q^{98} +5.94793 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 37 q - 2 q^{2} - q^{3} + 50 q^{4} + 8 q^{6} + 4 q^{7} + 50 q^{9} + 17 q^{11} + 2 q^{12} + 3 q^{13} + 14 q^{14} + 72 q^{16} + 10 q^{17} + 4 q^{18} + 54 q^{19} + 15 q^{21} + 11 q^{22} - 4 q^{23} + 28 q^{24}+ \cdots + 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.87761 1.32767 0.663836 0.747879i \(-0.268927\pi\)
0.663836 + 0.747879i \(0.268927\pi\)
\(3\) −1.07939 −0.623188 −0.311594 0.950215i \(-0.600863\pi\)
−0.311594 + 0.950215i \(0.600863\pi\)
\(4\) 1.52542 0.762710
\(5\) 0 0
\(6\) −2.02668 −0.827388
\(7\) 3.38183 1.27821 0.639106 0.769119i \(-0.279304\pi\)
0.639106 + 0.769119i \(0.279304\pi\)
\(8\) −0.891075 −0.315043
\(9\) −1.83491 −0.611637
\(10\) 0 0
\(11\) −3.24153 −0.977360 −0.488680 0.872463i \(-0.662521\pi\)
−0.488680 + 0.872463i \(0.662521\pi\)
\(12\) −1.64653 −0.475312
\(13\) 3.82785 1.06166 0.530828 0.847480i \(-0.321881\pi\)
0.530828 + 0.847480i \(0.321881\pi\)
\(14\) 6.34976 1.69705
\(15\) 0 0
\(16\) −4.72393 −1.18098
\(17\) 5.13529 1.24549 0.622745 0.782425i \(-0.286017\pi\)
0.622745 + 0.782425i \(0.286017\pi\)
\(18\) −3.44525 −0.812053
\(19\) 0.661045 0.151654 0.0758271 0.997121i \(-0.475840\pi\)
0.0758271 + 0.997121i \(0.475840\pi\)
\(20\) 0 0
\(21\) −3.65032 −0.796566
\(22\) −6.08634 −1.29761
\(23\) −2.86378 −0.597139 −0.298570 0.954388i \(-0.596509\pi\)
−0.298570 + 0.954388i \(0.596509\pi\)
\(24\) 0.961820 0.196331
\(25\) 0 0
\(26\) 7.18722 1.40953
\(27\) 5.21877 1.00435
\(28\) 5.15872 0.974906
\(29\) 2.90516 0.539475 0.269737 0.962934i \(-0.413063\pi\)
0.269737 + 0.962934i \(0.413063\pi\)
\(30\) 0 0
\(31\) 1.13789 0.204372 0.102186 0.994765i \(-0.467416\pi\)
0.102186 + 0.994765i \(0.467416\pi\)
\(32\) −7.08756 −1.25291
\(33\) 3.49889 0.609078
\(34\) 9.64207 1.65360
\(35\) 0 0
\(36\) −2.79901 −0.466502
\(37\) 6.20771 1.02054 0.510271 0.860014i \(-0.329545\pi\)
0.510271 + 0.860014i \(0.329545\pi\)
\(38\) 1.24118 0.201347
\(39\) −4.13176 −0.661611
\(40\) 0 0
\(41\) −7.52150 −1.17466 −0.587331 0.809347i \(-0.699821\pi\)
−0.587331 + 0.809347i \(0.699821\pi\)
\(42\) −6.85388 −1.05758
\(43\) 7.75992 1.18338 0.591689 0.806167i \(-0.298461\pi\)
0.591689 + 0.806167i \(0.298461\pi\)
\(44\) −4.94470 −0.745442
\(45\) 0 0
\(46\) −5.37706 −0.792804
\(47\) 1.58619 0.231369 0.115684 0.993286i \(-0.463094\pi\)
0.115684 + 0.993286i \(0.463094\pi\)
\(48\) 5.09898 0.735974
\(49\) 4.43678 0.633826
\(50\) 0 0
\(51\) −5.54299 −0.776174
\(52\) 5.83909 0.809736
\(53\) −2.16411 −0.297263 −0.148632 0.988893i \(-0.547487\pi\)
−0.148632 + 0.988893i \(0.547487\pi\)
\(54\) 9.79881 1.33345
\(55\) 0 0
\(56\) −3.01347 −0.402691
\(57\) −0.713527 −0.0945090
\(58\) 5.45476 0.716245
\(59\) −9.54872 −1.24314 −0.621569 0.783360i \(-0.713504\pi\)
−0.621569 + 0.783360i \(0.713504\pi\)
\(60\) 0 0
\(61\) −0.171187 −0.0219183 −0.0109592 0.999940i \(-0.503488\pi\)
−0.0109592 + 0.999940i \(0.503488\pi\)
\(62\) 2.13652 0.271339
\(63\) −6.20536 −0.781802
\(64\) −3.85980 −0.482475
\(65\) 0 0
\(66\) 6.56955 0.808656
\(67\) 4.57097 0.558433 0.279217 0.960228i \(-0.409925\pi\)
0.279217 + 0.960228i \(0.409925\pi\)
\(68\) 7.83348 0.949949
\(69\) 3.09114 0.372130
\(70\) 0 0
\(71\) 8.39750 0.996600 0.498300 0.867005i \(-0.333958\pi\)
0.498300 + 0.867005i \(0.333958\pi\)
\(72\) 1.63504 0.192692
\(73\) 12.6997 1.48639 0.743193 0.669077i \(-0.233311\pi\)
0.743193 + 0.669077i \(0.233311\pi\)
\(74\) 11.6557 1.35494
\(75\) 0 0
\(76\) 1.00837 0.115668
\(77\) −10.9623 −1.24927
\(78\) −7.75783 −0.878401
\(79\) 13.8668 1.56014 0.780068 0.625694i \(-0.215184\pi\)
0.780068 + 0.625694i \(0.215184\pi\)
\(80\) 0 0
\(81\) −0.128364 −0.0142626
\(82\) −14.1225 −1.55956
\(83\) 0.00439733 0.000482670 0 0.000241335 1.00000i \(-0.499923\pi\)
0.000241335 1.00000i \(0.499923\pi\)
\(84\) −5.56828 −0.607549
\(85\) 0 0
\(86\) 14.5701 1.57114
\(87\) −3.13581 −0.336194
\(88\) 2.88845 0.307910
\(89\) 4.78416 0.507120 0.253560 0.967320i \(-0.418398\pi\)
0.253560 + 0.967320i \(0.418398\pi\)
\(90\) 0 0
\(91\) 12.9452 1.35702
\(92\) −4.36847 −0.455444
\(93\) −1.22824 −0.127362
\(94\) 2.97824 0.307182
\(95\) 0 0
\(96\) 7.65025 0.780801
\(97\) −2.91549 −0.296024 −0.148012 0.988986i \(-0.547287\pi\)
−0.148012 + 0.988986i \(0.547287\pi\)
\(98\) 8.33055 0.841512
\(99\) 5.94793 0.597790
\(100\) 0 0
\(101\) 3.19634 0.318048 0.159024 0.987275i \(-0.449165\pi\)
0.159024 + 0.987275i \(0.449165\pi\)
\(102\) −10.4076 −1.03050
\(103\) 13.5063 1.33082 0.665408 0.746480i \(-0.268258\pi\)
0.665408 + 0.746480i \(0.268258\pi\)
\(104\) −3.41091 −0.334467
\(105\) 0 0
\(106\) −4.06335 −0.394667
\(107\) 15.6753 1.51539 0.757695 0.652609i \(-0.226326\pi\)
0.757695 + 0.652609i \(0.226326\pi\)
\(108\) 7.96082 0.766030
\(109\) 15.9707 1.52971 0.764856 0.644201i \(-0.222810\pi\)
0.764856 + 0.644201i \(0.222810\pi\)
\(110\) 0 0
\(111\) −6.70056 −0.635989
\(112\) −15.9755 −1.50955
\(113\) −0.482758 −0.0454140 −0.0227070 0.999742i \(-0.507228\pi\)
−0.0227070 + 0.999742i \(0.507228\pi\)
\(114\) −1.33973 −0.125477
\(115\) 0 0
\(116\) 4.43159 0.411463
\(117\) −7.02378 −0.649348
\(118\) −17.9288 −1.65048
\(119\) 17.3667 1.59200
\(120\) 0 0
\(121\) −0.492451 −0.0447683
\(122\) −0.321423 −0.0291003
\(123\) 8.11866 0.732035
\(124\) 1.73577 0.155877
\(125\) 0 0
\(126\) −11.6513 −1.03798
\(127\) 9.26276 0.821937 0.410969 0.911650i \(-0.365191\pi\)
0.410969 + 0.911650i \(0.365191\pi\)
\(128\) 6.92791 0.612346
\(129\) −8.37600 −0.737466
\(130\) 0 0
\(131\) −8.34419 −0.729035 −0.364518 0.931196i \(-0.618766\pi\)
−0.364518 + 0.931196i \(0.618766\pi\)
\(132\) 5.33728 0.464550
\(133\) 2.23554 0.193846
\(134\) 8.58251 0.741416
\(135\) 0 0
\(136\) −4.57593 −0.392383
\(137\) −12.9183 −1.10368 −0.551841 0.833949i \(-0.686074\pi\)
−0.551841 + 0.833949i \(0.686074\pi\)
\(138\) 5.80396 0.494066
\(139\) 2.45797 0.208482 0.104241 0.994552i \(-0.466759\pi\)
0.104241 + 0.994552i \(0.466759\pi\)
\(140\) 0 0
\(141\) −1.71212 −0.144186
\(142\) 15.7672 1.32316
\(143\) −12.4081 −1.03762
\(144\) 8.66800 0.722333
\(145\) 0 0
\(146\) 23.8451 1.97343
\(147\) −4.78903 −0.394993
\(148\) 9.46937 0.778378
\(149\) −3.41151 −0.279482 −0.139741 0.990188i \(-0.544627\pi\)
−0.139741 + 0.990188i \(0.544627\pi\)
\(150\) 0 0
\(151\) 5.96173 0.485159 0.242579 0.970132i \(-0.422007\pi\)
0.242579 + 0.970132i \(0.422007\pi\)
\(152\) −0.589041 −0.0477775
\(153\) −9.42280 −0.761789
\(154\) −20.5830 −1.65862
\(155\) 0 0
\(156\) −6.30267 −0.504617
\(157\) −4.91932 −0.392604 −0.196302 0.980543i \(-0.562893\pi\)
−0.196302 + 0.980543i \(0.562893\pi\)
\(158\) 26.0364 2.07135
\(159\) 2.33592 0.185251
\(160\) 0 0
\(161\) −9.68482 −0.763270
\(162\) −0.241017 −0.0189361
\(163\) −14.4796 −1.13413 −0.567064 0.823674i \(-0.691921\pi\)
−0.567064 + 0.823674i \(0.691921\pi\)
\(164\) −11.4735 −0.895927
\(165\) 0 0
\(166\) 0.00825648 0.000640827 0
\(167\) −16.8204 −1.30160 −0.650801 0.759248i \(-0.725567\pi\)
−0.650801 + 0.759248i \(0.725567\pi\)
\(168\) 3.25271 0.250952
\(169\) 1.65247 0.127113
\(170\) 0 0
\(171\) −1.21296 −0.0927573
\(172\) 11.8371 0.902574
\(173\) −16.7320 −1.27211 −0.636056 0.771643i \(-0.719435\pi\)
−0.636056 + 0.771643i \(0.719435\pi\)
\(174\) −5.88782 −0.446355
\(175\) 0 0
\(176\) 15.3128 1.15425
\(177\) 10.3068 0.774708
\(178\) 8.98279 0.673289
\(179\) 11.9464 0.892913 0.446457 0.894805i \(-0.352686\pi\)
0.446457 + 0.894805i \(0.352686\pi\)
\(180\) 0 0
\(181\) 1.69330 0.125862 0.0629310 0.998018i \(-0.479955\pi\)
0.0629310 + 0.998018i \(0.479955\pi\)
\(182\) 24.3060 1.80168
\(183\) 0.184778 0.0136592
\(184\) 2.55184 0.188124
\(185\) 0 0
\(186\) −2.30615 −0.169095
\(187\) −16.6462 −1.21729
\(188\) 2.41960 0.176467
\(189\) 17.6490 1.28378
\(190\) 0 0
\(191\) 8.83632 0.639374 0.319687 0.947523i \(-0.396422\pi\)
0.319687 + 0.947523i \(0.396422\pi\)
\(192\) 4.16624 0.300673
\(193\) −15.8170 −1.13853 −0.569267 0.822153i \(-0.692773\pi\)
−0.569267 + 0.822153i \(0.692773\pi\)
\(194\) −5.47416 −0.393022
\(195\) 0 0
\(196\) 6.76796 0.483426
\(197\) −1.00000 −0.0712470
\(198\) 11.1679 0.793668
\(199\) −2.85476 −0.202368 −0.101184 0.994868i \(-0.532263\pi\)
−0.101184 + 0.994868i \(0.532263\pi\)
\(200\) 0 0
\(201\) −4.93387 −0.348009
\(202\) 6.00148 0.422263
\(203\) 9.82476 0.689563
\(204\) −8.45540 −0.591996
\(205\) 0 0
\(206\) 25.3596 1.76688
\(207\) 5.25478 0.365232
\(208\) −18.0825 −1.25380
\(209\) −2.14280 −0.148221
\(210\) 0 0
\(211\) −11.5849 −0.797541 −0.398770 0.917051i \(-0.630563\pi\)
−0.398770 + 0.917051i \(0.630563\pi\)
\(212\) −3.30117 −0.226726
\(213\) −9.06420 −0.621069
\(214\) 29.4321 2.01194
\(215\) 0 0
\(216\) −4.65031 −0.316414
\(217\) 3.84817 0.261231
\(218\) 29.9867 2.03095
\(219\) −13.7079 −0.926297
\(220\) 0 0
\(221\) 19.6571 1.32228
\(222\) −12.5810 −0.844384
\(223\) 12.5950 0.843421 0.421711 0.906730i \(-0.361430\pi\)
0.421711 + 0.906730i \(0.361430\pi\)
\(224\) −23.9689 −1.60149
\(225\) 0 0
\(226\) −0.906431 −0.0602949
\(227\) 17.2527 1.14510 0.572552 0.819869i \(-0.305954\pi\)
0.572552 + 0.819869i \(0.305954\pi\)
\(228\) −1.08843 −0.0720830
\(229\) 7.90696 0.522506 0.261253 0.965270i \(-0.415864\pi\)
0.261253 + 0.965270i \(0.415864\pi\)
\(230\) 0 0
\(231\) 11.8327 0.778531
\(232\) −2.58872 −0.169957
\(233\) 14.4144 0.944320 0.472160 0.881513i \(-0.343474\pi\)
0.472160 + 0.881513i \(0.343474\pi\)
\(234\) −13.1879 −0.862121
\(235\) 0 0
\(236\) −14.5658 −0.948153
\(237\) −14.9677 −0.972258
\(238\) 32.6079 2.11365
\(239\) −17.2175 −1.11371 −0.556853 0.830611i \(-0.687991\pi\)
−0.556853 + 0.830611i \(0.687991\pi\)
\(240\) 0 0
\(241\) 2.64086 0.170113 0.0850563 0.996376i \(-0.472893\pi\)
0.0850563 + 0.996376i \(0.472893\pi\)
\(242\) −0.924632 −0.0594376
\(243\) −15.5177 −0.995464
\(244\) −0.261133 −0.0167173
\(245\) 0 0
\(246\) 15.2437 0.971901
\(247\) 2.53038 0.161004
\(248\) −1.01395 −0.0643859
\(249\) −0.00474645 −0.000300794 0
\(250\) 0 0
\(251\) 23.7274 1.49766 0.748829 0.662764i \(-0.230617\pi\)
0.748829 + 0.662764i \(0.230617\pi\)
\(252\) −9.46579 −0.596289
\(253\) 9.28304 0.583620
\(254\) 17.3919 1.09126
\(255\) 0 0
\(256\) 20.7275 1.29547
\(257\) 14.9704 0.933829 0.466914 0.884303i \(-0.345366\pi\)
0.466914 + 0.884303i \(0.345366\pi\)
\(258\) −15.7269 −0.979112
\(259\) 20.9934 1.30447
\(260\) 0 0
\(261\) −5.33071 −0.329963
\(262\) −15.6671 −0.967919
\(263\) 32.1018 1.97948 0.989740 0.142879i \(-0.0456359\pi\)
0.989740 + 0.142879i \(0.0456359\pi\)
\(264\) −3.11777 −0.191886
\(265\) 0 0
\(266\) 4.19748 0.257364
\(267\) −5.16399 −0.316031
\(268\) 6.97266 0.425923
\(269\) 0.0650614 0.00396687 0.00198343 0.999998i \(-0.499369\pi\)
0.00198343 + 0.999998i \(0.499369\pi\)
\(270\) 0 0
\(271\) 10.7212 0.651265 0.325633 0.945496i \(-0.394423\pi\)
0.325633 + 0.945496i \(0.394423\pi\)
\(272\) −24.2588 −1.47090
\(273\) −13.9729 −0.845679
\(274\) −24.2555 −1.46533
\(275\) 0 0
\(276\) 4.71529 0.283827
\(277\) 1.37697 0.0827342 0.0413671 0.999144i \(-0.486829\pi\)
0.0413671 + 0.999144i \(0.486829\pi\)
\(278\) 4.61511 0.276796
\(279\) −2.08794 −0.125002
\(280\) 0 0
\(281\) −10.7783 −0.642978 −0.321489 0.946913i \(-0.604183\pi\)
−0.321489 + 0.946913i \(0.604183\pi\)
\(282\) −3.21469 −0.191432
\(283\) 13.6668 0.812406 0.406203 0.913783i \(-0.366853\pi\)
0.406203 + 0.913783i \(0.366853\pi\)
\(284\) 12.8097 0.760117
\(285\) 0 0
\(286\) −23.2976 −1.37762
\(287\) −25.4365 −1.50147
\(288\) 13.0050 0.766329
\(289\) 9.37120 0.551247
\(290\) 0 0
\(291\) 3.14696 0.184478
\(292\) 19.3724 1.13368
\(293\) −10.0597 −0.587692 −0.293846 0.955853i \(-0.594935\pi\)
−0.293846 + 0.955853i \(0.594935\pi\)
\(294\) −8.99193 −0.524420
\(295\) 0 0
\(296\) −5.53154 −0.321514
\(297\) −16.9168 −0.981613
\(298\) −6.40548 −0.371060
\(299\) −10.9621 −0.633956
\(300\) 0 0
\(301\) 26.2428 1.51261
\(302\) 11.1938 0.644131
\(303\) −3.45011 −0.198203
\(304\) −3.12273 −0.179101
\(305\) 0 0
\(306\) −17.6924 −1.01140
\(307\) −8.52103 −0.486321 −0.243160 0.969986i \(-0.578184\pi\)
−0.243160 + 0.969986i \(0.578184\pi\)
\(308\) −16.7222 −0.952833
\(309\) −14.5786 −0.829348
\(310\) 0 0
\(311\) −2.25219 −0.127710 −0.0638551 0.997959i \(-0.520340\pi\)
−0.0638551 + 0.997959i \(0.520340\pi\)
\(312\) 3.68171 0.208436
\(313\) −6.49383 −0.367053 −0.183526 0.983015i \(-0.558751\pi\)
−0.183526 + 0.983015i \(0.558751\pi\)
\(314\) −9.23656 −0.521249
\(315\) 0 0
\(316\) 21.1527 1.18993
\(317\) 23.1258 1.29887 0.649437 0.760415i \(-0.275004\pi\)
0.649437 + 0.760415i \(0.275004\pi\)
\(318\) 4.38595 0.245952
\(319\) −9.41718 −0.527261
\(320\) 0 0
\(321\) −16.9198 −0.944372
\(322\) −18.1843 −1.01337
\(323\) 3.39466 0.188884
\(324\) −0.195809 −0.0108783
\(325\) 0 0
\(326\) −27.1870 −1.50575
\(327\) −17.2386 −0.953297
\(328\) 6.70223 0.370069
\(329\) 5.36421 0.295739
\(330\) 0 0
\(331\) 24.3046 1.33590 0.667950 0.744206i \(-0.267172\pi\)
0.667950 + 0.744206i \(0.267172\pi\)
\(332\) 0.00670778 0.000368137 0
\(333\) −11.3906 −0.624201
\(334\) −31.5822 −1.72810
\(335\) 0 0
\(336\) 17.2439 0.940731
\(337\) −31.2328 −1.70136 −0.850679 0.525685i \(-0.823809\pi\)
−0.850679 + 0.525685i \(0.823809\pi\)
\(338\) 3.10270 0.168764
\(339\) 0.521085 0.0283015
\(340\) 0 0
\(341\) −3.68853 −0.199745
\(342\) −2.27746 −0.123151
\(343\) −8.66837 −0.468048
\(344\) −6.91468 −0.372814
\(345\) 0 0
\(346\) −31.4162 −1.68895
\(347\) 0.873880 0.0469123 0.0234562 0.999725i \(-0.492533\pi\)
0.0234562 + 0.999725i \(0.492533\pi\)
\(348\) −4.78343 −0.256419
\(349\) 13.3600 0.715146 0.357573 0.933885i \(-0.383604\pi\)
0.357573 + 0.933885i \(0.383604\pi\)
\(350\) 0 0
\(351\) 19.9767 1.06628
\(352\) 22.9746 1.22455
\(353\) 36.3355 1.93394 0.966971 0.254887i \(-0.0820383\pi\)
0.966971 + 0.254887i \(0.0820383\pi\)
\(354\) 19.3522 1.02856
\(355\) 0 0
\(356\) 7.29786 0.386786
\(357\) −18.7455 −0.992115
\(358\) 22.4306 1.18550
\(359\) −24.1300 −1.27354 −0.636768 0.771056i \(-0.719729\pi\)
−0.636768 + 0.771056i \(0.719729\pi\)
\(360\) 0 0
\(361\) −18.5630 −0.977001
\(362\) 3.17936 0.167103
\(363\) 0.531548 0.0278991
\(364\) 19.7468 1.03501
\(365\) 0 0
\(366\) 0.346942 0.0181349
\(367\) −3.26641 −0.170505 −0.0852526 0.996359i \(-0.527170\pi\)
−0.0852526 + 0.996359i \(0.527170\pi\)
\(368\) 13.5283 0.705211
\(369\) 13.8013 0.718467
\(370\) 0 0
\(371\) −7.31865 −0.379965
\(372\) −1.87358 −0.0971404
\(373\) −6.70363 −0.347101 −0.173551 0.984825i \(-0.555524\pi\)
−0.173551 + 0.984825i \(0.555524\pi\)
\(374\) −31.2551 −1.61616
\(375\) 0 0
\(376\) −1.41341 −0.0728911
\(377\) 11.1205 0.572736
\(378\) 33.1379 1.70443
\(379\) −20.7421 −1.06545 −0.532726 0.846288i \(-0.678832\pi\)
−0.532726 + 0.846288i \(0.678832\pi\)
\(380\) 0 0
\(381\) −9.99815 −0.512221
\(382\) 16.5912 0.848878
\(383\) −35.4063 −1.80918 −0.904589 0.426285i \(-0.859822\pi\)
−0.904589 + 0.426285i \(0.859822\pi\)
\(384\) −7.47793 −0.381607
\(385\) 0 0
\(386\) −29.6982 −1.51160
\(387\) −14.2388 −0.723798
\(388\) −4.44736 −0.225780
\(389\) 1.49212 0.0756533 0.0378266 0.999284i \(-0.487957\pi\)
0.0378266 + 0.999284i \(0.487957\pi\)
\(390\) 0 0
\(391\) −14.7063 −0.743731
\(392\) −3.95351 −0.199682
\(393\) 9.00666 0.454326
\(394\) −1.87761 −0.0945926
\(395\) 0 0
\(396\) 9.07310 0.455940
\(397\) 2.66709 0.133857 0.0669287 0.997758i \(-0.478680\pi\)
0.0669287 + 0.997758i \(0.478680\pi\)
\(398\) −5.36012 −0.268679
\(399\) −2.41303 −0.120802
\(400\) 0 0
\(401\) 13.7107 0.684682 0.342341 0.939576i \(-0.388780\pi\)
0.342341 + 0.939576i \(0.388780\pi\)
\(402\) −9.26389 −0.462041
\(403\) 4.35570 0.216973
\(404\) 4.87576 0.242578
\(405\) 0 0
\(406\) 18.4471 0.915513
\(407\) −20.1225 −0.997436
\(408\) 4.93922 0.244528
\(409\) 20.5160 1.01445 0.507226 0.861813i \(-0.330671\pi\)
0.507226 + 0.861813i \(0.330671\pi\)
\(410\) 0 0
\(411\) 13.9439 0.687801
\(412\) 20.6028 1.01503
\(413\) −32.2921 −1.58899
\(414\) 9.86643 0.484909
\(415\) 0 0
\(416\) −27.1301 −1.33016
\(417\) −2.65311 −0.129923
\(418\) −4.02334 −0.196788
\(419\) −11.0354 −0.539115 −0.269558 0.962984i \(-0.586877\pi\)
−0.269558 + 0.962984i \(0.586877\pi\)
\(420\) 0 0
\(421\) −20.6835 −1.00805 −0.504026 0.863689i \(-0.668148\pi\)
−0.504026 + 0.863689i \(0.668148\pi\)
\(422\) −21.7520 −1.05887
\(423\) −2.91051 −0.141514
\(424\) 1.92838 0.0936505
\(425\) 0 0
\(426\) −17.0190 −0.824575
\(427\) −0.578927 −0.0280162
\(428\) 23.9114 1.15580
\(429\) 13.3932 0.646632
\(430\) 0 0
\(431\) −19.5509 −0.941736 −0.470868 0.882204i \(-0.656059\pi\)
−0.470868 + 0.882204i \(0.656059\pi\)
\(432\) −24.6531 −1.18612
\(433\) −26.8252 −1.28914 −0.644569 0.764546i \(-0.722963\pi\)
−0.644569 + 0.764546i \(0.722963\pi\)
\(434\) 7.22536 0.346828
\(435\) 0 0
\(436\) 24.3620 1.16673
\(437\) −1.89309 −0.0905586
\(438\) −25.7382 −1.22982
\(439\) −12.2338 −0.583888 −0.291944 0.956435i \(-0.594302\pi\)
−0.291944 + 0.956435i \(0.594302\pi\)
\(440\) 0 0
\(441\) −8.14110 −0.387672
\(442\) 36.9085 1.75556
\(443\) −6.58035 −0.312642 −0.156321 0.987706i \(-0.549963\pi\)
−0.156321 + 0.987706i \(0.549963\pi\)
\(444\) −10.2212 −0.485075
\(445\) 0 0
\(446\) 23.6484 1.11979
\(447\) 3.68236 0.174169
\(448\) −13.0532 −0.616706
\(449\) 31.7215 1.49703 0.748515 0.663118i \(-0.230767\pi\)
0.748515 + 0.663118i \(0.230767\pi\)
\(450\) 0 0
\(451\) 24.3812 1.14807
\(452\) −0.736409 −0.0346378
\(453\) −6.43505 −0.302345
\(454\) 32.3939 1.52032
\(455\) 0 0
\(456\) 0.635806 0.0297744
\(457\) 38.6356 1.80730 0.903650 0.428273i \(-0.140878\pi\)
0.903650 + 0.428273i \(0.140878\pi\)
\(458\) 14.8462 0.693717
\(459\) 26.7999 1.25091
\(460\) 0 0
\(461\) −13.3465 −0.621607 −0.310803 0.950474i \(-0.600598\pi\)
−0.310803 + 0.950474i \(0.600598\pi\)
\(462\) 22.2171 1.03363
\(463\) −10.0013 −0.464798 −0.232399 0.972621i \(-0.574658\pi\)
−0.232399 + 0.972621i \(0.574658\pi\)
\(464\) −13.7238 −0.637110
\(465\) 0 0
\(466\) 27.0647 1.25375
\(467\) −13.8635 −0.641525 −0.320762 0.947160i \(-0.603939\pi\)
−0.320762 + 0.947160i \(0.603939\pi\)
\(468\) −10.7142 −0.495265
\(469\) 15.4583 0.713796
\(470\) 0 0
\(471\) 5.30988 0.244666
\(472\) 8.50862 0.391641
\(473\) −25.1541 −1.15659
\(474\) −28.1035 −1.29084
\(475\) 0 0
\(476\) 26.4915 1.21424
\(477\) 3.97095 0.181817
\(478\) −32.3277 −1.47864
\(479\) 4.44341 0.203025 0.101512 0.994834i \(-0.467632\pi\)
0.101512 + 0.994834i \(0.467632\pi\)
\(480\) 0 0
\(481\) 23.7622 1.08346
\(482\) 4.95850 0.225854
\(483\) 10.4537 0.475661
\(484\) −0.751196 −0.0341453
\(485\) 0 0
\(486\) −29.1363 −1.32165
\(487\) 15.6140 0.707540 0.353770 0.935332i \(-0.384900\pi\)
0.353770 + 0.935332i \(0.384900\pi\)
\(488\) 0.152541 0.00690520
\(489\) 15.6291 0.706774
\(490\) 0 0
\(491\) −8.75542 −0.395126 −0.197563 0.980290i \(-0.563303\pi\)
−0.197563 + 0.980290i \(0.563303\pi\)
\(492\) 12.3844 0.558330
\(493\) 14.9188 0.671911
\(494\) 4.75108 0.213761
\(495\) 0 0
\(496\) −5.37534 −0.241360
\(497\) 28.3989 1.27387
\(498\) −0.00891198 −0.000399355 0
\(499\) −0.343982 −0.0153988 −0.00769938 0.999970i \(-0.502451\pi\)
−0.00769938 + 0.999970i \(0.502451\pi\)
\(500\) 0 0
\(501\) 18.1558 0.811142
\(502\) 44.5507 1.98840
\(503\) −16.1053 −0.718099 −0.359050 0.933318i \(-0.616899\pi\)
−0.359050 + 0.933318i \(0.616899\pi\)
\(504\) 5.52944 0.246301
\(505\) 0 0
\(506\) 17.4299 0.774855
\(507\) −1.78367 −0.0792154
\(508\) 14.1296 0.626900
\(509\) −16.5658 −0.734266 −0.367133 0.930168i \(-0.619661\pi\)
−0.367133 + 0.930168i \(0.619661\pi\)
\(510\) 0 0
\(511\) 42.9482 1.89992
\(512\) 25.0624 1.10761
\(513\) 3.44984 0.152314
\(514\) 28.1086 1.23982
\(515\) 0 0
\(516\) −12.7769 −0.562473
\(517\) −5.14167 −0.226131
\(518\) 39.4175 1.73191
\(519\) 18.0604 0.792764
\(520\) 0 0
\(521\) −33.4712 −1.46640 −0.733199 0.680014i \(-0.761974\pi\)
−0.733199 + 0.680014i \(0.761974\pi\)
\(522\) −10.0090 −0.438082
\(523\) −14.6120 −0.638939 −0.319470 0.947597i \(-0.603505\pi\)
−0.319470 + 0.947597i \(0.603505\pi\)
\(524\) −12.7284 −0.556043
\(525\) 0 0
\(526\) 60.2746 2.62810
\(527\) 5.84342 0.254543
\(528\) −16.5285 −0.719311
\(529\) −14.7988 −0.643425
\(530\) 0 0
\(531\) 17.5211 0.760349
\(532\) 3.41014 0.147848
\(533\) −28.7912 −1.24709
\(534\) −9.69596 −0.419585
\(535\) 0 0
\(536\) −4.07308 −0.175930
\(537\) −12.8948 −0.556453
\(538\) 0.122160 0.00526669
\(539\) −14.3820 −0.619476
\(540\) 0 0
\(541\) −1.62796 −0.0699914 −0.0349957 0.999387i \(-0.511142\pi\)
−0.0349957 + 0.999387i \(0.511142\pi\)
\(542\) 20.1302 0.864666
\(543\) −1.82773 −0.0784356
\(544\) −36.3967 −1.56049
\(545\) 0 0
\(546\) −26.2357 −1.12278
\(547\) −2.39466 −0.102388 −0.0511942 0.998689i \(-0.516303\pi\)
−0.0511942 + 0.998689i \(0.516303\pi\)
\(548\) −19.7058 −0.841790
\(549\) 0.314114 0.0134060
\(550\) 0 0
\(551\) 1.92044 0.0818135
\(552\) −2.75444 −0.117237
\(553\) 46.8952 1.99419
\(554\) 2.58542 0.109844
\(555\) 0 0
\(556\) 3.74943 0.159011
\(557\) −7.45022 −0.315676 −0.157838 0.987465i \(-0.550452\pi\)
−0.157838 + 0.987465i \(0.550452\pi\)
\(558\) −3.92033 −0.165961
\(559\) 29.7039 1.25634
\(560\) 0 0
\(561\) 17.9678 0.758601
\(562\) −20.2374 −0.853664
\(563\) −21.4000 −0.901902 −0.450951 0.892549i \(-0.648915\pi\)
−0.450951 + 0.892549i \(0.648915\pi\)
\(564\) −2.61170 −0.109972
\(565\) 0 0
\(566\) 25.6609 1.07861
\(567\) −0.434104 −0.0182307
\(568\) −7.48281 −0.313972
\(569\) −44.5683 −1.86840 −0.934200 0.356751i \(-0.883885\pi\)
−0.934200 + 0.356751i \(0.883885\pi\)
\(570\) 0 0
\(571\) 33.6876 1.40978 0.704890 0.709316i \(-0.250996\pi\)
0.704890 + 0.709316i \(0.250996\pi\)
\(572\) −18.9276 −0.791403
\(573\) −9.53786 −0.398450
\(574\) −47.7598 −1.99345
\(575\) 0 0
\(576\) 7.08239 0.295100
\(577\) −39.3738 −1.63915 −0.819576 0.572970i \(-0.805791\pi\)
−0.819576 + 0.572970i \(0.805791\pi\)
\(578\) 17.5955 0.731875
\(579\) 17.0728 0.709520
\(580\) 0 0
\(581\) 0.0148710 0.000616955 0
\(582\) 5.90877 0.244926
\(583\) 7.01503 0.290533
\(584\) −11.3164 −0.468275
\(585\) 0 0
\(586\) −18.8881 −0.780261
\(587\) 5.64677 0.233067 0.116534 0.993187i \(-0.462822\pi\)
0.116534 + 0.993187i \(0.462822\pi\)
\(588\) −7.30528 −0.301265
\(589\) 0.752200 0.0309938
\(590\) 0 0
\(591\) 1.07939 0.0444003
\(592\) −29.3248 −1.20524
\(593\) −25.8164 −1.06015 −0.530076 0.847950i \(-0.677837\pi\)
−0.530076 + 0.847950i \(0.677837\pi\)
\(594\) −31.7632 −1.30326
\(595\) 0 0
\(596\) −5.20398 −0.213163
\(597\) 3.08141 0.126114
\(598\) −20.5826 −0.841685
\(599\) −1.55557 −0.0635590 −0.0317795 0.999495i \(-0.510117\pi\)
−0.0317795 + 0.999495i \(0.510117\pi\)
\(600\) 0 0
\(601\) 15.9922 0.652335 0.326168 0.945312i \(-0.394243\pi\)
0.326168 + 0.945312i \(0.394243\pi\)
\(602\) 49.2737 2.00824
\(603\) −8.38733 −0.341559
\(604\) 9.09415 0.370036
\(605\) 0 0
\(606\) −6.47795 −0.263149
\(607\) −19.5144 −0.792065 −0.396032 0.918237i \(-0.629613\pi\)
−0.396032 + 0.918237i \(0.629613\pi\)
\(608\) −4.68519 −0.190010
\(609\) −10.6048 −0.429727
\(610\) 0 0
\(611\) 6.07169 0.245634
\(612\) −14.3737 −0.581024
\(613\) −35.3269 −1.42684 −0.713421 0.700736i \(-0.752855\pi\)
−0.713421 + 0.700736i \(0.752855\pi\)
\(614\) −15.9992 −0.645674
\(615\) 0 0
\(616\) 9.76825 0.393574
\(617\) −23.7473 −0.956031 −0.478015 0.878351i \(-0.658644\pi\)
−0.478015 + 0.878351i \(0.658644\pi\)
\(618\) −27.3729 −1.10110
\(619\) −7.18722 −0.288879 −0.144439 0.989514i \(-0.546138\pi\)
−0.144439 + 0.989514i \(0.546138\pi\)
\(620\) 0 0
\(621\) −14.9454 −0.599738
\(622\) −4.22874 −0.169557
\(623\) 16.1792 0.648207
\(624\) 19.5181 0.781351
\(625\) 0 0
\(626\) −12.1929 −0.487325
\(627\) 2.31292 0.0923692
\(628\) −7.50403 −0.299443
\(629\) 31.8784 1.27108
\(630\) 0 0
\(631\) 30.1042 1.19843 0.599214 0.800589i \(-0.295480\pi\)
0.599214 + 0.800589i \(0.295480\pi\)
\(632\) −12.3564 −0.491510
\(633\) 12.5047 0.497018
\(634\) 43.4213 1.72448
\(635\) 0 0
\(636\) 3.56326 0.141293
\(637\) 16.9834 0.672905
\(638\) −17.6818 −0.700029
\(639\) −15.4087 −0.609558
\(640\) 0 0
\(641\) −24.1244 −0.952858 −0.476429 0.879213i \(-0.658069\pi\)
−0.476429 + 0.879213i \(0.658069\pi\)
\(642\) −31.7688 −1.25382
\(643\) −43.1500 −1.70167 −0.850835 0.525434i \(-0.823903\pi\)
−0.850835 + 0.525434i \(0.823903\pi\)
\(644\) −14.7734 −0.582154
\(645\) 0 0
\(646\) 6.37384 0.250776
\(647\) 28.2853 1.11201 0.556005 0.831179i \(-0.312333\pi\)
0.556005 + 0.831179i \(0.312333\pi\)
\(648\) 0.114382 0.00449334
\(649\) 30.9525 1.21499
\(650\) 0 0
\(651\) −4.15368 −0.162796
\(652\) −22.0874 −0.865011
\(653\) −28.6564 −1.12141 −0.560706 0.828015i \(-0.689470\pi\)
−0.560706 + 0.828015i \(0.689470\pi\)
\(654\) −32.3674 −1.26567
\(655\) 0 0
\(656\) 35.5311 1.38726
\(657\) −23.3028 −0.909129
\(658\) 10.0719 0.392643
\(659\) −11.7629 −0.458219 −0.229109 0.973401i \(-0.573581\pi\)
−0.229109 + 0.973401i \(0.573581\pi\)
\(660\) 0 0
\(661\) −11.0164 −0.428488 −0.214244 0.976780i \(-0.568729\pi\)
−0.214244 + 0.976780i \(0.568729\pi\)
\(662\) 45.6345 1.77364
\(663\) −21.2178 −0.824030
\(664\) −0.00391835 −0.000152062 0
\(665\) 0 0
\(666\) −21.3871 −0.828734
\(667\) −8.31973 −0.322141
\(668\) −25.6582 −0.992745
\(669\) −13.5949 −0.525610
\(670\) 0 0
\(671\) 0.554910 0.0214221
\(672\) 25.8719 0.998029
\(673\) −43.5107 −1.67721 −0.838607 0.544737i \(-0.816629\pi\)
−0.838607 + 0.544737i \(0.816629\pi\)
\(674\) −58.6430 −2.25884
\(675\) 0 0
\(676\) 2.52071 0.0969505
\(677\) 47.8060 1.83733 0.918667 0.395033i \(-0.129267\pi\)
0.918667 + 0.395033i \(0.129267\pi\)
\(678\) 0.978395 0.0375750
\(679\) −9.85971 −0.378381
\(680\) 0 0
\(681\) −18.6225 −0.713614
\(682\) −6.92561 −0.265195
\(683\) −35.2424 −1.34851 −0.674256 0.738498i \(-0.735535\pi\)
−0.674256 + 0.738498i \(0.735535\pi\)
\(684\) −1.85027 −0.0707470
\(685\) 0 0
\(686\) −16.2758 −0.621414
\(687\) −8.53471 −0.325620
\(688\) −36.6574 −1.39755
\(689\) −8.28389 −0.315591
\(690\) 0 0
\(691\) −45.7758 −1.74139 −0.870696 0.491821i \(-0.836332\pi\)
−0.870696 + 0.491821i \(0.836332\pi\)
\(692\) −25.5234 −0.970252
\(693\) 20.1149 0.764102
\(694\) 1.64081 0.0622841
\(695\) 0 0
\(696\) 2.79424 0.105915
\(697\) −38.6251 −1.46303
\(698\) 25.0849 0.949479
\(699\) −15.5588 −0.588489
\(700\) 0 0
\(701\) −38.7609 −1.46398 −0.731989 0.681317i \(-0.761408\pi\)
−0.731989 + 0.681317i \(0.761408\pi\)
\(702\) 37.5084 1.41566
\(703\) 4.10358 0.154769
\(704\) 12.5117 0.471552
\(705\) 0 0
\(706\) 68.2238 2.56764
\(707\) 10.8095 0.406532
\(708\) 15.7222 0.590877
\(709\) 12.7446 0.478632 0.239316 0.970942i \(-0.423077\pi\)
0.239316 + 0.970942i \(0.423077\pi\)
\(710\) 0 0
\(711\) −25.4444 −0.954238
\(712\) −4.26305 −0.159764
\(713\) −3.25868 −0.122038
\(714\) −35.1967 −1.31720
\(715\) 0 0
\(716\) 18.2232 0.681034
\(717\) 18.5844 0.694048
\(718\) −45.3068 −1.69084
\(719\) 43.4210 1.61933 0.809666 0.586892i \(-0.199649\pi\)
0.809666 + 0.586892i \(0.199649\pi\)
\(720\) 0 0
\(721\) 45.6760 1.70106
\(722\) −34.8541 −1.29714
\(723\) −2.85052 −0.106012
\(724\) 2.58299 0.0959962
\(725\) 0 0
\(726\) 0.998041 0.0370408
\(727\) 10.9915 0.407653 0.203827 0.979007i \(-0.434662\pi\)
0.203827 + 0.979007i \(0.434662\pi\)
\(728\) −11.5351 −0.427520
\(729\) 17.1348 0.634623
\(730\) 0 0
\(731\) 39.8495 1.47389
\(732\) 0.281865 0.0104180
\(733\) 5.52299 0.203996 0.101998 0.994785i \(-0.467476\pi\)
0.101998 + 0.994785i \(0.467476\pi\)
\(734\) −6.13304 −0.226375
\(735\) 0 0
\(736\) 20.2972 0.748164
\(737\) −14.8170 −0.545790
\(738\) 25.9135 0.953888
\(739\) 46.9877 1.72847 0.864234 0.503089i \(-0.167803\pi\)
0.864234 + 0.503089i \(0.167803\pi\)
\(740\) 0 0
\(741\) −2.73128 −0.100336
\(742\) −13.7416 −0.504469
\(743\) 43.1459 1.58287 0.791435 0.611253i \(-0.209334\pi\)
0.791435 + 0.611253i \(0.209334\pi\)
\(744\) 1.09445 0.0401245
\(745\) 0 0
\(746\) −12.5868 −0.460836
\(747\) −0.00806872 −0.000295219 0
\(748\) −25.3925 −0.928441
\(749\) 53.0113 1.93699
\(750\) 0 0
\(751\) −27.6783 −1.01000 −0.504998 0.863121i \(-0.668507\pi\)
−0.504998 + 0.863121i \(0.668507\pi\)
\(752\) −7.49303 −0.273243
\(753\) −25.6111 −0.933322
\(754\) 20.8800 0.760405
\(755\) 0 0
\(756\) 26.9221 0.979149
\(757\) 38.6375 1.40430 0.702152 0.712028i \(-0.252223\pi\)
0.702152 + 0.712028i \(0.252223\pi\)
\(758\) −38.9456 −1.41457
\(759\) −10.0200 −0.363704
\(760\) 0 0
\(761\) −17.7386 −0.643024 −0.321512 0.946906i \(-0.604191\pi\)
−0.321512 + 0.946906i \(0.604191\pi\)
\(762\) −18.7726 −0.680061
\(763\) 54.0101 1.95530
\(764\) 13.4791 0.487657
\(765\) 0 0
\(766\) −66.4793 −2.40199
\(767\) −36.5511 −1.31978
\(768\) −22.3731 −0.807321
\(769\) 3.23542 0.116672 0.0583361 0.998297i \(-0.481421\pi\)
0.0583361 + 0.998297i \(0.481421\pi\)
\(770\) 0 0
\(771\) −16.1590 −0.581950
\(772\) −24.1276 −0.868371
\(773\) 12.5145 0.450117 0.225058 0.974345i \(-0.427743\pi\)
0.225058 + 0.974345i \(0.427743\pi\)
\(774\) −26.7349 −0.960965
\(775\) 0 0
\(776\) 2.59792 0.0932601
\(777\) −22.6602 −0.812929
\(778\) 2.80161 0.100443
\(779\) −4.97205 −0.178142
\(780\) 0 0
\(781\) −27.2208 −0.974037
\(782\) −27.6128 −0.987430
\(783\) 15.1614 0.541823
\(784\) −20.9591 −0.748538
\(785\) 0 0
\(786\) 16.9110 0.603195
\(787\) −33.1968 −1.18334 −0.591669 0.806181i \(-0.701531\pi\)
−0.591669 + 0.806181i \(0.701531\pi\)
\(788\) −1.52542 −0.0543409
\(789\) −34.6504 −1.23359
\(790\) 0 0
\(791\) −1.63261 −0.0580488
\(792\) −5.30005 −0.188329
\(793\) −0.655281 −0.0232697
\(794\) 5.00776 0.177719
\(795\) 0 0
\(796\) −4.35471 −0.154349
\(797\) −12.2248 −0.433023 −0.216512 0.976280i \(-0.569468\pi\)
−0.216512 + 0.976280i \(0.569468\pi\)
\(798\) −4.53073 −0.160386
\(799\) 8.14552 0.288168
\(800\) 0 0
\(801\) −8.77851 −0.310173
\(802\) 25.7434 0.909032
\(803\) −41.1665 −1.45273
\(804\) −7.52623 −0.265430
\(805\) 0 0
\(806\) 8.17830 0.288068
\(807\) −0.0702268 −0.00247210
\(808\) −2.84818 −0.100199
\(809\) −30.9174 −1.08700 −0.543499 0.839410i \(-0.682901\pi\)
−0.543499 + 0.839410i \(0.682901\pi\)
\(810\) 0 0
\(811\) −23.8343 −0.836935 −0.418468 0.908232i \(-0.637433\pi\)
−0.418468 + 0.908232i \(0.637433\pi\)
\(812\) 14.9869 0.525937
\(813\) −11.5724 −0.405860
\(814\) −37.7822 −1.32427
\(815\) 0 0
\(816\) 26.1847 0.916649
\(817\) 5.12966 0.179464
\(818\) 38.5211 1.34686
\(819\) −23.7532 −0.830005
\(820\) 0 0
\(821\) −17.5483 −0.612440 −0.306220 0.951961i \(-0.599064\pi\)
−0.306220 + 0.951961i \(0.599064\pi\)
\(822\) 26.1812 0.913173
\(823\) 31.1736 1.08664 0.543322 0.839524i \(-0.317166\pi\)
0.543322 + 0.839524i \(0.317166\pi\)
\(824\) −12.0351 −0.419264
\(825\) 0 0
\(826\) −60.6321 −2.10966
\(827\) 28.3113 0.984479 0.492239 0.870460i \(-0.336178\pi\)
0.492239 + 0.870460i \(0.336178\pi\)
\(828\) 8.01575 0.278567
\(829\) 27.5353 0.956339 0.478170 0.878268i \(-0.341300\pi\)
0.478170 + 0.878268i \(0.341300\pi\)
\(830\) 0 0
\(831\) −1.48629 −0.0515590
\(832\) −14.7748 −0.512223
\(833\) 22.7842 0.789425
\(834\) −4.98151 −0.172496
\(835\) 0 0
\(836\) −3.26867 −0.113049
\(837\) 5.93841 0.205261
\(838\) −20.7202 −0.715767
\(839\) 12.1407 0.419144 0.209572 0.977793i \(-0.432793\pi\)
0.209572 + 0.977793i \(0.432793\pi\)
\(840\) 0 0
\(841\) −20.5600 −0.708967
\(842\) −38.8355 −1.33836
\(843\) 11.6340 0.400696
\(844\) −17.6719 −0.608293
\(845\) 0 0
\(846\) −5.46480 −0.187884
\(847\) −1.66539 −0.0572234
\(848\) 10.2231 0.351063
\(849\) −14.7518 −0.506281
\(850\) 0 0
\(851\) −17.7775 −0.609405
\(852\) −13.8267 −0.473696
\(853\) 38.4076 1.31505 0.657525 0.753432i \(-0.271603\pi\)
0.657525 + 0.753432i \(0.271603\pi\)
\(854\) −1.08700 −0.0371963
\(855\) 0 0
\(856\) −13.9679 −0.477412
\(857\) 45.7916 1.56421 0.782105 0.623146i \(-0.214146\pi\)
0.782105 + 0.623146i \(0.214146\pi\)
\(858\) 25.1473 0.858514
\(859\) 26.0195 0.887774 0.443887 0.896083i \(-0.353599\pi\)
0.443887 + 0.896083i \(0.353599\pi\)
\(860\) 0 0
\(861\) 27.4559 0.935695
\(862\) −36.7091 −1.25032
\(863\) −19.2150 −0.654085 −0.327042 0.945010i \(-0.606052\pi\)
−0.327042 + 0.945010i \(0.606052\pi\)
\(864\) −36.9883 −1.25837
\(865\) 0 0
\(866\) −50.3673 −1.71155
\(867\) −10.1152 −0.343530
\(868\) 5.87008 0.199243
\(869\) −44.9497 −1.52481
\(870\) 0 0
\(871\) 17.4970 0.592864
\(872\) −14.2311 −0.481924
\(873\) 5.34967 0.181059
\(874\) −3.55448 −0.120232
\(875\) 0 0
\(876\) −20.9104 −0.706496
\(877\) 43.1360 1.45660 0.728300 0.685258i \(-0.240311\pi\)
0.728300 + 0.685258i \(0.240311\pi\)
\(878\) −22.9703 −0.775211
\(879\) 10.8583 0.366242
\(880\) 0 0
\(881\) −41.5736 −1.40065 −0.700325 0.713824i \(-0.746962\pi\)
−0.700325 + 0.713824i \(0.746962\pi\)
\(882\) −15.2858 −0.514700
\(883\) −25.0969 −0.844579 −0.422289 0.906461i \(-0.638773\pi\)
−0.422289 + 0.906461i \(0.638773\pi\)
\(884\) 29.9854 1.00852
\(885\) 0 0
\(886\) −12.3553 −0.415086
\(887\) −9.87871 −0.331695 −0.165847 0.986151i \(-0.553036\pi\)
−0.165847 + 0.986151i \(0.553036\pi\)
\(888\) 5.97070 0.200364
\(889\) 31.3251 1.05061
\(890\) 0 0
\(891\) 0.416095 0.0139397
\(892\) 19.2126 0.643286
\(893\) 1.04854 0.0350880
\(894\) 6.91403 0.231240
\(895\) 0 0
\(896\) 23.4290 0.782709
\(897\) 11.8324 0.395074
\(898\) 59.5606 1.98756
\(899\) 3.30577 0.110253
\(900\) 0 0
\(901\) −11.1133 −0.370238
\(902\) 45.7784 1.52425
\(903\) −28.3262 −0.942638
\(904\) 0.430174 0.0143074
\(905\) 0 0
\(906\) −12.0825 −0.401415
\(907\) 0.517898 0.0171965 0.00859827 0.999963i \(-0.497263\pi\)
0.00859827 + 0.999963i \(0.497263\pi\)
\(908\) 26.3177 0.873382
\(909\) −5.86500 −0.194530
\(910\) 0 0
\(911\) 18.7618 0.621605 0.310803 0.950474i \(-0.399402\pi\)
0.310803 + 0.950474i \(0.399402\pi\)
\(912\) 3.37065 0.111614
\(913\) −0.0142541 −0.000471742 0
\(914\) 72.5427 2.39950
\(915\) 0 0
\(916\) 12.0614 0.398521
\(917\) −28.2186 −0.931862
\(918\) 50.3197 1.66080
\(919\) 51.3316 1.69327 0.846636 0.532172i \(-0.178624\pi\)
0.846636 + 0.532172i \(0.178624\pi\)
\(920\) 0 0
\(921\) 9.19754 0.303069
\(922\) −25.0594 −0.825289
\(923\) 32.1444 1.05805
\(924\) 18.0498 0.593794
\(925\) 0 0
\(926\) −18.7785 −0.617099
\(927\) −24.7829 −0.813976
\(928\) −20.5905 −0.675916
\(929\) 1.97472 0.0647886 0.0323943 0.999475i \(-0.489687\pi\)
0.0323943 + 0.999475i \(0.489687\pi\)
\(930\) 0 0
\(931\) 2.93291 0.0961223
\(932\) 21.9881 0.720243
\(933\) 2.43100 0.0795874
\(934\) −26.0302 −0.851734
\(935\) 0 0
\(936\) 6.25871 0.204572
\(937\) −23.9078 −0.781032 −0.390516 0.920596i \(-0.627703\pi\)
−0.390516 + 0.920596i \(0.627703\pi\)
\(938\) 29.0246 0.947686
\(939\) 7.00939 0.228743
\(940\) 0 0
\(941\) −4.61764 −0.150531 −0.0752654 0.997164i \(-0.523980\pi\)
−0.0752654 + 0.997164i \(0.523980\pi\)
\(942\) 9.96988 0.324836
\(943\) 21.5399 0.701436
\(944\) 45.1075 1.46812
\(945\) 0 0
\(946\) −47.2295 −1.53556
\(947\) 47.1474 1.53208 0.766042 0.642790i \(-0.222223\pi\)
0.766042 + 0.642790i \(0.222223\pi\)
\(948\) −22.8321 −0.741551
\(949\) 48.6125 1.57803
\(950\) 0 0
\(951\) −24.9618 −0.809443
\(952\) −15.4750 −0.501548
\(953\) 24.8068 0.803572 0.401786 0.915734i \(-0.368390\pi\)
0.401786 + 0.915734i \(0.368390\pi\)
\(954\) 7.45589 0.241393
\(955\) 0 0
\(956\) −26.2639 −0.849436
\(957\) 10.1648 0.328582
\(958\) 8.34300 0.269550
\(959\) −43.6874 −1.41074
\(960\) 0 0
\(961\) −29.7052 −0.958232
\(962\) 44.6162 1.43848
\(963\) −28.7628 −0.926869
\(964\) 4.02842 0.129747
\(965\) 0 0
\(966\) 19.6280 0.631521
\(967\) −40.1719 −1.29184 −0.645921 0.763404i \(-0.723526\pi\)
−0.645921 + 0.763404i \(0.723526\pi\)
\(968\) 0.438811 0.0141039
\(969\) −3.66417 −0.117710
\(970\) 0 0
\(971\) 44.8733 1.44005 0.720026 0.693947i \(-0.244130\pi\)
0.720026 + 0.693947i \(0.244130\pi\)
\(972\) −23.6711 −0.759251
\(973\) 8.31243 0.266484
\(974\) 29.3171 0.939380
\(975\) 0 0
\(976\) 0.808678 0.0258851
\(977\) 6.17087 0.197424 0.0987119 0.995116i \(-0.468528\pi\)
0.0987119 + 0.995116i \(0.468528\pi\)
\(978\) 29.3454 0.938363
\(979\) −15.5080 −0.495639
\(980\) 0 0
\(981\) −29.3048 −0.935629
\(982\) −16.4393 −0.524598
\(983\) 19.1761 0.611622 0.305811 0.952092i \(-0.401072\pi\)
0.305811 + 0.952092i \(0.401072\pi\)
\(984\) −7.23433 −0.230622
\(985\) 0 0
\(986\) 28.0118 0.892076
\(987\) −5.79009 −0.184301
\(988\) 3.85990 0.122800
\(989\) −22.2227 −0.706641
\(990\) 0 0
\(991\) −40.3959 −1.28322 −0.641609 0.767032i \(-0.721733\pi\)
−0.641609 + 0.767032i \(0.721733\pi\)
\(992\) −8.06489 −0.256061
\(993\) −26.2342 −0.832517
\(994\) 53.3221 1.69128
\(995\) 0 0
\(996\) −0.00724033 −0.000229419 0
\(997\) 43.0493 1.36339 0.681693 0.731638i \(-0.261244\pi\)
0.681693 + 0.731638i \(0.261244\pi\)
\(998\) −0.645864 −0.0204445
\(999\) 32.3966 1.02498
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4925.2.a.p.1.30 37
5.4 even 2 4925.2.a.q.1.8 yes 37
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4925.2.a.p.1.30 37 1.1 even 1 trivial
4925.2.a.q.1.8 yes 37 5.4 even 2