Properties

Label 4925.2.a.j.1.9
Level $4925$
Weight $2$
Character 4925.1
Self dual yes
Analytic conductor $39.326$
Analytic rank $1$
Dimension $10$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4925,2,Mod(1,4925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4925.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4925, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4925 = 5^{2} \cdot 197 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4925.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,2,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(39.3263229955\)
Analytic rank: \(1\)
Dimension: \(10\)
Coefficient field: 10.10.21886214112361.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2x^{9} - 9x^{8} + 16x^{7} + 26x^{6} - 38x^{5} - 27x^{4} + 32x^{3} + 6x^{2} - 7x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 985)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Root \(2.24278\) of defining polynomial
Character \(\chi\) \(=\) 4925.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.24278 q^{2} -1.69515 q^{3} +3.03007 q^{4} -3.80186 q^{6} +3.86416 q^{7} +2.31023 q^{8} -0.126460 q^{9} -2.20820 q^{11} -5.13643 q^{12} -1.54718 q^{13} +8.66648 q^{14} -0.878807 q^{16} -5.49863 q^{17} -0.283622 q^{18} +0.753438 q^{19} -6.55035 q^{21} -4.95250 q^{22} +5.79633 q^{23} -3.91619 q^{24} -3.46999 q^{26} +5.29982 q^{27} +11.7087 q^{28} -8.47619 q^{29} -8.33139 q^{31} -6.59143 q^{32} +3.74323 q^{33} -12.3322 q^{34} -0.383183 q^{36} -10.8352 q^{37} +1.68980 q^{38} +2.62271 q^{39} -1.03866 q^{41} -14.6910 q^{42} +4.39227 q^{43} -6.69099 q^{44} +12.9999 q^{46} +6.20938 q^{47} +1.48971 q^{48} +7.93177 q^{49} +9.32101 q^{51} -4.68808 q^{52} +5.32664 q^{53} +11.8864 q^{54} +8.92710 q^{56} -1.27719 q^{57} -19.0102 q^{58} +0.409456 q^{59} -10.7844 q^{61} -18.6855 q^{62} -0.488662 q^{63} -13.0255 q^{64} +8.39524 q^{66} -2.86371 q^{67} -16.6612 q^{68} -9.82567 q^{69} -14.9588 q^{71} -0.292151 q^{72} -4.86429 q^{73} -24.3010 q^{74} +2.28297 q^{76} -8.53283 q^{77} +5.88217 q^{78} +7.99199 q^{79} -8.60463 q^{81} -2.32949 q^{82} +0.733605 q^{83} -19.8480 q^{84} +9.85091 q^{86} +14.3684 q^{87} -5.10143 q^{88} +1.13084 q^{89} -5.97857 q^{91} +17.5633 q^{92} +14.1230 q^{93} +13.9263 q^{94} +11.1735 q^{96} -17.3030 q^{97} +17.7892 q^{98} +0.279248 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 2 q^{2} + 3 q^{3} + 2 q^{4} - 9 q^{6} + 6 q^{7} + 6 q^{8} - 5 q^{9} - 11 q^{11} + 5 q^{13} - 9 q^{14} - 2 q^{16} + 4 q^{17} - 15 q^{18} - 28 q^{19} - 7 q^{21} + 12 q^{22} + 24 q^{23} - 3 q^{24} + 7 q^{26}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.24278 1.58589 0.792943 0.609295i \(-0.208548\pi\)
0.792943 + 0.609295i \(0.208548\pi\)
\(3\) −1.69515 −0.978696 −0.489348 0.872088i \(-0.662765\pi\)
−0.489348 + 0.872088i \(0.662765\pi\)
\(4\) 3.03007 1.51504
\(5\) 0 0
\(6\) −3.80186 −1.55210
\(7\) 3.86416 1.46052 0.730258 0.683171i \(-0.239400\pi\)
0.730258 + 0.683171i \(0.239400\pi\)
\(8\) 2.31023 0.816789
\(9\) −0.126460 −0.0421533
\(10\) 0 0
\(11\) −2.20820 −0.665796 −0.332898 0.942963i \(-0.608026\pi\)
−0.332898 + 0.942963i \(0.608026\pi\)
\(12\) −5.13643 −1.48276
\(13\) −1.54718 −0.429111 −0.214556 0.976712i \(-0.568830\pi\)
−0.214556 + 0.976712i \(0.568830\pi\)
\(14\) 8.66648 2.31621
\(15\) 0 0
\(16\) −0.878807 −0.219702
\(17\) −5.49863 −1.33361 −0.666807 0.745230i \(-0.732339\pi\)
−0.666807 + 0.745230i \(0.732339\pi\)
\(18\) −0.283622 −0.0668504
\(19\) 0.753438 0.172851 0.0864253 0.996258i \(-0.472456\pi\)
0.0864253 + 0.996258i \(0.472456\pi\)
\(20\) 0 0
\(21\) −6.55035 −1.42940
\(22\) −4.95250 −1.05588
\(23\) 5.79633 1.20862 0.604310 0.796750i \(-0.293449\pi\)
0.604310 + 0.796750i \(0.293449\pi\)
\(24\) −3.91619 −0.799388
\(25\) 0 0
\(26\) −3.46999 −0.680522
\(27\) 5.29982 1.01995
\(28\) 11.7087 2.21274
\(29\) −8.47619 −1.57399 −0.786994 0.616961i \(-0.788364\pi\)
−0.786994 + 0.616961i \(0.788364\pi\)
\(30\) 0 0
\(31\) −8.33139 −1.49636 −0.748181 0.663495i \(-0.769072\pi\)
−0.748181 + 0.663495i \(0.769072\pi\)
\(32\) −6.59143 −1.16521
\(33\) 3.74323 0.651612
\(34\) −12.3322 −2.11496
\(35\) 0 0
\(36\) −0.383183 −0.0638638
\(37\) −10.8352 −1.78129 −0.890646 0.454696i \(-0.849748\pi\)
−0.890646 + 0.454696i \(0.849748\pi\)
\(38\) 1.68980 0.274121
\(39\) 2.62271 0.419970
\(40\) 0 0
\(41\) −1.03866 −0.162212 −0.0811059 0.996705i \(-0.525845\pi\)
−0.0811059 + 0.996705i \(0.525845\pi\)
\(42\) −14.6910 −2.26687
\(43\) 4.39227 0.669815 0.334908 0.942251i \(-0.391295\pi\)
0.334908 + 0.942251i \(0.391295\pi\)
\(44\) −6.69099 −1.00870
\(45\) 0 0
\(46\) 12.9999 1.91673
\(47\) 6.20938 0.905731 0.452865 0.891579i \(-0.350402\pi\)
0.452865 + 0.891579i \(0.350402\pi\)
\(48\) 1.48971 0.215021
\(49\) 7.93177 1.13311
\(50\) 0 0
\(51\) 9.32101 1.30520
\(52\) −4.68808 −0.650119
\(53\) 5.32664 0.731670 0.365835 0.930680i \(-0.380783\pi\)
0.365835 + 0.930680i \(0.380783\pi\)
\(54\) 11.8864 1.61753
\(55\) 0 0
\(56\) 8.92710 1.19293
\(57\) −1.27719 −0.169168
\(58\) −19.0102 −2.49617
\(59\) 0.409456 0.0533066 0.0266533 0.999645i \(-0.491515\pi\)
0.0266533 + 0.999645i \(0.491515\pi\)
\(60\) 0 0
\(61\) −10.7844 −1.38081 −0.690403 0.723425i \(-0.742567\pi\)
−0.690403 + 0.723425i \(0.742567\pi\)
\(62\) −18.6855 −2.37306
\(63\) −0.488662 −0.0615657
\(64\) −13.0255 −1.62819
\(65\) 0 0
\(66\) 8.39524 1.03338
\(67\) −2.86371 −0.349857 −0.174929 0.984581i \(-0.555969\pi\)
−0.174929 + 0.984581i \(0.555969\pi\)
\(68\) −16.6612 −2.02047
\(69\) −9.82567 −1.18287
\(70\) 0 0
\(71\) −14.9588 −1.77529 −0.887644 0.460531i \(-0.847659\pi\)
−0.887644 + 0.460531i \(0.847659\pi\)
\(72\) −0.292151 −0.0344304
\(73\) −4.86429 −0.569322 −0.284661 0.958628i \(-0.591881\pi\)
−0.284661 + 0.958628i \(0.591881\pi\)
\(74\) −24.3010 −2.82493
\(75\) 0 0
\(76\) 2.28297 0.261875
\(77\) −8.53283 −0.972406
\(78\) 5.88217 0.666024
\(79\) 7.99199 0.899169 0.449585 0.893238i \(-0.351572\pi\)
0.449585 + 0.893238i \(0.351572\pi\)
\(80\) 0 0
\(81\) −8.60463 −0.956070
\(82\) −2.32949 −0.257250
\(83\) 0.733605 0.0805236 0.0402618 0.999189i \(-0.487181\pi\)
0.0402618 + 0.999189i \(0.487181\pi\)
\(84\) −19.8480 −2.16560
\(85\) 0 0
\(86\) 9.85091 1.06225
\(87\) 14.3684 1.54046
\(88\) −5.10143 −0.543815
\(89\) 1.13084 0.119869 0.0599346 0.998202i \(-0.480911\pi\)
0.0599346 + 0.998202i \(0.480911\pi\)
\(90\) 0 0
\(91\) −5.97857 −0.626724
\(92\) 17.5633 1.83110
\(93\) 14.1230 1.46448
\(94\) 13.9263 1.43639
\(95\) 0 0
\(96\) 11.1735 1.14039
\(97\) −17.3030 −1.75686 −0.878428 0.477876i \(-0.841407\pi\)
−0.878428 + 0.477876i \(0.841407\pi\)
\(98\) 17.7892 1.79698
\(99\) 0.279248 0.0280655
\(100\) 0 0
\(101\) 7.88818 0.784903 0.392452 0.919773i \(-0.371627\pi\)
0.392452 + 0.919773i \(0.371627\pi\)
\(102\) 20.9050 2.06990
\(103\) 12.0867 1.19094 0.595471 0.803377i \(-0.296965\pi\)
0.595471 + 0.803377i \(0.296965\pi\)
\(104\) −3.57434 −0.350493
\(105\) 0 0
\(106\) 11.9465 1.16035
\(107\) 6.21333 0.600665 0.300332 0.953835i \(-0.402902\pi\)
0.300332 + 0.953835i \(0.402902\pi\)
\(108\) 16.0589 1.54526
\(109\) 1.21143 0.116034 0.0580169 0.998316i \(-0.481522\pi\)
0.0580169 + 0.998316i \(0.481522\pi\)
\(110\) 0 0
\(111\) 18.3673 1.74335
\(112\) −3.39585 −0.320878
\(113\) 14.0267 1.31952 0.659760 0.751477i \(-0.270658\pi\)
0.659760 + 0.751477i \(0.270658\pi\)
\(114\) −2.86446 −0.268282
\(115\) 0 0
\(116\) −25.6835 −2.38465
\(117\) 0.195657 0.0180885
\(118\) 0.918320 0.0845382
\(119\) −21.2476 −1.94777
\(120\) 0 0
\(121\) −6.12387 −0.556716
\(122\) −24.1872 −2.18980
\(123\) 1.76069 0.158756
\(124\) −25.2447 −2.26704
\(125\) 0 0
\(126\) −1.09596 −0.0976362
\(127\) 6.14524 0.545302 0.272651 0.962113i \(-0.412100\pi\)
0.272651 + 0.962113i \(0.412100\pi\)
\(128\) −16.0306 −1.41691
\(129\) −7.44557 −0.655546
\(130\) 0 0
\(131\) −17.3305 −1.51418 −0.757088 0.653313i \(-0.773379\pi\)
−0.757088 + 0.653313i \(0.773379\pi\)
\(132\) 11.3422 0.987216
\(133\) 2.91141 0.252451
\(134\) −6.42267 −0.554834
\(135\) 0 0
\(136\) −12.7031 −1.08928
\(137\) 17.6950 1.51179 0.755895 0.654693i \(-0.227202\pi\)
0.755895 + 0.654693i \(0.227202\pi\)
\(138\) −22.0368 −1.87590
\(139\) 19.1818 1.62698 0.813490 0.581579i \(-0.197565\pi\)
0.813490 + 0.581579i \(0.197565\pi\)
\(140\) 0 0
\(141\) −10.5258 −0.886435
\(142\) −33.5494 −2.81540
\(143\) 3.41648 0.285701
\(144\) 0.111134 0.00926116
\(145\) 0 0
\(146\) −10.9095 −0.902880
\(147\) −13.4455 −1.10897
\(148\) −32.8314 −2.69872
\(149\) −12.4189 −1.01740 −0.508698 0.860945i \(-0.669873\pi\)
−0.508698 + 0.860945i \(0.669873\pi\)
\(150\) 0 0
\(151\) 11.6634 0.949155 0.474578 0.880214i \(-0.342601\pi\)
0.474578 + 0.880214i \(0.342601\pi\)
\(152\) 1.74061 0.141182
\(153\) 0.695357 0.0562163
\(154\) −19.1373 −1.54213
\(155\) 0 0
\(156\) 7.94700 0.636269
\(157\) −6.54955 −0.522711 −0.261355 0.965243i \(-0.584169\pi\)
−0.261355 + 0.965243i \(0.584169\pi\)
\(158\) 17.9243 1.42598
\(159\) −9.02946 −0.716083
\(160\) 0 0
\(161\) 22.3980 1.76521
\(162\) −19.2983 −1.51622
\(163\) −12.9926 −1.01766 −0.508831 0.860867i \(-0.669922\pi\)
−0.508831 + 0.860867i \(0.669922\pi\)
\(164\) −3.14722 −0.245757
\(165\) 0 0
\(166\) 1.64532 0.127701
\(167\) −7.57091 −0.585855 −0.292927 0.956135i \(-0.594629\pi\)
−0.292927 + 0.956135i \(0.594629\pi\)
\(168\) −15.1328 −1.16752
\(169\) −10.6062 −0.815863
\(170\) 0 0
\(171\) −0.0952798 −0.00728623
\(172\) 13.3089 1.01479
\(173\) −22.3315 −1.69783 −0.848917 0.528526i \(-0.822745\pi\)
−0.848917 + 0.528526i \(0.822745\pi\)
\(174\) 32.2252 2.44299
\(175\) 0 0
\(176\) 1.94058 0.146276
\(177\) −0.694090 −0.0521710
\(178\) 2.53624 0.190099
\(179\) −1.85486 −0.138639 −0.0693194 0.997595i \(-0.522083\pi\)
−0.0693194 + 0.997595i \(0.522083\pi\)
\(180\) 0 0
\(181\) −23.3521 −1.73575 −0.867874 0.496785i \(-0.834514\pi\)
−0.867874 + 0.496785i \(0.834514\pi\)
\(182\) −13.4086 −0.993914
\(183\) 18.2813 1.35139
\(184\) 13.3909 0.987187
\(185\) 0 0
\(186\) 31.6747 2.32250
\(187\) 12.1420 0.887915
\(188\) 18.8149 1.37221
\(189\) 20.4794 1.48966
\(190\) 0 0
\(191\) −2.83410 −0.205068 −0.102534 0.994729i \(-0.532695\pi\)
−0.102534 + 0.994729i \(0.532695\pi\)
\(192\) 22.0802 1.59350
\(193\) −15.9231 −1.14617 −0.573084 0.819497i \(-0.694253\pi\)
−0.573084 + 0.819497i \(0.694253\pi\)
\(194\) −38.8069 −2.78617
\(195\) 0 0
\(196\) 24.0338 1.71670
\(197\) −1.00000 −0.0712470
\(198\) 0.626293 0.0445087
\(199\) 13.1038 0.928900 0.464450 0.885599i \(-0.346252\pi\)
0.464450 + 0.885599i \(0.346252\pi\)
\(200\) 0 0
\(201\) 4.85442 0.342404
\(202\) 17.6915 1.24477
\(203\) −32.7534 −2.29884
\(204\) 28.2433 1.97743
\(205\) 0 0
\(206\) 27.1079 1.88870
\(207\) −0.733005 −0.0509473
\(208\) 1.35967 0.0942765
\(209\) −1.66374 −0.115083
\(210\) 0 0
\(211\) 2.18803 0.150630 0.0753152 0.997160i \(-0.476004\pi\)
0.0753152 + 0.997160i \(0.476004\pi\)
\(212\) 16.1401 1.10851
\(213\) 25.3575 1.73747
\(214\) 13.9351 0.952586
\(215\) 0 0
\(216\) 12.2438 0.833085
\(217\) −32.1939 −2.18546
\(218\) 2.71697 0.184016
\(219\) 8.24571 0.557193
\(220\) 0 0
\(221\) 8.50739 0.572269
\(222\) 41.1938 2.76475
\(223\) −8.88901 −0.595252 −0.297626 0.954682i \(-0.596195\pi\)
−0.297626 + 0.954682i \(0.596195\pi\)
\(224\) −25.4704 −1.70181
\(225\) 0 0
\(226\) 31.4588 2.09261
\(227\) 14.2949 0.948786 0.474393 0.880313i \(-0.342668\pi\)
0.474393 + 0.880313i \(0.342668\pi\)
\(228\) −3.86998 −0.256296
\(229\) −2.10860 −0.139340 −0.0696701 0.997570i \(-0.522195\pi\)
−0.0696701 + 0.997570i \(0.522195\pi\)
\(230\) 0 0
\(231\) 14.4644 0.951690
\(232\) −19.5819 −1.28562
\(233\) −25.6904 −1.68303 −0.841516 0.540232i \(-0.818337\pi\)
−0.841516 + 0.540232i \(0.818337\pi\)
\(234\) 0.438816 0.0286863
\(235\) 0 0
\(236\) 1.24068 0.0807614
\(237\) −13.5476 −0.880014
\(238\) −47.6538 −3.08894
\(239\) 14.8887 0.963070 0.481535 0.876427i \(-0.340079\pi\)
0.481535 + 0.876427i \(0.340079\pi\)
\(240\) 0 0
\(241\) −16.6389 −1.07181 −0.535903 0.844279i \(-0.680029\pi\)
−0.535903 + 0.844279i \(0.680029\pi\)
\(242\) −13.7345 −0.882888
\(243\) −1.31332 −0.0842497
\(244\) −32.6776 −2.09197
\(245\) 0 0
\(246\) 3.94885 0.251769
\(247\) −1.16571 −0.0741721
\(248\) −19.2474 −1.22221
\(249\) −1.24357 −0.0788081
\(250\) 0 0
\(251\) −15.7523 −0.994277 −0.497139 0.867671i \(-0.665616\pi\)
−0.497139 + 0.867671i \(0.665616\pi\)
\(252\) −1.48068 −0.0932742
\(253\) −12.7994 −0.804694
\(254\) 13.7824 0.864786
\(255\) 0 0
\(256\) −9.90200 −0.618875
\(257\) −11.0447 −0.688951 −0.344475 0.938795i \(-0.611943\pi\)
−0.344475 + 0.938795i \(0.611943\pi\)
\(258\) −16.6988 −1.03962
\(259\) −41.8689 −2.60161
\(260\) 0 0
\(261\) 1.07190 0.0663489
\(262\) −38.8686 −2.40131
\(263\) 9.41071 0.580289 0.290144 0.956983i \(-0.406297\pi\)
0.290144 + 0.956983i \(0.406297\pi\)
\(264\) 8.64770 0.532229
\(265\) 0 0
\(266\) 6.52966 0.400359
\(267\) −1.91695 −0.117316
\(268\) −8.67724 −0.530047
\(269\) 15.1379 0.922973 0.461487 0.887147i \(-0.347316\pi\)
0.461487 + 0.887147i \(0.347316\pi\)
\(270\) 0 0
\(271\) 15.1694 0.921477 0.460739 0.887536i \(-0.347585\pi\)
0.460739 + 0.887536i \(0.347585\pi\)
\(272\) 4.83223 0.292997
\(273\) 10.1346 0.613373
\(274\) 39.6861 2.39753
\(275\) 0 0
\(276\) −29.7725 −1.79209
\(277\) 8.93015 0.536561 0.268280 0.963341i \(-0.413545\pi\)
0.268280 + 0.963341i \(0.413545\pi\)
\(278\) 43.0206 2.58021
\(279\) 1.05359 0.0630766
\(280\) 0 0
\(281\) 13.9052 0.829512 0.414756 0.909933i \(-0.363867\pi\)
0.414756 + 0.909933i \(0.363867\pi\)
\(282\) −23.6072 −1.40579
\(283\) −8.97483 −0.533498 −0.266749 0.963766i \(-0.585950\pi\)
−0.266749 + 0.963766i \(0.585950\pi\)
\(284\) −45.3264 −2.68962
\(285\) 0 0
\(286\) 7.66242 0.453089
\(287\) −4.01356 −0.236913
\(288\) 0.833552 0.0491175
\(289\) 13.2349 0.778526
\(290\) 0 0
\(291\) 29.3312 1.71943
\(292\) −14.7391 −0.862543
\(293\) 2.76823 0.161721 0.0808607 0.996725i \(-0.474233\pi\)
0.0808607 + 0.996725i \(0.474233\pi\)
\(294\) −30.1554 −1.75870
\(295\) 0 0
\(296\) −25.0317 −1.45494
\(297\) −11.7030 −0.679080
\(298\) −27.8529 −1.61348
\(299\) −8.96799 −0.518632
\(300\) 0 0
\(301\) 16.9725 0.978276
\(302\) 26.1585 1.50525
\(303\) −13.3717 −0.768182
\(304\) −0.662127 −0.0379756
\(305\) 0 0
\(306\) 1.55953 0.0891527
\(307\) 4.53630 0.258900 0.129450 0.991586i \(-0.458679\pi\)
0.129450 + 0.991586i \(0.458679\pi\)
\(308\) −25.8551 −1.47323
\(309\) −20.4889 −1.16557
\(310\) 0 0
\(311\) −22.6660 −1.28527 −0.642637 0.766171i \(-0.722159\pi\)
−0.642637 + 0.766171i \(0.722159\pi\)
\(312\) 6.05906 0.343027
\(313\) −1.97222 −0.111476 −0.0557382 0.998445i \(-0.517751\pi\)
−0.0557382 + 0.998445i \(0.517751\pi\)
\(314\) −14.6892 −0.828960
\(315\) 0 0
\(316\) 24.2163 1.36227
\(317\) 30.0838 1.68968 0.844838 0.535023i \(-0.179697\pi\)
0.844838 + 0.535023i \(0.179697\pi\)
\(318\) −20.2511 −1.13563
\(319\) 18.7171 1.04795
\(320\) 0 0
\(321\) −10.5325 −0.587869
\(322\) 50.2338 2.79942
\(323\) −4.14288 −0.230516
\(324\) −26.0726 −1.44848
\(325\) 0 0
\(326\) −29.1396 −1.61390
\(327\) −2.05355 −0.113562
\(328\) −2.39955 −0.132493
\(329\) 23.9941 1.32284
\(330\) 0 0
\(331\) 23.2300 1.27684 0.638418 0.769690i \(-0.279589\pi\)
0.638418 + 0.769690i \(0.279589\pi\)
\(332\) 2.22288 0.121996
\(333\) 1.37022 0.0750875
\(334\) −16.9799 −0.929099
\(335\) 0 0
\(336\) 5.75649 0.314042
\(337\) 24.7804 1.34988 0.674938 0.737875i \(-0.264170\pi\)
0.674938 + 0.737875i \(0.264170\pi\)
\(338\) −23.7875 −1.29387
\(339\) −23.7774 −1.29141
\(340\) 0 0
\(341\) 18.3973 0.996271
\(342\) −0.213692 −0.0115551
\(343\) 3.60050 0.194409
\(344\) 10.1471 0.547098
\(345\) 0 0
\(346\) −50.0848 −2.69257
\(347\) −32.2025 −1.72872 −0.864360 0.502873i \(-0.832276\pi\)
−0.864360 + 0.502873i \(0.832276\pi\)
\(348\) 43.5374 2.33385
\(349\) −9.48794 −0.507878 −0.253939 0.967220i \(-0.581726\pi\)
−0.253939 + 0.967220i \(0.581726\pi\)
\(350\) 0 0
\(351\) −8.19980 −0.437673
\(352\) 14.5552 0.775793
\(353\) 33.6633 1.79172 0.895858 0.444340i \(-0.146562\pi\)
0.895858 + 0.444340i \(0.146562\pi\)
\(354\) −1.55669 −0.0827372
\(355\) 0 0
\(356\) 3.42654 0.181606
\(357\) 36.0179 1.90627
\(358\) −4.16005 −0.219865
\(359\) 18.4847 0.975585 0.487793 0.872960i \(-0.337802\pi\)
0.487793 + 0.872960i \(0.337802\pi\)
\(360\) 0 0
\(361\) −18.4323 −0.970123
\(362\) −52.3736 −2.75270
\(363\) 10.3809 0.544856
\(364\) −18.1155 −0.949510
\(365\) 0 0
\(366\) 41.0009 2.14315
\(367\) 23.8288 1.24385 0.621926 0.783076i \(-0.286350\pi\)
0.621926 + 0.783076i \(0.286350\pi\)
\(368\) −5.09386 −0.265536
\(369\) 0.131349 0.00683777
\(370\) 0 0
\(371\) 20.5830 1.06862
\(372\) 42.7936 2.21875
\(373\) −4.38690 −0.227145 −0.113572 0.993530i \(-0.536229\pi\)
−0.113572 + 0.993530i \(0.536229\pi\)
\(374\) 27.2320 1.40813
\(375\) 0 0
\(376\) 14.3451 0.739791
\(377\) 13.1142 0.675416
\(378\) 45.9308 2.36243
\(379\) −2.49316 −0.128065 −0.0640324 0.997948i \(-0.520396\pi\)
−0.0640324 + 0.997948i \(0.520396\pi\)
\(380\) 0 0
\(381\) −10.4171 −0.533685
\(382\) −6.35627 −0.325215
\(383\) −30.5816 −1.56265 −0.781324 0.624125i \(-0.785455\pi\)
−0.781324 + 0.624125i \(0.785455\pi\)
\(384\) 27.1742 1.38673
\(385\) 0 0
\(386\) −35.7120 −1.81769
\(387\) −0.555447 −0.0282349
\(388\) −52.4294 −2.66170
\(389\) −12.2757 −0.622404 −0.311202 0.950344i \(-0.600732\pi\)
−0.311202 + 0.950344i \(0.600732\pi\)
\(390\) 0 0
\(391\) −31.8719 −1.61183
\(392\) 18.3242 0.925511
\(393\) 29.3779 1.48192
\(394\) −2.24278 −0.112990
\(395\) 0 0
\(396\) 0.846143 0.0425203
\(397\) −13.4565 −0.675364 −0.337682 0.941260i \(-0.609643\pi\)
−0.337682 + 0.941260i \(0.609643\pi\)
\(398\) 29.3889 1.47313
\(399\) −4.93528 −0.247073
\(400\) 0 0
\(401\) 17.0003 0.848955 0.424478 0.905438i \(-0.360458\pi\)
0.424478 + 0.905438i \(0.360458\pi\)
\(402\) 10.8874 0.543014
\(403\) 12.8902 0.642106
\(404\) 23.9018 1.18916
\(405\) 0 0
\(406\) −73.4587 −3.64569
\(407\) 23.9262 1.18598
\(408\) 21.5337 1.06608
\(409\) −1.19427 −0.0590527 −0.0295263 0.999564i \(-0.509400\pi\)
−0.0295263 + 0.999564i \(0.509400\pi\)
\(410\) 0 0
\(411\) −29.9958 −1.47958
\(412\) 36.6237 1.80432
\(413\) 1.58220 0.0778552
\(414\) −1.64397 −0.0807967
\(415\) 0 0
\(416\) 10.1981 0.500005
\(417\) −32.5161 −1.59232
\(418\) −3.73140 −0.182509
\(419\) 32.3524 1.58052 0.790259 0.612772i \(-0.209946\pi\)
0.790259 + 0.612772i \(0.209946\pi\)
\(420\) 0 0
\(421\) 23.3730 1.13913 0.569564 0.821947i \(-0.307112\pi\)
0.569564 + 0.821947i \(0.307112\pi\)
\(422\) 4.90728 0.238883
\(423\) −0.785238 −0.0381796
\(424\) 12.3057 0.597620
\(425\) 0 0
\(426\) 56.8713 2.75543
\(427\) −41.6729 −2.01669
\(428\) 18.8268 0.910029
\(429\) −5.79146 −0.279614
\(430\) 0 0
\(431\) 32.2361 1.55276 0.776380 0.630265i \(-0.217054\pi\)
0.776380 + 0.630265i \(0.217054\pi\)
\(432\) −4.65752 −0.224085
\(433\) 13.1015 0.629616 0.314808 0.949155i \(-0.398060\pi\)
0.314808 + 0.949155i \(0.398060\pi\)
\(434\) −72.2038 −3.46589
\(435\) 0 0
\(436\) 3.67071 0.175795
\(437\) 4.36718 0.208911
\(438\) 18.4933 0.883646
\(439\) −12.5909 −0.600933 −0.300466 0.953792i \(-0.597142\pi\)
−0.300466 + 0.953792i \(0.597142\pi\)
\(440\) 0 0
\(441\) −1.00305 −0.0477644
\(442\) 19.0802 0.907553
\(443\) −8.21481 −0.390297 −0.195149 0.980774i \(-0.562519\pi\)
−0.195149 + 0.980774i \(0.562519\pi\)
\(444\) 55.6542 2.64123
\(445\) 0 0
\(446\) −19.9361 −0.944003
\(447\) 21.0519 0.995723
\(448\) −50.3328 −2.37800
\(449\) 20.5177 0.968292 0.484146 0.874987i \(-0.339130\pi\)
0.484146 + 0.874987i \(0.339130\pi\)
\(450\) 0 0
\(451\) 2.29357 0.108000
\(452\) 42.5019 1.99912
\(453\) −19.7713 −0.928935
\(454\) 32.0604 1.50467
\(455\) 0 0
\(456\) −2.95060 −0.138175
\(457\) −27.9176 −1.30593 −0.652965 0.757388i \(-0.726475\pi\)
−0.652965 + 0.757388i \(0.726475\pi\)
\(458\) −4.72913 −0.220978
\(459\) −29.1418 −1.36022
\(460\) 0 0
\(461\) −16.1654 −0.752899 −0.376450 0.926437i \(-0.622855\pi\)
−0.376450 + 0.926437i \(0.622855\pi\)
\(462\) 32.4406 1.50927
\(463\) 1.24537 0.0578773 0.0289386 0.999581i \(-0.490787\pi\)
0.0289386 + 0.999581i \(0.490787\pi\)
\(464\) 7.44893 0.345808
\(465\) 0 0
\(466\) −57.6179 −2.66910
\(467\) 1.38654 0.0641613 0.0320807 0.999485i \(-0.489787\pi\)
0.0320807 + 0.999485i \(0.489787\pi\)
\(468\) 0.592854 0.0274047
\(469\) −11.0658 −0.510973
\(470\) 0 0
\(471\) 11.1025 0.511575
\(472\) 0.945936 0.0435402
\(473\) −9.69899 −0.445960
\(474\) −30.3844 −1.39560
\(475\) 0 0
\(476\) −64.3818 −2.95094
\(477\) −0.673607 −0.0308423
\(478\) 33.3921 1.52732
\(479\) 25.0648 1.14524 0.572621 0.819820i \(-0.305927\pi\)
0.572621 + 0.819820i \(0.305927\pi\)
\(480\) 0 0
\(481\) 16.7640 0.764373
\(482\) −37.3175 −1.69976
\(483\) −37.9680 −1.72760
\(484\) −18.5558 −0.843445
\(485\) 0 0
\(486\) −2.94550 −0.133610
\(487\) −29.6378 −1.34302 −0.671508 0.740998i \(-0.734353\pi\)
−0.671508 + 0.740998i \(0.734353\pi\)
\(488\) −24.9145 −1.12783
\(489\) 22.0245 0.995981
\(490\) 0 0
\(491\) −10.2768 −0.463785 −0.231893 0.972741i \(-0.574492\pi\)
−0.231893 + 0.972741i \(0.574492\pi\)
\(492\) 5.33502 0.240521
\(493\) 46.6074 2.09909
\(494\) −2.61443 −0.117629
\(495\) 0 0
\(496\) 7.32168 0.328753
\(497\) −57.8034 −2.59284
\(498\) −2.78906 −0.124981
\(499\) 42.0398 1.88196 0.940979 0.338464i \(-0.109907\pi\)
0.940979 + 0.338464i \(0.109907\pi\)
\(500\) 0 0
\(501\) 12.8339 0.573374
\(502\) −35.3290 −1.57681
\(503\) 25.7320 1.14734 0.573668 0.819088i \(-0.305520\pi\)
0.573668 + 0.819088i \(0.305520\pi\)
\(504\) −1.12892 −0.0502862
\(505\) 0 0
\(506\) −28.7064 −1.27615
\(507\) 17.9792 0.798483
\(508\) 18.6205 0.826152
\(509\) −29.0968 −1.28969 −0.644846 0.764312i \(-0.723079\pi\)
−0.644846 + 0.764312i \(0.723079\pi\)
\(510\) 0 0
\(511\) −18.7964 −0.831504
\(512\) 9.85308 0.435449
\(513\) 3.99309 0.176299
\(514\) −24.7709 −1.09260
\(515\) 0 0
\(516\) −22.5606 −0.993175
\(517\) −13.7115 −0.603032
\(518\) −93.9029 −4.12586
\(519\) 37.8553 1.66166
\(520\) 0 0
\(521\) −25.7092 −1.12634 −0.563171 0.826341i \(-0.690419\pi\)
−0.563171 + 0.826341i \(0.690419\pi\)
\(522\) 2.40404 0.105222
\(523\) −20.6858 −0.904529 −0.452264 0.891884i \(-0.649384\pi\)
−0.452264 + 0.891884i \(0.649384\pi\)
\(524\) −52.5128 −2.29403
\(525\) 0 0
\(526\) 21.1062 0.920272
\(527\) 45.8112 1.99557
\(528\) −3.28957 −0.143160
\(529\) 10.5975 0.460761
\(530\) 0 0
\(531\) −0.0517798 −0.00224705
\(532\) 8.82178 0.382473
\(533\) 1.60700 0.0696069
\(534\) −4.29931 −0.186049
\(535\) 0 0
\(536\) −6.61581 −0.285760
\(537\) 3.14427 0.135685
\(538\) 33.9510 1.46373
\(539\) −17.5149 −0.754420
\(540\) 0 0
\(541\) −9.09467 −0.391010 −0.195505 0.980703i \(-0.562635\pi\)
−0.195505 + 0.980703i \(0.562635\pi\)
\(542\) 34.0217 1.46136
\(543\) 39.5853 1.69877
\(544\) 36.2438 1.55394
\(545\) 0 0
\(546\) 22.7297 0.972740
\(547\) 32.8100 1.40286 0.701428 0.712741i \(-0.252546\pi\)
0.701428 + 0.712741i \(0.252546\pi\)
\(548\) 53.6172 2.29042
\(549\) 1.36380 0.0582056
\(550\) 0 0
\(551\) −6.38628 −0.272065
\(552\) −22.6995 −0.966156
\(553\) 30.8824 1.31325
\(554\) 20.0284 0.850924
\(555\) 0 0
\(556\) 58.1223 2.46493
\(557\) 41.0031 1.73736 0.868679 0.495375i \(-0.164969\pi\)
0.868679 + 0.495375i \(0.164969\pi\)
\(558\) 2.36297 0.100032
\(559\) −6.79565 −0.287425
\(560\) 0 0
\(561\) −20.5826 −0.868999
\(562\) 31.1862 1.31551
\(563\) 7.96647 0.335747 0.167873 0.985809i \(-0.446310\pi\)
0.167873 + 0.985809i \(0.446310\pi\)
\(564\) −31.8940 −1.34298
\(565\) 0 0
\(566\) −20.1286 −0.846068
\(567\) −33.2497 −1.39636
\(568\) −34.5583 −1.45003
\(569\) 39.1633 1.64181 0.820905 0.571065i \(-0.193470\pi\)
0.820905 + 0.571065i \(0.193470\pi\)
\(570\) 0 0
\(571\) −17.5561 −0.734700 −0.367350 0.930083i \(-0.619735\pi\)
−0.367350 + 0.930083i \(0.619735\pi\)
\(572\) 10.3522 0.432847
\(573\) 4.80423 0.200700
\(574\) −9.00155 −0.375717
\(575\) 0 0
\(576\) 1.64721 0.0686337
\(577\) −16.3195 −0.679391 −0.339695 0.940536i \(-0.610324\pi\)
−0.339695 + 0.940536i \(0.610324\pi\)
\(578\) 29.6831 1.23465
\(579\) 26.9920 1.12175
\(580\) 0 0
\(581\) 2.83477 0.117606
\(582\) 65.7836 2.72682
\(583\) −11.7623 −0.487143
\(584\) −11.2376 −0.465016
\(585\) 0 0
\(586\) 6.20853 0.256472
\(587\) −8.69995 −0.359085 −0.179543 0.983750i \(-0.557462\pi\)
−0.179543 + 0.983750i \(0.557462\pi\)
\(588\) −40.7410 −1.68013
\(589\) −6.27719 −0.258647
\(590\) 0 0
\(591\) 1.69515 0.0697292
\(592\) 9.52203 0.391353
\(593\) 3.41542 0.140255 0.0701273 0.997538i \(-0.477659\pi\)
0.0701273 + 0.997538i \(0.477659\pi\)
\(594\) −26.2474 −1.07694
\(595\) 0 0
\(596\) −37.6302 −1.54139
\(597\) −22.2129 −0.909112
\(598\) −20.1132 −0.822492
\(599\) 26.6727 1.08982 0.544909 0.838495i \(-0.316564\pi\)
0.544909 + 0.838495i \(0.316564\pi\)
\(600\) 0 0
\(601\) 29.3801 1.19844 0.599220 0.800584i \(-0.295477\pi\)
0.599220 + 0.800584i \(0.295477\pi\)
\(602\) 38.0655 1.55144
\(603\) 0.362144 0.0147477
\(604\) 35.3410 1.43800
\(605\) 0 0
\(606\) −29.9897 −1.21825
\(607\) −23.9432 −0.971823 −0.485912 0.874008i \(-0.661512\pi\)
−0.485912 + 0.874008i \(0.661512\pi\)
\(608\) −4.96623 −0.201407
\(609\) 55.5219 2.24986
\(610\) 0 0
\(611\) −9.60704 −0.388659
\(612\) 2.10698 0.0851697
\(613\) 28.2699 1.14181 0.570906 0.821015i \(-0.306592\pi\)
0.570906 + 0.821015i \(0.306592\pi\)
\(614\) 10.1739 0.410586
\(615\) 0 0
\(616\) −19.7128 −0.794250
\(617\) 9.44553 0.380263 0.190131 0.981759i \(-0.439109\pi\)
0.190131 + 0.981759i \(0.439109\pi\)
\(618\) −45.9521 −1.84846
\(619\) −15.4898 −0.622587 −0.311293 0.950314i \(-0.600762\pi\)
−0.311293 + 0.950314i \(0.600762\pi\)
\(620\) 0 0
\(621\) 30.7196 1.23273
\(622\) −50.8350 −2.03830
\(623\) 4.36977 0.175071
\(624\) −2.30486 −0.0922681
\(625\) 0 0
\(626\) −4.42325 −0.176789
\(627\) 2.82029 0.112632
\(628\) −19.8456 −0.791926
\(629\) 59.5787 2.37556
\(630\) 0 0
\(631\) −21.7509 −0.865888 −0.432944 0.901421i \(-0.642525\pi\)
−0.432944 + 0.901421i \(0.642525\pi\)
\(632\) 18.4633 0.734432
\(633\) −3.70905 −0.147421
\(634\) 67.4714 2.67963
\(635\) 0 0
\(636\) −27.3599 −1.08489
\(637\) −12.2719 −0.486230
\(638\) 41.9783 1.66194
\(639\) 1.89169 0.0748343
\(640\) 0 0
\(641\) 24.1709 0.954691 0.477346 0.878716i \(-0.341599\pi\)
0.477346 + 0.878716i \(0.341599\pi\)
\(642\) −23.6222 −0.932293
\(643\) 32.9439 1.29918 0.649590 0.760285i \(-0.274941\pi\)
0.649590 + 0.760285i \(0.274941\pi\)
\(644\) 67.8675 2.67436
\(645\) 0 0
\(646\) −9.29157 −0.365572
\(647\) 15.2866 0.600978 0.300489 0.953785i \(-0.402850\pi\)
0.300489 + 0.953785i \(0.402850\pi\)
\(648\) −19.8786 −0.780907
\(649\) −0.904158 −0.0354913
\(650\) 0 0
\(651\) 54.5735 2.13890
\(652\) −39.3686 −1.54179
\(653\) 4.44815 0.174069 0.0870347 0.996205i \(-0.472261\pi\)
0.0870347 + 0.996205i \(0.472261\pi\)
\(654\) −4.60567 −0.180096
\(655\) 0 0
\(656\) 0.912784 0.0356382
\(657\) 0.615138 0.0239988
\(658\) 53.8134 2.09787
\(659\) −31.6128 −1.23146 −0.615730 0.787958i \(-0.711139\pi\)
−0.615730 + 0.787958i \(0.711139\pi\)
\(660\) 0 0
\(661\) 17.6169 0.685218 0.342609 0.939478i \(-0.388689\pi\)
0.342609 + 0.939478i \(0.388689\pi\)
\(662\) 52.0998 2.02492
\(663\) −14.4213 −0.560077
\(664\) 1.69479 0.0657708
\(665\) 0 0
\(666\) 3.07310 0.119080
\(667\) −49.1308 −1.90235
\(668\) −22.9404 −0.887591
\(669\) 15.0682 0.582571
\(670\) 0 0
\(671\) 23.8142 0.919335
\(672\) 43.1761 1.66556
\(673\) −16.4231 −0.633064 −0.316532 0.948582i \(-0.602518\pi\)
−0.316532 + 0.948582i \(0.602518\pi\)
\(674\) 55.5771 2.14075
\(675\) 0 0
\(676\) −32.1376 −1.23606
\(677\) 24.4906 0.941250 0.470625 0.882333i \(-0.344028\pi\)
0.470625 + 0.882333i \(0.344028\pi\)
\(678\) −53.3274 −2.04803
\(679\) −66.8617 −2.56592
\(680\) 0 0
\(681\) −24.2320 −0.928574
\(682\) 41.2612 1.57997
\(683\) 21.2479 0.813029 0.406515 0.913644i \(-0.366744\pi\)
0.406515 + 0.913644i \(0.366744\pi\)
\(684\) −0.288705 −0.0110389
\(685\) 0 0
\(686\) 8.07514 0.308310
\(687\) 3.57440 0.136372
\(688\) −3.85996 −0.147160
\(689\) −8.24128 −0.313968
\(690\) 0 0
\(691\) −35.8032 −1.36202 −0.681008 0.732276i \(-0.738458\pi\)
−0.681008 + 0.732276i \(0.738458\pi\)
\(692\) −67.6662 −2.57228
\(693\) 1.07906 0.0409902
\(694\) −72.2232 −2.74156
\(695\) 0 0
\(696\) 33.1943 1.25823
\(697\) 5.71122 0.216328
\(698\) −21.2794 −0.805436
\(699\) 43.5491 1.64718
\(700\) 0 0
\(701\) 10.6147 0.400913 0.200456 0.979703i \(-0.435758\pi\)
0.200456 + 0.979703i \(0.435758\pi\)
\(702\) −18.3904 −0.694099
\(703\) −8.16364 −0.307897
\(704\) 28.7629 1.08404
\(705\) 0 0
\(706\) 75.4994 2.84146
\(707\) 30.4812 1.14636
\(708\) −2.10314 −0.0790409
\(709\) −26.7085 −1.00306 −0.501529 0.865141i \(-0.667229\pi\)
−0.501529 + 0.865141i \(0.667229\pi\)
\(710\) 0 0
\(711\) −1.01067 −0.0379030
\(712\) 2.61251 0.0979078
\(713\) −48.2915 −1.80853
\(714\) 80.7804 3.02313
\(715\) 0 0
\(716\) −5.62036 −0.210043
\(717\) −25.2386 −0.942554
\(718\) 41.4572 1.54717
\(719\) −6.73003 −0.250988 −0.125494 0.992094i \(-0.540052\pi\)
−0.125494 + 0.992094i \(0.540052\pi\)
\(720\) 0 0
\(721\) 46.7052 1.73939
\(722\) −41.3397 −1.53850
\(723\) 28.2055 1.04897
\(724\) −70.7585 −2.62972
\(725\) 0 0
\(726\) 23.2821 0.864079
\(727\) 20.4337 0.757845 0.378923 0.925428i \(-0.376295\pi\)
0.378923 + 0.925428i \(0.376295\pi\)
\(728\) −13.8119 −0.511901
\(729\) 28.0402 1.03852
\(730\) 0 0
\(731\) −24.1515 −0.893275
\(732\) 55.3936 2.04741
\(733\) −13.1771 −0.486709 −0.243354 0.969937i \(-0.578248\pi\)
−0.243354 + 0.969937i \(0.578248\pi\)
\(734\) 53.4428 1.97261
\(735\) 0 0
\(736\) −38.2061 −1.40830
\(737\) 6.32362 0.232934
\(738\) 0.294588 0.0108439
\(739\) −21.4638 −0.789558 −0.394779 0.918776i \(-0.629179\pi\)
−0.394779 + 0.918776i \(0.629179\pi\)
\(740\) 0 0
\(741\) 1.97605 0.0725920
\(742\) 46.1632 1.69470
\(743\) −40.8748 −1.49955 −0.749775 0.661693i \(-0.769838\pi\)
−0.749775 + 0.661693i \(0.769838\pi\)
\(744\) 32.6273 1.19617
\(745\) 0 0
\(746\) −9.83886 −0.360226
\(747\) −0.0927717 −0.00339434
\(748\) 36.7913 1.34522
\(749\) 24.0093 0.877281
\(750\) 0 0
\(751\) 23.3466 0.851929 0.425965 0.904740i \(-0.359935\pi\)
0.425965 + 0.904740i \(0.359935\pi\)
\(752\) −5.45684 −0.198991
\(753\) 26.7026 0.973096
\(754\) 29.4123 1.07113
\(755\) 0 0
\(756\) 62.0540 2.25688
\(757\) 17.9899 0.653854 0.326927 0.945050i \(-0.393987\pi\)
0.326927 + 0.945050i \(0.393987\pi\)
\(758\) −5.59161 −0.203096
\(759\) 21.6970 0.787551
\(760\) 0 0
\(761\) −16.2485 −0.589009 −0.294505 0.955650i \(-0.595155\pi\)
−0.294505 + 0.955650i \(0.595155\pi\)
\(762\) −23.3633 −0.846363
\(763\) 4.68116 0.169469
\(764\) −8.58753 −0.310686
\(765\) 0 0
\(766\) −68.5880 −2.47818
\(767\) −0.633503 −0.0228745
\(768\) 16.7854 0.605691
\(769\) −23.6922 −0.854362 −0.427181 0.904166i \(-0.640493\pi\)
−0.427181 + 0.904166i \(0.640493\pi\)
\(770\) 0 0
\(771\) 18.7225 0.674274
\(772\) −48.2481 −1.73649
\(773\) 50.3310 1.81028 0.905140 0.425114i \(-0.139766\pi\)
0.905140 + 0.425114i \(0.139766\pi\)
\(774\) −1.24575 −0.0447774
\(775\) 0 0
\(776\) −39.9739 −1.43498
\(777\) 70.9742 2.54618
\(778\) −27.5318 −0.987062
\(779\) −0.782568 −0.0280384
\(780\) 0 0
\(781\) 33.0320 1.18198
\(782\) −71.4817 −2.55618
\(783\) −44.9223 −1.60539
\(784\) −6.97049 −0.248946
\(785\) 0 0
\(786\) 65.8882 2.35016
\(787\) −24.2358 −0.863914 −0.431957 0.901894i \(-0.642177\pi\)
−0.431957 + 0.901894i \(0.642177\pi\)
\(788\) −3.03007 −0.107942
\(789\) −15.9526 −0.567927
\(790\) 0 0
\(791\) 54.2014 1.92718
\(792\) 0.645127 0.0229236
\(793\) 16.6855 0.592520
\(794\) −30.1801 −1.07105
\(795\) 0 0
\(796\) 39.7053 1.40732
\(797\) −7.38173 −0.261474 −0.130737 0.991417i \(-0.541734\pi\)
−0.130737 + 0.991417i \(0.541734\pi\)
\(798\) −11.0688 −0.391830
\(799\) −34.1431 −1.20790
\(800\) 0 0
\(801\) −0.143007 −0.00505289
\(802\) 38.1280 1.34635
\(803\) 10.7413 0.379052
\(804\) 14.7092 0.518755
\(805\) 0 0
\(806\) 28.9099 1.01831
\(807\) −25.6610 −0.903311
\(808\) 18.2235 0.641100
\(809\) 24.8099 0.872269 0.436135 0.899881i \(-0.356347\pi\)
0.436135 + 0.899881i \(0.356347\pi\)
\(810\) 0 0
\(811\) −40.8030 −1.43279 −0.716394 0.697696i \(-0.754209\pi\)
−0.716394 + 0.697696i \(0.754209\pi\)
\(812\) −99.2451 −3.48282
\(813\) −25.7145 −0.901846
\(814\) 53.6612 1.88083
\(815\) 0 0
\(816\) −8.19137 −0.286755
\(817\) 3.30930 0.115778
\(818\) −2.67848 −0.0936509
\(819\) 0.756050 0.0264185
\(820\) 0 0
\(821\) −7.12363 −0.248616 −0.124308 0.992244i \(-0.539671\pi\)
−0.124308 + 0.992244i \(0.539671\pi\)
\(822\) −67.2740 −2.34645
\(823\) 30.5815 1.06600 0.533002 0.846114i \(-0.321064\pi\)
0.533002 + 0.846114i \(0.321064\pi\)
\(824\) 27.9231 0.972748
\(825\) 0 0
\(826\) 3.54854 0.123469
\(827\) 20.5024 0.712938 0.356469 0.934307i \(-0.383980\pi\)
0.356469 + 0.934307i \(0.383980\pi\)
\(828\) −2.22106 −0.0771871
\(829\) −3.71448 −0.129009 −0.0645046 0.997917i \(-0.520547\pi\)
−0.0645046 + 0.997917i \(0.520547\pi\)
\(830\) 0 0
\(831\) −15.1380 −0.525130
\(832\) 20.1529 0.698675
\(833\) −43.6139 −1.51113
\(834\) −72.9265 −2.52524
\(835\) 0 0
\(836\) −5.04125 −0.174355
\(837\) −44.1549 −1.52622
\(838\) 72.5594 2.50652
\(839\) −17.7716 −0.613545 −0.306772 0.951783i \(-0.599249\pi\)
−0.306772 + 0.951783i \(0.599249\pi\)
\(840\) 0 0
\(841\) 42.8457 1.47744
\(842\) 52.4204 1.80653
\(843\) −23.5714 −0.811841
\(844\) 6.62990 0.228210
\(845\) 0 0
\(846\) −1.76112 −0.0605485
\(847\) −23.6637 −0.813093
\(848\) −4.68109 −0.160749
\(849\) 15.2137 0.522133
\(850\) 0 0
\(851\) −62.8043 −2.15291
\(852\) 76.8351 2.63233
\(853\) 8.21343 0.281223 0.140611 0.990065i \(-0.455093\pi\)
0.140611 + 0.990065i \(0.455093\pi\)
\(854\) −93.4632 −3.19824
\(855\) 0 0
\(856\) 14.3542 0.490616
\(857\) 47.5813 1.62535 0.812674 0.582719i \(-0.198011\pi\)
0.812674 + 0.582719i \(0.198011\pi\)
\(858\) −12.9890 −0.443436
\(859\) −35.1151 −1.19811 −0.599056 0.800707i \(-0.704457\pi\)
−0.599056 + 0.800707i \(0.704457\pi\)
\(860\) 0 0
\(861\) 6.80360 0.231866
\(862\) 72.2986 2.46250
\(863\) 4.51395 0.153657 0.0768284 0.997044i \(-0.475521\pi\)
0.0768284 + 0.997044i \(0.475521\pi\)
\(864\) −34.9334 −1.18846
\(865\) 0 0
\(866\) 29.3837 0.998499
\(867\) −22.4352 −0.761941
\(868\) −97.5497 −3.31105
\(869\) −17.6479 −0.598663
\(870\) 0 0
\(871\) 4.43068 0.150128
\(872\) 2.79867 0.0947751
\(873\) 2.18814 0.0740573
\(874\) 9.79463 0.331308
\(875\) 0 0
\(876\) 24.9851 0.844168
\(877\) −50.7760 −1.71458 −0.857292 0.514830i \(-0.827855\pi\)
−0.857292 + 0.514830i \(0.827855\pi\)
\(878\) −28.2387 −0.953011
\(879\) −4.69256 −0.158276
\(880\) 0 0
\(881\) 27.2985 0.919711 0.459855 0.887994i \(-0.347901\pi\)
0.459855 + 0.887994i \(0.347901\pi\)
\(882\) −2.24963 −0.0757489
\(883\) 10.0819 0.339283 0.169641 0.985506i \(-0.445739\pi\)
0.169641 + 0.985506i \(0.445739\pi\)
\(884\) 25.7780 0.867008
\(885\) 0 0
\(886\) −18.4240 −0.618967
\(887\) 49.1148 1.64912 0.824558 0.565778i \(-0.191424\pi\)
0.824558 + 0.565778i \(0.191424\pi\)
\(888\) 42.4326 1.42394
\(889\) 23.7462 0.796422
\(890\) 0 0
\(891\) 19.0007 0.636547
\(892\) −26.9344 −0.901829
\(893\) 4.67838 0.156556
\(894\) 47.2149 1.57910
\(895\) 0 0
\(896\) −61.9447 −2.06943
\(897\) 15.2021 0.507584
\(898\) 46.0168 1.53560
\(899\) 70.6184 2.35526
\(900\) 0 0
\(901\) −29.2892 −0.975765
\(902\) 5.14398 0.171276
\(903\) −28.7709 −0.957435
\(904\) 32.4048 1.07777
\(905\) 0 0
\(906\) −44.3426 −1.47319
\(907\) −38.0037 −1.26189 −0.630946 0.775827i \(-0.717333\pi\)
−0.630946 + 0.775827i \(0.717333\pi\)
\(908\) 43.3146 1.43745
\(909\) −0.997540 −0.0330863
\(910\) 0 0
\(911\) 21.0475 0.697334 0.348667 0.937247i \(-0.386634\pi\)
0.348667 + 0.937247i \(0.386634\pi\)
\(912\) 1.12241 0.0371665
\(913\) −1.61994 −0.0536123
\(914\) −62.6131 −2.07106
\(915\) 0 0
\(916\) −6.38921 −0.211105
\(917\) −66.9681 −2.21148
\(918\) −65.3587 −2.15716
\(919\) −22.6286 −0.746448 −0.373224 0.927741i \(-0.621748\pi\)
−0.373224 + 0.927741i \(0.621748\pi\)
\(920\) 0 0
\(921\) −7.68972 −0.253385
\(922\) −36.2556 −1.19401
\(923\) 23.1441 0.761796
\(924\) 43.8283 1.44185
\(925\) 0 0
\(926\) 2.79309 0.0917868
\(927\) −1.52849 −0.0502022
\(928\) 55.8702 1.83403
\(929\) 37.8492 1.24179 0.620896 0.783893i \(-0.286769\pi\)
0.620896 + 0.783893i \(0.286769\pi\)
\(930\) 0 0
\(931\) 5.97610 0.195859
\(932\) −77.8437 −2.54986
\(933\) 38.4224 1.25789
\(934\) 3.10970 0.101753
\(935\) 0 0
\(936\) 0.452012 0.0147745
\(937\) 1.43591 0.0469093 0.0234546 0.999725i \(-0.492533\pi\)
0.0234546 + 0.999725i \(0.492533\pi\)
\(938\) −24.8182 −0.810345
\(939\) 3.34321 0.109101
\(940\) 0 0
\(941\) 11.6012 0.378187 0.189094 0.981959i \(-0.439445\pi\)
0.189094 + 0.981959i \(0.439445\pi\)
\(942\) 24.9004 0.811300
\(943\) −6.02044 −0.196052
\(944\) −0.359832 −0.0117115
\(945\) 0 0
\(946\) −21.7527 −0.707242
\(947\) −15.1666 −0.492848 −0.246424 0.969162i \(-0.579256\pi\)
−0.246424 + 0.969162i \(0.579256\pi\)
\(948\) −41.0503 −1.33325
\(949\) 7.52595 0.244303
\(950\) 0 0
\(951\) −50.9966 −1.65368
\(952\) −49.0868 −1.59091
\(953\) −37.6905 −1.22092 −0.610458 0.792049i \(-0.709015\pi\)
−0.610458 + 0.792049i \(0.709015\pi\)
\(954\) −1.51075 −0.0489125
\(955\) 0 0
\(956\) 45.1139 1.45909
\(957\) −31.7283 −1.02563
\(958\) 56.2150 1.81622
\(959\) 68.3765 2.20799
\(960\) 0 0
\(961\) 38.4120 1.23910
\(962\) 37.5980 1.21221
\(963\) −0.785737 −0.0253200
\(964\) −50.4171 −1.62383
\(965\) 0 0
\(966\) −85.1539 −2.73978
\(967\) 28.4723 0.915608 0.457804 0.889053i \(-0.348636\pi\)
0.457804 + 0.889053i \(0.348636\pi\)
\(968\) −14.1475 −0.454719
\(969\) 7.02281 0.225605
\(970\) 0 0
\(971\) −50.5220 −1.62133 −0.810664 0.585512i \(-0.800893\pi\)
−0.810664 + 0.585512i \(0.800893\pi\)
\(972\) −3.97946 −0.127641
\(973\) 74.1217 2.37623
\(974\) −66.4710 −2.12987
\(975\) 0 0
\(976\) 9.47744 0.303366
\(977\) −61.4170 −1.96490 −0.982452 0.186516i \(-0.940281\pi\)
−0.982452 + 0.186516i \(0.940281\pi\)
\(978\) 49.3961 1.57951
\(979\) −2.49712 −0.0798084
\(980\) 0 0
\(981\) −0.153197 −0.00489121
\(982\) −23.0486 −0.735511
\(983\) 13.1906 0.420713 0.210357 0.977625i \(-0.432537\pi\)
0.210357 + 0.977625i \(0.432537\pi\)
\(984\) 4.06760 0.129670
\(985\) 0 0
\(986\) 104.530 3.32892
\(987\) −40.6736 −1.29465
\(988\) −3.53218 −0.112373
\(989\) 25.4591 0.809552
\(990\) 0 0
\(991\) −5.65610 −0.179672 −0.0898359 0.995957i \(-0.528634\pi\)
−0.0898359 + 0.995957i \(0.528634\pi\)
\(992\) 54.9157 1.74358
\(993\) −39.3783 −1.24963
\(994\) −129.640 −4.11194
\(995\) 0 0
\(996\) −3.76811 −0.119397
\(997\) −36.3926 −1.15257 −0.576283 0.817250i \(-0.695497\pi\)
−0.576283 + 0.817250i \(0.695497\pi\)
\(998\) 94.2860 2.98457
\(999\) −57.4246 −1.81683
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4925.2.a.j.1.9 10
5.4 even 2 985.2.a.e.1.2 10
15.14 odd 2 8865.2.a.t.1.9 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
985.2.a.e.1.2 10 5.4 even 2
4925.2.a.j.1.9 10 1.1 even 1 trivial
8865.2.a.t.1.9 10 15.14 odd 2