Properties

Label 4925.2.a.j.1.4
Level $4925$
Weight $2$
Character 4925.1
Self dual yes
Analytic conductor $39.326$
Analytic rank $1$
Dimension $10$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4925,2,Mod(1,4925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4925.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4925, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4925 = 5^{2} \cdot 197 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4925.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,2,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(39.3263229955\)
Analytic rank: \(1\)
Dimension: \(10\)
Coefficient field: 10.10.21886214112361.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2x^{9} - 9x^{8} + 16x^{7} + 26x^{6} - 38x^{5} - 27x^{4} + 32x^{3} + 6x^{2} - 7x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 985)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-0.638386\) of defining polynomial
Character \(\chi\) \(=\) 4925.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.638386 q^{2} -1.45932 q^{3} -1.59246 q^{4} +0.931607 q^{6} +2.37873 q^{7} +2.29338 q^{8} -0.870397 q^{9} -1.81176 q^{11} +2.32391 q^{12} +4.54899 q^{13} -1.51855 q^{14} +1.72086 q^{16} -0.836504 q^{17} +0.555649 q^{18} -1.45674 q^{19} -3.47133 q^{21} +1.15660 q^{22} -1.66081 q^{23} -3.34676 q^{24} -2.90401 q^{26} +5.64813 q^{27} -3.78805 q^{28} -6.58183 q^{29} -7.71065 q^{31} -5.68533 q^{32} +2.64393 q^{33} +0.534013 q^{34} +1.38607 q^{36} +5.65226 q^{37} +0.929961 q^{38} -6.63841 q^{39} +10.8079 q^{41} +2.21605 q^{42} -7.93991 q^{43} +2.88516 q^{44} +1.06024 q^{46} -1.60862 q^{47} -2.51128 q^{48} -1.34162 q^{49} +1.22072 q^{51} -7.24409 q^{52} +3.16405 q^{53} -3.60569 q^{54} +5.45534 q^{56} +2.12584 q^{57} +4.20175 q^{58} +0.808859 q^{59} +6.67393 q^{61} +4.92237 q^{62} -2.07044 q^{63} +0.187711 q^{64} -1.68785 q^{66} -0.0994966 q^{67} +1.33210 q^{68} +2.42364 q^{69} +3.36616 q^{71} -1.99615 q^{72} +0.0821733 q^{73} -3.60833 q^{74} +2.31980 q^{76} -4.30969 q^{77} +4.23787 q^{78} -10.7394 q^{79} -5.63122 q^{81} -6.89963 q^{82} +3.37126 q^{83} +5.52796 q^{84} +5.06873 q^{86} +9.60497 q^{87} -4.15505 q^{88} +2.82869 q^{89} +10.8208 q^{91} +2.64477 q^{92} +11.2523 q^{93} +1.02692 q^{94} +8.29670 q^{96} +7.99399 q^{97} +0.856473 q^{98} +1.57695 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 2 q^{2} + 3 q^{3} + 2 q^{4} - 9 q^{6} + 6 q^{7} + 6 q^{8} - 5 q^{9} - 11 q^{11} + 5 q^{13} - 9 q^{14} - 2 q^{16} + 4 q^{17} - 15 q^{18} - 28 q^{19} - 7 q^{21} + 12 q^{22} + 24 q^{23} - 3 q^{24} + 7 q^{26}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.638386 −0.451407 −0.225704 0.974196i \(-0.572468\pi\)
−0.225704 + 0.974196i \(0.572468\pi\)
\(3\) −1.45932 −0.842536 −0.421268 0.906936i \(-0.638415\pi\)
−0.421268 + 0.906936i \(0.638415\pi\)
\(4\) −1.59246 −0.796231
\(5\) 0 0
\(6\) 0.931607 0.380327
\(7\) 2.37873 0.899077 0.449539 0.893261i \(-0.351588\pi\)
0.449539 + 0.893261i \(0.351588\pi\)
\(8\) 2.29338 0.810832
\(9\) −0.870397 −0.290132
\(10\) 0 0
\(11\) −1.81176 −0.546265 −0.273133 0.961976i \(-0.588060\pi\)
−0.273133 + 0.961976i \(0.588060\pi\)
\(12\) 2.32391 0.670854
\(13\) 4.54899 1.26166 0.630831 0.775920i \(-0.282714\pi\)
0.630831 + 0.775920i \(0.282714\pi\)
\(14\) −1.51855 −0.405850
\(15\) 0 0
\(16\) 1.72086 0.430216
\(17\) −0.836504 −0.202882 −0.101441 0.994842i \(-0.532345\pi\)
−0.101441 + 0.994842i \(0.532345\pi\)
\(18\) 0.555649 0.130968
\(19\) −1.45674 −0.334199 −0.167099 0.985940i \(-0.553440\pi\)
−0.167099 + 0.985940i \(0.553440\pi\)
\(20\) 0 0
\(21\) −3.47133 −0.757505
\(22\) 1.15660 0.246588
\(23\) −1.66081 −0.346302 −0.173151 0.984895i \(-0.555395\pi\)
−0.173151 + 0.984895i \(0.555395\pi\)
\(24\) −3.34676 −0.683155
\(25\) 0 0
\(26\) −2.90401 −0.569523
\(27\) 5.64813 1.08698
\(28\) −3.78805 −0.715874
\(29\) −6.58183 −1.22222 −0.611108 0.791547i \(-0.709276\pi\)
−0.611108 + 0.791547i \(0.709276\pi\)
\(30\) 0 0
\(31\) −7.71065 −1.38487 −0.692437 0.721479i \(-0.743463\pi\)
−0.692437 + 0.721479i \(0.743463\pi\)
\(32\) −5.68533 −1.00503
\(33\) 2.64393 0.460248
\(34\) 0.534013 0.0915825
\(35\) 0 0
\(36\) 1.38607 0.231012
\(37\) 5.65226 0.929226 0.464613 0.885514i \(-0.346193\pi\)
0.464613 + 0.885514i \(0.346193\pi\)
\(38\) 0.929961 0.150860
\(39\) −6.63841 −1.06300
\(40\) 0 0
\(41\) 10.8079 1.68791 0.843957 0.536411i \(-0.180220\pi\)
0.843957 + 0.536411i \(0.180220\pi\)
\(42\) 2.21605 0.341943
\(43\) −7.93991 −1.21082 −0.605412 0.795912i \(-0.706992\pi\)
−0.605412 + 0.795912i \(0.706992\pi\)
\(44\) 2.88516 0.434954
\(45\) 0 0
\(46\) 1.06024 0.156323
\(47\) −1.60862 −0.234641 −0.117320 0.993094i \(-0.537430\pi\)
−0.117320 + 0.993094i \(0.537430\pi\)
\(48\) −2.51128 −0.362473
\(49\) −1.34162 −0.191660
\(50\) 0 0
\(51\) 1.22072 0.170936
\(52\) −7.24409 −1.00458
\(53\) 3.16405 0.434616 0.217308 0.976103i \(-0.430272\pi\)
0.217308 + 0.976103i \(0.430272\pi\)
\(54\) −3.60569 −0.490672
\(55\) 0 0
\(56\) 5.45534 0.729001
\(57\) 2.12584 0.281574
\(58\) 4.20175 0.551717
\(59\) 0.808859 0.105304 0.0526522 0.998613i \(-0.483233\pi\)
0.0526522 + 0.998613i \(0.483233\pi\)
\(60\) 0 0
\(61\) 6.67393 0.854509 0.427255 0.904131i \(-0.359481\pi\)
0.427255 + 0.904131i \(0.359481\pi\)
\(62\) 4.92237 0.625142
\(63\) −2.07044 −0.260851
\(64\) 0.187711 0.0234638
\(65\) 0 0
\(66\) −1.68785 −0.207759
\(67\) −0.0994966 −0.0121554 −0.00607772 0.999982i \(-0.501935\pi\)
−0.00607772 + 0.999982i \(0.501935\pi\)
\(68\) 1.33210 0.161541
\(69\) 2.42364 0.291772
\(70\) 0 0
\(71\) 3.36616 0.399490 0.199745 0.979848i \(-0.435989\pi\)
0.199745 + 0.979848i \(0.435989\pi\)
\(72\) −1.99615 −0.235249
\(73\) 0.0821733 0.00961766 0.00480883 0.999988i \(-0.498469\pi\)
0.00480883 + 0.999988i \(0.498469\pi\)
\(74\) −3.60833 −0.419460
\(75\) 0 0
\(76\) 2.31980 0.266099
\(77\) −4.30969 −0.491135
\(78\) 4.23787 0.479844
\(79\) −10.7394 −1.20828 −0.604141 0.796878i \(-0.706483\pi\)
−0.604141 + 0.796878i \(0.706483\pi\)
\(80\) 0 0
\(81\) −5.63122 −0.625691
\(82\) −6.89963 −0.761936
\(83\) 3.37126 0.370044 0.185022 0.982734i \(-0.440764\pi\)
0.185022 + 0.982734i \(0.440764\pi\)
\(84\) 5.52796 0.603150
\(85\) 0 0
\(86\) 5.06873 0.546575
\(87\) 9.60497 1.02976
\(88\) −4.15505 −0.442929
\(89\) 2.82869 0.299840 0.149920 0.988698i \(-0.452098\pi\)
0.149920 + 0.988698i \(0.452098\pi\)
\(90\) 0 0
\(91\) 10.8208 1.13433
\(92\) 2.64477 0.275736
\(93\) 11.2523 1.16681
\(94\) 1.02692 0.105919
\(95\) 0 0
\(96\) 8.29670 0.846778
\(97\) 7.99399 0.811667 0.405834 0.913947i \(-0.366981\pi\)
0.405834 + 0.913947i \(0.366981\pi\)
\(98\) 0.856473 0.0865168
\(99\) 1.57695 0.158489
\(100\) 0 0
\(101\) 8.01271 0.797295 0.398647 0.917104i \(-0.369480\pi\)
0.398647 + 0.917104i \(0.369480\pi\)
\(102\) −0.779294 −0.0771616
\(103\) 8.84323 0.871350 0.435675 0.900104i \(-0.356510\pi\)
0.435675 + 0.900104i \(0.356510\pi\)
\(104\) 10.4326 1.02300
\(105\) 0 0
\(106\) −2.01989 −0.196189
\(107\) 5.17969 0.500739 0.250370 0.968150i \(-0.419448\pi\)
0.250370 + 0.968150i \(0.419448\pi\)
\(108\) −8.99444 −0.865490
\(109\) −3.07605 −0.294633 −0.147316 0.989089i \(-0.547064\pi\)
−0.147316 + 0.989089i \(0.547064\pi\)
\(110\) 0 0
\(111\) −8.24844 −0.782907
\(112\) 4.09348 0.386797
\(113\) −1.80734 −0.170020 −0.0850100 0.996380i \(-0.527092\pi\)
−0.0850100 + 0.996380i \(0.527092\pi\)
\(114\) −1.35711 −0.127105
\(115\) 0 0
\(116\) 10.4813 0.973167
\(117\) −3.95942 −0.366049
\(118\) −0.516364 −0.0475352
\(119\) −1.98982 −0.182407
\(120\) 0 0
\(121\) −7.71754 −0.701594
\(122\) −4.26054 −0.385732
\(123\) −15.7722 −1.42213
\(124\) 12.2789 1.10268
\(125\) 0 0
\(126\) 1.32174 0.117750
\(127\) −1.26176 −0.111963 −0.0559816 0.998432i \(-0.517829\pi\)
−0.0559816 + 0.998432i \(0.517829\pi\)
\(128\) 11.2508 0.994443
\(129\) 11.5868 1.02016
\(130\) 0 0
\(131\) 15.4514 1.34999 0.674996 0.737821i \(-0.264145\pi\)
0.674996 + 0.737821i \(0.264145\pi\)
\(132\) −4.21035 −0.366464
\(133\) −3.46519 −0.300470
\(134\) 0.0635173 0.00548706
\(135\) 0 0
\(136\) −1.91842 −0.164503
\(137\) −4.97641 −0.425163 −0.212582 0.977143i \(-0.568187\pi\)
−0.212582 + 0.977143i \(0.568187\pi\)
\(138\) −1.54722 −0.131708
\(139\) −18.4942 −1.56866 −0.784331 0.620343i \(-0.786993\pi\)
−0.784331 + 0.620343i \(0.786993\pi\)
\(140\) 0 0
\(141\) 2.34748 0.197693
\(142\) −2.14891 −0.180333
\(143\) −8.24166 −0.689202
\(144\) −1.49783 −0.124820
\(145\) 0 0
\(146\) −0.0524583 −0.00434148
\(147\) 1.95785 0.161481
\(148\) −9.00102 −0.739879
\(149\) −4.81035 −0.394079 −0.197039 0.980396i \(-0.563133\pi\)
−0.197039 + 0.980396i \(0.563133\pi\)
\(150\) 0 0
\(151\) −6.81634 −0.554706 −0.277353 0.960768i \(-0.589457\pi\)
−0.277353 + 0.960768i \(0.589457\pi\)
\(152\) −3.34085 −0.270979
\(153\) 0.728091 0.0588627
\(154\) 2.75125 0.221702
\(155\) 0 0
\(156\) 10.5714 0.846391
\(157\) −11.1719 −0.891615 −0.445808 0.895129i \(-0.647083\pi\)
−0.445808 + 0.895129i \(0.647083\pi\)
\(158\) 6.85591 0.545427
\(159\) −4.61735 −0.366180
\(160\) 0 0
\(161\) −3.95061 −0.311352
\(162\) 3.59489 0.282441
\(163\) −24.0764 −1.88581 −0.942906 0.333060i \(-0.891919\pi\)
−0.942906 + 0.333060i \(0.891919\pi\)
\(164\) −17.2112 −1.34397
\(165\) 0 0
\(166\) −2.15217 −0.167040
\(167\) 17.6344 1.36459 0.682295 0.731077i \(-0.260982\pi\)
0.682295 + 0.731077i \(0.260982\pi\)
\(168\) −7.96107 −0.614210
\(169\) 7.69329 0.591791
\(170\) 0 0
\(171\) 1.26794 0.0969618
\(172\) 12.6440 0.964096
\(173\) −0.983232 −0.0747537 −0.0373769 0.999301i \(-0.511900\pi\)
−0.0373769 + 0.999301i \(0.511900\pi\)
\(174\) −6.13168 −0.464842
\(175\) 0 0
\(176\) −3.11779 −0.235012
\(177\) −1.18038 −0.0887228
\(178\) −1.80580 −0.135350
\(179\) 9.23360 0.690152 0.345076 0.938575i \(-0.387853\pi\)
0.345076 + 0.938575i \(0.387853\pi\)
\(180\) 0 0
\(181\) 2.78542 0.207039 0.103519 0.994627i \(-0.466990\pi\)
0.103519 + 0.994627i \(0.466990\pi\)
\(182\) −6.90787 −0.512046
\(183\) −9.73937 −0.719955
\(184\) −3.80886 −0.280793
\(185\) 0 0
\(186\) −7.18329 −0.526705
\(187\) 1.51554 0.110827
\(188\) 2.56166 0.186828
\(189\) 13.4354 0.977282
\(190\) 0 0
\(191\) 9.24802 0.669163 0.334582 0.942367i \(-0.391405\pi\)
0.334582 + 0.942367i \(0.391405\pi\)
\(192\) −0.273929 −0.0197691
\(193\) −5.72091 −0.411800 −0.205900 0.978573i \(-0.566012\pi\)
−0.205900 + 0.978573i \(0.566012\pi\)
\(194\) −5.10326 −0.366392
\(195\) 0 0
\(196\) 2.13648 0.152606
\(197\) −1.00000 −0.0712470
\(198\) −1.00670 −0.0715432
\(199\) 2.30305 0.163259 0.0816294 0.996663i \(-0.473988\pi\)
0.0816294 + 0.996663i \(0.473988\pi\)
\(200\) 0 0
\(201\) 0.145197 0.0102414
\(202\) −5.11521 −0.359905
\(203\) −15.6564 −1.09887
\(204\) −1.94396 −0.136104
\(205\) 0 0
\(206\) −5.64540 −0.393333
\(207\) 1.44556 0.100473
\(208\) 7.82819 0.542787
\(209\) 2.63926 0.182561
\(210\) 0 0
\(211\) −26.3990 −1.81738 −0.908691 0.417470i \(-0.862917\pi\)
−0.908691 + 0.417470i \(0.862917\pi\)
\(212\) −5.03864 −0.346055
\(213\) −4.91229 −0.336585
\(214\) −3.30664 −0.226037
\(215\) 0 0
\(216\) 12.9533 0.881361
\(217\) −18.3416 −1.24511
\(218\) 1.96371 0.132999
\(219\) −0.119917 −0.00810323
\(220\) 0 0
\(221\) −3.80525 −0.255969
\(222\) 5.26569 0.353410
\(223\) 3.53923 0.237004 0.118502 0.992954i \(-0.462191\pi\)
0.118502 + 0.992954i \(0.462191\pi\)
\(224\) −13.5239 −0.903604
\(225\) 0 0
\(226\) 1.15378 0.0767483
\(227\) 3.25072 0.215758 0.107879 0.994164i \(-0.465594\pi\)
0.107879 + 0.994164i \(0.465594\pi\)
\(228\) −3.38532 −0.224198
\(229\) 15.6015 1.03098 0.515489 0.856896i \(-0.327610\pi\)
0.515489 + 0.856896i \(0.327610\pi\)
\(230\) 0 0
\(231\) 6.28920 0.413799
\(232\) −15.0946 −0.991012
\(233\) −7.40925 −0.485396 −0.242698 0.970102i \(-0.578032\pi\)
−0.242698 + 0.970102i \(0.578032\pi\)
\(234\) 2.52764 0.165237
\(235\) 0 0
\(236\) −1.28808 −0.0838467
\(237\) 15.6722 1.01802
\(238\) 1.27028 0.0823397
\(239\) −6.62976 −0.428843 −0.214422 0.976741i \(-0.568787\pi\)
−0.214422 + 0.976741i \(0.568787\pi\)
\(240\) 0 0
\(241\) −4.19234 −0.270052 −0.135026 0.990842i \(-0.543112\pi\)
−0.135026 + 0.990842i \(0.543112\pi\)
\(242\) 4.92677 0.316705
\(243\) −8.72667 −0.559816
\(244\) −10.6280 −0.680387
\(245\) 0 0
\(246\) 10.0687 0.641959
\(247\) −6.62668 −0.421646
\(248\) −17.6834 −1.12290
\(249\) −4.91973 −0.311775
\(250\) 0 0
\(251\) −24.7951 −1.56505 −0.782527 0.622617i \(-0.786070\pi\)
−0.782527 + 0.622617i \(0.786070\pi\)
\(252\) 3.29710 0.207698
\(253\) 3.00898 0.189173
\(254\) 0.805490 0.0505410
\(255\) 0 0
\(256\) −7.55780 −0.472363
\(257\) 4.95035 0.308794 0.154397 0.988009i \(-0.450656\pi\)
0.154397 + 0.988009i \(0.450656\pi\)
\(258\) −7.39687 −0.460509
\(259\) 13.4452 0.835446
\(260\) 0 0
\(261\) 5.72881 0.354604
\(262\) −9.86394 −0.609396
\(263\) 7.46313 0.460196 0.230098 0.973167i \(-0.426095\pi\)
0.230098 + 0.973167i \(0.426095\pi\)
\(264\) 6.06352 0.373184
\(265\) 0 0
\(266\) 2.21213 0.135634
\(267\) −4.12795 −0.252627
\(268\) 0.158445 0.00967855
\(269\) −18.1427 −1.10618 −0.553091 0.833121i \(-0.686552\pi\)
−0.553091 + 0.833121i \(0.686552\pi\)
\(270\) 0 0
\(271\) −25.3166 −1.53787 −0.768935 0.639326i \(-0.779213\pi\)
−0.768935 + 0.639326i \(0.779213\pi\)
\(272\) −1.43951 −0.0872832
\(273\) −15.7910 −0.955716
\(274\) 3.17687 0.191922
\(275\) 0 0
\(276\) −3.85956 −0.232318
\(277\) −19.1476 −1.15047 −0.575233 0.817990i \(-0.695089\pi\)
−0.575233 + 0.817990i \(0.695089\pi\)
\(278\) 11.8065 0.708105
\(279\) 6.71132 0.401796
\(280\) 0 0
\(281\) 16.8848 1.00726 0.503630 0.863919i \(-0.331997\pi\)
0.503630 + 0.863919i \(0.331997\pi\)
\(282\) −1.49860 −0.0892403
\(283\) −5.06079 −0.300833 −0.150416 0.988623i \(-0.548061\pi\)
−0.150416 + 0.988623i \(0.548061\pi\)
\(284\) −5.36048 −0.318086
\(285\) 0 0
\(286\) 5.26136 0.311111
\(287\) 25.7092 1.51756
\(288\) 4.94850 0.291593
\(289\) −16.3003 −0.958839
\(290\) 0 0
\(291\) −11.6658 −0.683859
\(292\) −0.130858 −0.00765788
\(293\) 9.42268 0.550479 0.275240 0.961376i \(-0.411243\pi\)
0.275240 + 0.961376i \(0.411243\pi\)
\(294\) −1.24986 −0.0728936
\(295\) 0 0
\(296\) 12.9628 0.753446
\(297\) −10.2330 −0.593781
\(298\) 3.07086 0.177890
\(299\) −7.55498 −0.436916
\(300\) 0 0
\(301\) −18.8869 −1.08862
\(302\) 4.35146 0.250398
\(303\) −11.6931 −0.671750
\(304\) −2.50685 −0.143778
\(305\) 0 0
\(306\) −0.464803 −0.0265710
\(307\) 19.7363 1.12641 0.563206 0.826316i \(-0.309568\pi\)
0.563206 + 0.826316i \(0.309568\pi\)
\(308\) 6.86302 0.391057
\(309\) −12.9051 −0.734144
\(310\) 0 0
\(311\) −18.2517 −1.03496 −0.517479 0.855696i \(-0.673130\pi\)
−0.517479 + 0.855696i \(0.673130\pi\)
\(312\) −15.2244 −0.861911
\(313\) 16.3934 0.926611 0.463306 0.886199i \(-0.346663\pi\)
0.463306 + 0.886199i \(0.346663\pi\)
\(314\) 7.13199 0.402482
\(315\) 0 0
\(316\) 17.1022 0.962071
\(317\) 8.73465 0.490587 0.245294 0.969449i \(-0.421116\pi\)
0.245294 + 0.969449i \(0.421116\pi\)
\(318\) 2.94765 0.165296
\(319\) 11.9247 0.667654
\(320\) 0 0
\(321\) −7.55880 −0.421891
\(322\) 2.52202 0.140547
\(323\) 1.21857 0.0678029
\(324\) 8.96751 0.498195
\(325\) 0 0
\(326\) 15.3701 0.851269
\(327\) 4.48894 0.248239
\(328\) 24.7867 1.36861
\(329\) −3.82647 −0.210960
\(330\) 0 0
\(331\) 3.43899 0.189024 0.0945119 0.995524i \(-0.469871\pi\)
0.0945119 + 0.995524i \(0.469871\pi\)
\(332\) −5.36861 −0.294641
\(333\) −4.91971 −0.269599
\(334\) −11.2576 −0.615986
\(335\) 0 0
\(336\) −5.97368 −0.325891
\(337\) −33.4243 −1.82074 −0.910368 0.413800i \(-0.864201\pi\)
−0.910368 + 0.413800i \(0.864201\pi\)
\(338\) −4.91129 −0.267139
\(339\) 2.63748 0.143248
\(340\) 0 0
\(341\) 13.9698 0.756508
\(342\) −0.809436 −0.0437693
\(343\) −19.8425 −1.07139
\(344\) −18.2092 −0.981775
\(345\) 0 0
\(346\) 0.627682 0.0337444
\(347\) −14.0163 −0.752434 −0.376217 0.926532i \(-0.622775\pi\)
−0.376217 + 0.926532i \(0.622775\pi\)
\(348\) −15.2956 −0.819928
\(349\) 22.8844 1.22498 0.612488 0.790480i \(-0.290169\pi\)
0.612488 + 0.790480i \(0.290169\pi\)
\(350\) 0 0
\(351\) 25.6933 1.37141
\(352\) 10.3004 0.549016
\(353\) −33.2310 −1.76871 −0.884354 0.466816i \(-0.845401\pi\)
−0.884354 + 0.466816i \(0.845401\pi\)
\(354\) 0.753539 0.0400501
\(355\) 0 0
\(356\) −4.50458 −0.238742
\(357\) 2.90378 0.153684
\(358\) −5.89460 −0.311540
\(359\) −8.96867 −0.473348 −0.236674 0.971589i \(-0.576057\pi\)
−0.236674 + 0.971589i \(0.576057\pi\)
\(360\) 0 0
\(361\) −16.8779 −0.888311
\(362\) −1.77817 −0.0934587
\(363\) 11.2623 0.591119
\(364\) −17.2318 −0.903191
\(365\) 0 0
\(366\) 6.21748 0.324993
\(367\) −29.2005 −1.52425 −0.762127 0.647428i \(-0.775845\pi\)
−0.762127 + 0.647428i \(0.775845\pi\)
\(368\) −2.85802 −0.148985
\(369\) −9.40718 −0.489718
\(370\) 0 0
\(371\) 7.52644 0.390753
\(372\) −17.9188 −0.929048
\(373\) −19.8718 −1.02892 −0.514462 0.857513i \(-0.672008\pi\)
−0.514462 + 0.857513i \(0.672008\pi\)
\(374\) −0.967502 −0.0500283
\(375\) 0 0
\(376\) −3.68917 −0.190254
\(377\) −29.9407 −1.54202
\(378\) −8.57698 −0.441152
\(379\) 13.8875 0.713355 0.356677 0.934228i \(-0.383910\pi\)
0.356677 + 0.934228i \(0.383910\pi\)
\(380\) 0 0
\(381\) 1.84131 0.0943330
\(382\) −5.90381 −0.302065
\(383\) 6.02255 0.307738 0.153869 0.988091i \(-0.450827\pi\)
0.153869 + 0.988091i \(0.450827\pi\)
\(384\) −16.4185 −0.837854
\(385\) 0 0
\(386\) 3.65215 0.185890
\(387\) 6.91087 0.351299
\(388\) −12.7301 −0.646275
\(389\) −27.4553 −1.39204 −0.696020 0.718022i \(-0.745048\pi\)
−0.696020 + 0.718022i \(0.745048\pi\)
\(390\) 0 0
\(391\) 1.38927 0.0702584
\(392\) −3.07685 −0.155404
\(393\) −22.5484 −1.13742
\(394\) 0.638386 0.0321614
\(395\) 0 0
\(396\) −2.51123 −0.126194
\(397\) −1.34398 −0.0674523 −0.0337262 0.999431i \(-0.510737\pi\)
−0.0337262 + 0.999431i \(0.510737\pi\)
\(398\) −1.47023 −0.0736962
\(399\) 5.05681 0.253157
\(400\) 0 0
\(401\) −16.7130 −0.834605 −0.417303 0.908768i \(-0.637024\pi\)
−0.417303 + 0.908768i \(0.637024\pi\)
\(402\) −0.0926918 −0.00462305
\(403\) −35.0756 −1.74724
\(404\) −12.7599 −0.634831
\(405\) 0 0
\(406\) 9.99485 0.496036
\(407\) −10.2405 −0.507604
\(408\) 2.79958 0.138600
\(409\) −1.84105 −0.0910340 −0.0455170 0.998964i \(-0.514494\pi\)
−0.0455170 + 0.998964i \(0.514494\pi\)
\(410\) 0 0
\(411\) 7.26215 0.358216
\(412\) −14.0825 −0.693796
\(413\) 1.92406 0.0946768
\(414\) −0.922825 −0.0453544
\(415\) 0 0
\(416\) −25.8625 −1.26801
\(417\) 26.9889 1.32165
\(418\) −1.68486 −0.0824094
\(419\) −21.5920 −1.05484 −0.527419 0.849605i \(-0.676840\pi\)
−0.527419 + 0.849605i \(0.676840\pi\)
\(420\) 0 0
\(421\) −12.5755 −0.612894 −0.306447 0.951888i \(-0.599140\pi\)
−0.306447 + 0.951888i \(0.599140\pi\)
\(422\) 16.8527 0.820379
\(423\) 1.40013 0.0680769
\(424\) 7.25637 0.352401
\(425\) 0 0
\(426\) 3.13594 0.151937
\(427\) 15.8755 0.768270
\(428\) −8.24846 −0.398704
\(429\) 12.0272 0.580678
\(430\) 0 0
\(431\) −10.5575 −0.508538 −0.254269 0.967133i \(-0.581835\pi\)
−0.254269 + 0.967133i \(0.581835\pi\)
\(432\) 9.71967 0.467638
\(433\) 33.5743 1.61348 0.806738 0.590910i \(-0.201231\pi\)
0.806738 + 0.590910i \(0.201231\pi\)
\(434\) 11.7090 0.562051
\(435\) 0 0
\(436\) 4.89850 0.234596
\(437\) 2.41936 0.115734
\(438\) 0.0765533 0.00365786
\(439\) 3.35831 0.160283 0.0801416 0.996783i \(-0.474463\pi\)
0.0801416 + 0.996783i \(0.474463\pi\)
\(440\) 0 0
\(441\) 1.16774 0.0556068
\(442\) 2.42922 0.115546
\(443\) 22.8414 1.08523 0.542614 0.839982i \(-0.317435\pi\)
0.542614 + 0.839982i \(0.317435\pi\)
\(444\) 13.1353 0.623375
\(445\) 0 0
\(446\) −2.25940 −0.106985
\(447\) 7.01982 0.332026
\(448\) 0.446514 0.0210958
\(449\) −21.9195 −1.03445 −0.517223 0.855850i \(-0.673034\pi\)
−0.517223 + 0.855850i \(0.673034\pi\)
\(450\) 0 0
\(451\) −19.5813 −0.922049
\(452\) 2.87812 0.135375
\(453\) 9.94720 0.467360
\(454\) −2.07522 −0.0973947
\(455\) 0 0
\(456\) 4.87536 0.228310
\(457\) 28.2733 1.32257 0.661285 0.750135i \(-0.270011\pi\)
0.661285 + 0.750135i \(0.270011\pi\)
\(458\) −9.95980 −0.465391
\(459\) −4.72469 −0.220530
\(460\) 0 0
\(461\) −10.9765 −0.511225 −0.255612 0.966779i \(-0.582277\pi\)
−0.255612 + 0.966779i \(0.582277\pi\)
\(462\) −4.01494 −0.186792
\(463\) −36.7887 −1.70972 −0.854858 0.518862i \(-0.826356\pi\)
−0.854858 + 0.518862i \(0.826356\pi\)
\(464\) −11.3264 −0.525817
\(465\) 0 0
\(466\) 4.72997 0.219111
\(467\) 15.9738 0.739178 0.369589 0.929195i \(-0.379499\pi\)
0.369589 + 0.929195i \(0.379499\pi\)
\(468\) 6.30524 0.291460
\(469\) −0.236676 −0.0109287
\(470\) 0 0
\(471\) 16.3033 0.751218
\(472\) 1.85502 0.0853842
\(473\) 14.3852 0.661431
\(474\) −10.0049 −0.459542
\(475\) 0 0
\(476\) 3.16872 0.145238
\(477\) −2.75398 −0.126096
\(478\) 4.23235 0.193583
\(479\) −13.5586 −0.619509 −0.309755 0.950817i \(-0.600247\pi\)
−0.309755 + 0.950817i \(0.600247\pi\)
\(480\) 0 0
\(481\) 25.7121 1.17237
\(482\) 2.67633 0.121903
\(483\) 5.76520 0.262325
\(484\) 12.2899 0.558631
\(485\) 0 0
\(486\) 5.57099 0.252705
\(487\) 30.8938 1.39993 0.699965 0.714177i \(-0.253199\pi\)
0.699965 + 0.714177i \(0.253199\pi\)
\(488\) 15.3058 0.692863
\(489\) 35.1351 1.58886
\(490\) 0 0
\(491\) −21.9059 −0.988598 −0.494299 0.869292i \(-0.664575\pi\)
−0.494299 + 0.869292i \(0.664575\pi\)
\(492\) 25.1166 1.13234
\(493\) 5.50573 0.247966
\(494\) 4.23038 0.190334
\(495\) 0 0
\(496\) −13.2690 −0.595795
\(497\) 8.00720 0.359172
\(498\) 3.14069 0.140738
\(499\) 2.40142 0.107502 0.0537511 0.998554i \(-0.482882\pi\)
0.0537511 + 0.998554i \(0.482882\pi\)
\(500\) 0 0
\(501\) −25.7342 −1.14972
\(502\) 15.8289 0.706477
\(503\) 1.79754 0.0801483 0.0400741 0.999197i \(-0.487241\pi\)
0.0400741 + 0.999197i \(0.487241\pi\)
\(504\) −4.74831 −0.211507
\(505\) 0 0
\(506\) −1.92089 −0.0853939
\(507\) −11.2269 −0.498606
\(508\) 2.00931 0.0891486
\(509\) −36.0980 −1.60001 −0.800007 0.599990i \(-0.795171\pi\)
−0.800007 + 0.599990i \(0.795171\pi\)
\(510\) 0 0
\(511\) 0.195469 0.00864702
\(512\) −17.6769 −0.781215
\(513\) −8.22785 −0.363268
\(514\) −3.16024 −0.139392
\(515\) 0 0
\(516\) −18.4516 −0.812286
\(517\) 2.91442 0.128176
\(518\) −8.58325 −0.377127
\(519\) 1.43485 0.0629828
\(520\) 0 0
\(521\) −23.4982 −1.02948 −0.514738 0.857348i \(-0.672111\pi\)
−0.514738 + 0.857348i \(0.672111\pi\)
\(522\) −3.65719 −0.160071
\(523\) 21.0190 0.919096 0.459548 0.888153i \(-0.348011\pi\)
0.459548 + 0.888153i \(0.348011\pi\)
\(524\) −24.6057 −1.07491
\(525\) 0 0
\(526\) −4.76436 −0.207736
\(527\) 6.44999 0.280966
\(528\) 4.54984 0.198006
\(529\) −20.2417 −0.880075
\(530\) 0 0
\(531\) −0.704028 −0.0305522
\(532\) 5.51819 0.239244
\(533\) 49.1651 2.12958
\(534\) 2.63523 0.114037
\(535\) 0 0
\(536\) −0.228184 −0.00985603
\(537\) −13.4747 −0.581478
\(538\) 11.5821 0.499339
\(539\) 2.43069 0.104697
\(540\) 0 0
\(541\) 31.3399 1.34741 0.673704 0.739002i \(-0.264702\pi\)
0.673704 + 0.739002i \(0.264702\pi\)
\(542\) 16.1617 0.694206
\(543\) −4.06481 −0.174438
\(544\) 4.75581 0.203904
\(545\) 0 0
\(546\) 10.0808 0.431417
\(547\) −39.8339 −1.70318 −0.851588 0.524212i \(-0.824360\pi\)
−0.851588 + 0.524212i \(0.824360\pi\)
\(548\) 7.92474 0.338528
\(549\) −5.80897 −0.247921
\(550\) 0 0
\(551\) 9.58801 0.408463
\(552\) 5.55832 0.236578
\(553\) −25.5463 −1.08634
\(554\) 12.2235 0.519329
\(555\) 0 0
\(556\) 29.4514 1.24902
\(557\) −14.3352 −0.607400 −0.303700 0.952768i \(-0.598222\pi\)
−0.303700 + 0.952768i \(0.598222\pi\)
\(558\) −4.28442 −0.181374
\(559\) −36.1185 −1.52765
\(560\) 0 0
\(561\) −2.21166 −0.0933762
\(562\) −10.7790 −0.454685
\(563\) 40.0770 1.68904 0.844521 0.535522i \(-0.179885\pi\)
0.844521 + 0.535522i \(0.179885\pi\)
\(564\) −3.73828 −0.157410
\(565\) 0 0
\(566\) 3.23074 0.135798
\(567\) −13.3952 −0.562544
\(568\) 7.71988 0.323919
\(569\) −8.23345 −0.345164 −0.172582 0.984995i \(-0.555211\pi\)
−0.172582 + 0.984995i \(0.555211\pi\)
\(570\) 0 0
\(571\) −19.0529 −0.797341 −0.398671 0.917094i \(-0.630528\pi\)
−0.398671 + 0.917094i \(0.630528\pi\)
\(572\) 13.1245 0.548765
\(573\) −13.4958 −0.563795
\(574\) −16.4124 −0.685040
\(575\) 0 0
\(576\) −0.163383 −0.00680762
\(577\) −10.7142 −0.446038 −0.223019 0.974814i \(-0.571591\pi\)
−0.223019 + 0.974814i \(0.571591\pi\)
\(578\) 10.4059 0.432827
\(579\) 8.34861 0.346957
\(580\) 0 0
\(581\) 8.01933 0.332698
\(582\) 7.44726 0.308699
\(583\) −5.73250 −0.237416
\(584\) 0.188455 0.00779830
\(585\) 0 0
\(586\) −6.01531 −0.248490
\(587\) −33.4292 −1.37977 −0.689886 0.723918i \(-0.742339\pi\)
−0.689886 + 0.723918i \(0.742339\pi\)
\(588\) −3.11780 −0.128576
\(589\) 11.2324 0.462823
\(590\) 0 0
\(591\) 1.45932 0.0600282
\(592\) 9.72678 0.399768
\(593\) −15.0267 −0.617071 −0.308535 0.951213i \(-0.599839\pi\)
−0.308535 + 0.951213i \(0.599839\pi\)
\(594\) 6.53263 0.268037
\(595\) 0 0
\(596\) 7.66030 0.313778
\(597\) −3.36088 −0.137551
\(598\) 4.82300 0.197227
\(599\) −24.7565 −1.01152 −0.505762 0.862673i \(-0.668789\pi\)
−0.505762 + 0.862673i \(0.668789\pi\)
\(600\) 0 0
\(601\) 11.0024 0.448798 0.224399 0.974497i \(-0.427958\pi\)
0.224399 + 0.974497i \(0.427958\pi\)
\(602\) 12.0572 0.491413
\(603\) 0.0866016 0.00352669
\(604\) 10.8548 0.441674
\(605\) 0 0
\(606\) 7.46470 0.303233
\(607\) 14.7004 0.596671 0.298336 0.954461i \(-0.403569\pi\)
0.298336 + 0.954461i \(0.403569\pi\)
\(608\) 8.28204 0.335881
\(609\) 22.8477 0.925835
\(610\) 0 0
\(611\) −7.31758 −0.296037
\(612\) −1.15946 −0.0468683
\(613\) 5.35706 0.216370 0.108185 0.994131i \(-0.465496\pi\)
0.108185 + 0.994131i \(0.465496\pi\)
\(614\) −12.5994 −0.508471
\(615\) 0 0
\(616\) −9.88375 −0.398228
\(617\) −8.26597 −0.332775 −0.166388 0.986060i \(-0.553210\pi\)
−0.166388 + 0.986060i \(0.553210\pi\)
\(618\) 8.23842 0.331398
\(619\) 10.3460 0.415839 0.207920 0.978146i \(-0.433331\pi\)
0.207920 + 0.978146i \(0.433331\pi\)
\(620\) 0 0
\(621\) −9.38045 −0.376424
\(622\) 11.6516 0.467188
\(623\) 6.72870 0.269580
\(624\) −11.4238 −0.457318
\(625\) 0 0
\(626\) −10.4653 −0.418279
\(627\) −3.85151 −0.153814
\(628\) 17.7908 0.709932
\(629\) −4.72814 −0.188523
\(630\) 0 0
\(631\) 6.37393 0.253742 0.126871 0.991919i \(-0.459507\pi\)
0.126871 + 0.991919i \(0.459507\pi\)
\(632\) −24.6296 −0.979713
\(633\) 38.5245 1.53121
\(634\) −5.57608 −0.221455
\(635\) 0 0
\(636\) 7.35296 0.291564
\(637\) −6.10302 −0.241810
\(638\) −7.61255 −0.301384
\(639\) −2.92989 −0.115905
\(640\) 0 0
\(641\) 38.6778 1.52768 0.763841 0.645405i \(-0.223311\pi\)
0.763841 + 0.645405i \(0.223311\pi\)
\(642\) 4.82543 0.190445
\(643\) 14.1247 0.557025 0.278512 0.960433i \(-0.410159\pi\)
0.278512 + 0.960433i \(0.410159\pi\)
\(644\) 6.29121 0.247908
\(645\) 0 0
\(646\) −0.777917 −0.0306067
\(647\) 10.2516 0.403033 0.201516 0.979485i \(-0.435413\pi\)
0.201516 + 0.979485i \(0.435413\pi\)
\(648\) −12.9145 −0.507330
\(649\) −1.46546 −0.0575242
\(650\) 0 0
\(651\) 26.7662 1.04905
\(652\) 38.3408 1.50154
\(653\) 28.5662 1.11788 0.558941 0.829207i \(-0.311208\pi\)
0.558941 + 0.829207i \(0.311208\pi\)
\(654\) −2.86567 −0.112057
\(655\) 0 0
\(656\) 18.5990 0.726167
\(657\) −0.0715234 −0.00279039
\(658\) 2.44277 0.0952290
\(659\) 20.6905 0.805986 0.402993 0.915203i \(-0.367970\pi\)
0.402993 + 0.915203i \(0.367970\pi\)
\(660\) 0 0
\(661\) −19.9747 −0.776924 −0.388462 0.921465i \(-0.626994\pi\)
−0.388462 + 0.921465i \(0.626994\pi\)
\(662\) −2.19540 −0.0853267
\(663\) 5.55306 0.215663
\(664\) 7.73158 0.300043
\(665\) 0 0
\(666\) 3.14068 0.121699
\(667\) 10.9311 0.423256
\(668\) −28.0821 −1.08653
\(669\) −5.16485 −0.199685
\(670\) 0 0
\(671\) −12.0915 −0.466789
\(672\) 19.7356 0.761319
\(673\) −24.2052 −0.933040 −0.466520 0.884511i \(-0.654492\pi\)
−0.466520 + 0.884511i \(0.654492\pi\)
\(674\) 21.3376 0.821893
\(675\) 0 0
\(676\) −12.2513 −0.471203
\(677\) −5.11565 −0.196610 −0.0983052 0.995156i \(-0.531342\pi\)
−0.0983052 + 0.995156i \(0.531342\pi\)
\(678\) −1.68373 −0.0646632
\(679\) 19.0156 0.729751
\(680\) 0 0
\(681\) −4.74383 −0.181784
\(682\) −8.91814 −0.341493
\(683\) −25.1783 −0.963420 −0.481710 0.876331i \(-0.659984\pi\)
−0.481710 + 0.876331i \(0.659984\pi\)
\(684\) −2.01915 −0.0772040
\(685\) 0 0
\(686\) 12.6672 0.483635
\(687\) −22.7676 −0.868637
\(688\) −13.6635 −0.520916
\(689\) 14.3932 0.548339
\(690\) 0 0
\(691\) −46.5869 −1.77225 −0.886124 0.463447i \(-0.846612\pi\)
−0.886124 + 0.463447i \(0.846612\pi\)
\(692\) 1.56576 0.0595213
\(693\) 3.75114 0.142494
\(694\) 8.94780 0.339654
\(695\) 0 0
\(696\) 22.0278 0.834963
\(697\) −9.04087 −0.342447
\(698\) −14.6091 −0.552963
\(699\) 10.8124 0.408964
\(700\) 0 0
\(701\) −23.5751 −0.890419 −0.445210 0.895426i \(-0.646871\pi\)
−0.445210 + 0.895426i \(0.646871\pi\)
\(702\) −16.4022 −0.619063
\(703\) −8.23387 −0.310546
\(704\) −0.340086 −0.0128175
\(705\) 0 0
\(706\) 21.2142 0.798408
\(707\) 19.0601 0.716829
\(708\) 1.87971 0.0706439
\(709\) 21.5784 0.810394 0.405197 0.914229i \(-0.367203\pi\)
0.405197 + 0.914229i \(0.367203\pi\)
\(710\) 0 0
\(711\) 9.34757 0.350561
\(712\) 6.48726 0.243120
\(713\) 12.8059 0.479584
\(714\) −1.85373 −0.0693742
\(715\) 0 0
\(716\) −14.7042 −0.549521
\(717\) 9.67491 0.361316
\(718\) 5.72547 0.213673
\(719\) 33.8809 1.26354 0.631772 0.775154i \(-0.282328\pi\)
0.631772 + 0.775154i \(0.282328\pi\)
\(720\) 0 0
\(721\) 21.0357 0.783410
\(722\) 10.7746 0.400990
\(723\) 6.11794 0.227529
\(724\) −4.43568 −0.164851
\(725\) 0 0
\(726\) −7.18971 −0.266835
\(727\) 15.2099 0.564105 0.282053 0.959399i \(-0.408985\pi\)
0.282053 + 0.959399i \(0.408985\pi\)
\(728\) 24.8163 0.919752
\(729\) 29.6286 1.09736
\(730\) 0 0
\(731\) 6.64177 0.245655
\(732\) 15.5096 0.573251
\(733\) −31.9199 −1.17899 −0.589494 0.807773i \(-0.700673\pi\)
−0.589494 + 0.807773i \(0.700673\pi\)
\(734\) 18.6412 0.688059
\(735\) 0 0
\(736\) 9.44223 0.348045
\(737\) 0.180264 0.00664010
\(738\) 6.00541 0.221062
\(739\) 19.9347 0.733308 0.366654 0.930357i \(-0.380503\pi\)
0.366654 + 0.930357i \(0.380503\pi\)
\(740\) 0 0
\(741\) 9.67042 0.355252
\(742\) −4.80478 −0.176389
\(743\) 50.1163 1.83859 0.919294 0.393572i \(-0.128761\pi\)
0.919294 + 0.393572i \(0.128761\pi\)
\(744\) 25.8057 0.946084
\(745\) 0 0
\(746\) 12.6859 0.464464
\(747\) −2.93433 −0.107362
\(748\) −2.41345 −0.0882443
\(749\) 12.3211 0.450203
\(750\) 0 0
\(751\) −46.1121 −1.68266 −0.841328 0.540525i \(-0.818226\pi\)
−0.841328 + 0.540525i \(0.818226\pi\)
\(752\) −2.76821 −0.100946
\(753\) 36.1839 1.31862
\(754\) 19.1137 0.696080
\(755\) 0 0
\(756\) −21.3954 −0.778143
\(757\) −9.69373 −0.352325 −0.176162 0.984361i \(-0.556368\pi\)
−0.176162 + 0.984361i \(0.556368\pi\)
\(758\) −8.86561 −0.322014
\(759\) −4.39105 −0.159385
\(760\) 0 0
\(761\) 46.7950 1.69632 0.848158 0.529743i \(-0.177712\pi\)
0.848158 + 0.529743i \(0.177712\pi\)
\(762\) −1.17546 −0.0425826
\(763\) −7.31712 −0.264897
\(764\) −14.7271 −0.532809
\(765\) 0 0
\(766\) −3.84471 −0.138915
\(767\) 3.67949 0.132859
\(768\) 11.0292 0.397983
\(769\) 52.0634 1.87745 0.938727 0.344662i \(-0.112007\pi\)
0.938727 + 0.344662i \(0.112007\pi\)
\(770\) 0 0
\(771\) −7.22412 −0.260170
\(772\) 9.11034 0.327888
\(773\) 38.6344 1.38958 0.694791 0.719212i \(-0.255497\pi\)
0.694791 + 0.719212i \(0.255497\pi\)
\(774\) −4.41180 −0.158579
\(775\) 0 0
\(776\) 18.3333 0.658126
\(777\) −19.6208 −0.703894
\(778\) 17.5271 0.628377
\(779\) −15.7443 −0.564098
\(780\) 0 0
\(781\) −6.09866 −0.218227
\(782\) −0.886891 −0.0317152
\(783\) −37.1751 −1.32853
\(784\) −2.30875 −0.0824553
\(785\) 0 0
\(786\) 14.3946 0.513439
\(787\) −12.4300 −0.443080 −0.221540 0.975151i \(-0.571108\pi\)
−0.221540 + 0.975151i \(0.571108\pi\)
\(788\) 1.59246 0.0567291
\(789\) −10.8911 −0.387732
\(790\) 0 0
\(791\) −4.29918 −0.152861
\(792\) 3.61654 0.128508
\(793\) 30.3596 1.07810
\(794\) 0.857977 0.0304485
\(795\) 0 0
\(796\) −3.66752 −0.129992
\(797\) −34.3845 −1.21796 −0.608980 0.793186i \(-0.708421\pi\)
−0.608980 + 0.793186i \(0.708421\pi\)
\(798\) −3.22820 −0.114277
\(799\) 1.34562 0.0476044
\(800\) 0 0
\(801\) −2.46208 −0.0869934
\(802\) 10.6693 0.376747
\(803\) −0.148878 −0.00525379
\(804\) −0.231221 −0.00815453
\(805\) 0 0
\(806\) 22.3918 0.788718
\(807\) 26.4760 0.931999
\(808\) 18.3762 0.646472
\(809\) 41.9168 1.47372 0.736859 0.676047i \(-0.236308\pi\)
0.736859 + 0.676047i \(0.236308\pi\)
\(810\) 0 0
\(811\) 35.0481 1.23070 0.615352 0.788252i \(-0.289014\pi\)
0.615352 + 0.788252i \(0.289014\pi\)
\(812\) 24.9323 0.874952
\(813\) 36.9448 1.29571
\(814\) 6.53741 0.229136
\(815\) 0 0
\(816\) 2.10070 0.0735392
\(817\) 11.5664 0.404656
\(818\) 1.17530 0.0410934
\(819\) −9.41842 −0.329106
\(820\) 0 0
\(821\) −17.1696 −0.599225 −0.299612 0.954061i \(-0.596857\pi\)
−0.299612 + 0.954061i \(0.596857\pi\)
\(822\) −4.63606 −0.161701
\(823\) 14.0943 0.491296 0.245648 0.969359i \(-0.420999\pi\)
0.245648 + 0.969359i \(0.420999\pi\)
\(824\) 20.2809 0.706518
\(825\) 0 0
\(826\) −1.22829 −0.0427378
\(827\) −35.3779 −1.23021 −0.615106 0.788445i \(-0.710887\pi\)
−0.615106 + 0.788445i \(0.710887\pi\)
\(828\) −2.30200 −0.0800000
\(829\) 43.7694 1.52017 0.760087 0.649821i \(-0.225156\pi\)
0.760087 + 0.649821i \(0.225156\pi\)
\(830\) 0 0
\(831\) 27.9424 0.969310
\(832\) 0.853894 0.0296034
\(833\) 1.12227 0.0388844
\(834\) −17.2294 −0.596604
\(835\) 0 0
\(836\) −4.20292 −0.145361
\(837\) −43.5507 −1.50533
\(838\) 13.7840 0.476162
\(839\) −32.3344 −1.11631 −0.558153 0.829738i \(-0.688490\pi\)
−0.558153 + 0.829738i \(0.688490\pi\)
\(840\) 0 0
\(841\) 14.3205 0.493811
\(842\) 8.02805 0.276665
\(843\) −24.6402 −0.848654
\(844\) 42.0394 1.44706
\(845\) 0 0
\(846\) −0.893827 −0.0307304
\(847\) −18.3580 −0.630787
\(848\) 5.44491 0.186979
\(849\) 7.38530 0.253463
\(850\) 0 0
\(851\) −9.38731 −0.321793
\(852\) 7.82264 0.267999
\(853\) −6.19646 −0.212163 −0.106081 0.994357i \(-0.533830\pi\)
−0.106081 + 0.994357i \(0.533830\pi\)
\(854\) −10.1347 −0.346802
\(855\) 0 0
\(856\) 11.8790 0.406015
\(857\) −30.3160 −1.03558 −0.517788 0.855509i \(-0.673244\pi\)
−0.517788 + 0.855509i \(0.673244\pi\)
\(858\) −7.67799 −0.262122
\(859\) −27.1160 −0.925185 −0.462593 0.886571i \(-0.653081\pi\)
−0.462593 + 0.886571i \(0.653081\pi\)
\(860\) 0 0
\(861\) −37.5178 −1.27860
\(862\) 6.73978 0.229558
\(863\) −27.7809 −0.945672 −0.472836 0.881150i \(-0.656770\pi\)
−0.472836 + 0.881150i \(0.656770\pi\)
\(864\) −32.1115 −1.09246
\(865\) 0 0
\(866\) −21.4333 −0.728335
\(867\) 23.7872 0.807857
\(868\) 29.2083 0.991394
\(869\) 19.4573 0.660042
\(870\) 0 0
\(871\) −0.452609 −0.0153361
\(872\) −7.05456 −0.238897
\(873\) −6.95795 −0.235491
\(874\) −1.54448 −0.0522430
\(875\) 0 0
\(876\) 0.190963 0.00645205
\(877\) 38.0939 1.28634 0.643170 0.765724i \(-0.277619\pi\)
0.643170 + 0.765724i \(0.277619\pi\)
\(878\) −2.14390 −0.0723530
\(879\) −13.7507 −0.463799
\(880\) 0 0
\(881\) 36.5035 1.22983 0.614917 0.788592i \(-0.289190\pi\)
0.614917 + 0.788592i \(0.289190\pi\)
\(882\) −0.745471 −0.0251013
\(883\) −40.4097 −1.35989 −0.679947 0.733261i \(-0.737997\pi\)
−0.679947 + 0.733261i \(0.737997\pi\)
\(884\) 6.05972 0.203810
\(885\) 0 0
\(886\) −14.5816 −0.489880
\(887\) 15.6445 0.525289 0.262645 0.964893i \(-0.415405\pi\)
0.262645 + 0.964893i \(0.415405\pi\)
\(888\) −18.9168 −0.634806
\(889\) −3.00139 −0.100663
\(890\) 0 0
\(891\) 10.2024 0.341793
\(892\) −5.63609 −0.188710
\(893\) 2.34333 0.0784166
\(894\) −4.48135 −0.149879
\(895\) 0 0
\(896\) 26.7628 0.894081
\(897\) 11.0251 0.368118
\(898\) 13.9931 0.466957
\(899\) 50.7502 1.69261
\(900\) 0 0
\(901\) −2.64674 −0.0881758
\(902\) 12.5004 0.416219
\(903\) 27.5620 0.917206
\(904\) −4.14491 −0.137858
\(905\) 0 0
\(906\) −6.35015 −0.210970
\(907\) −42.4016 −1.40792 −0.703961 0.710239i \(-0.748587\pi\)
−0.703961 + 0.710239i \(0.748587\pi\)
\(908\) −5.17665 −0.171793
\(909\) −6.97424 −0.231321
\(910\) 0 0
\(911\) 22.2881 0.738437 0.369218 0.929343i \(-0.379625\pi\)
0.369218 + 0.929343i \(0.379625\pi\)
\(912\) 3.65828 0.121138
\(913\) −6.10790 −0.202142
\(914\) −18.0493 −0.597018
\(915\) 0 0
\(916\) −24.8449 −0.820897
\(917\) 36.7547 1.21375
\(918\) 3.01618 0.0995486
\(919\) −47.2107 −1.55734 −0.778669 0.627435i \(-0.784105\pi\)
−0.778669 + 0.627435i \(0.784105\pi\)
\(920\) 0 0
\(921\) −28.8016 −0.949044
\(922\) 7.00722 0.230771
\(923\) 15.3126 0.504021
\(924\) −10.0153 −0.329480
\(925\) 0 0
\(926\) 23.4854 0.771778
\(927\) −7.69712 −0.252807
\(928\) 37.4199 1.22837
\(929\) 7.06514 0.231800 0.115900 0.993261i \(-0.463025\pi\)
0.115900 + 0.993261i \(0.463025\pi\)
\(930\) 0 0
\(931\) 1.95439 0.0640526
\(932\) 11.7990 0.386488
\(933\) 26.6350 0.871990
\(934\) −10.1974 −0.333670
\(935\) 0 0
\(936\) −9.08046 −0.296804
\(937\) −41.1529 −1.34441 −0.672203 0.740367i \(-0.734652\pi\)
−0.672203 + 0.740367i \(0.734652\pi\)
\(938\) 0.151091 0.00493329
\(939\) −23.9232 −0.780704
\(940\) 0 0
\(941\) 56.1332 1.82989 0.914944 0.403580i \(-0.132234\pi\)
0.914944 + 0.403580i \(0.132234\pi\)
\(942\) −10.4078 −0.339105
\(943\) −17.9498 −0.584527
\(944\) 1.39194 0.0453037
\(945\) 0 0
\(946\) −9.18330 −0.298575
\(947\) −1.33358 −0.0433354 −0.0216677 0.999765i \(-0.506898\pi\)
−0.0216677 + 0.999765i \(0.506898\pi\)
\(948\) −24.9575 −0.810580
\(949\) 0.373805 0.0121342
\(950\) 0 0
\(951\) −12.7466 −0.413338
\(952\) −4.56342 −0.147901
\(953\) 13.5724 0.439654 0.219827 0.975539i \(-0.429451\pi\)
0.219827 + 0.975539i \(0.429451\pi\)
\(954\) 1.75810 0.0569207
\(955\) 0 0
\(956\) 10.5576 0.341459
\(957\) −17.4019 −0.562523
\(958\) 8.65564 0.279651
\(959\) −11.8376 −0.382255
\(960\) 0 0
\(961\) 28.4541 0.917873
\(962\) −16.4142 −0.529216
\(963\) −4.50838 −0.145281
\(964\) 6.67614 0.215024
\(965\) 0 0
\(966\) −3.68042 −0.118416
\(967\) −31.1652 −1.00221 −0.501103 0.865388i \(-0.667072\pi\)
−0.501103 + 0.865388i \(0.667072\pi\)
\(968\) −17.6992 −0.568875
\(969\) −1.77828 −0.0571264
\(970\) 0 0
\(971\) −52.1035 −1.67208 −0.836040 0.548669i \(-0.815135\pi\)
−0.836040 + 0.548669i \(0.815135\pi\)
\(972\) 13.8969 0.445743
\(973\) −43.9929 −1.41035
\(974\) −19.7222 −0.631939
\(975\) 0 0
\(976\) 11.4849 0.367624
\(977\) 18.5773 0.594339 0.297170 0.954825i \(-0.403957\pi\)
0.297170 + 0.954825i \(0.403957\pi\)
\(978\) −22.4298 −0.717225
\(979\) −5.12490 −0.163792
\(980\) 0 0
\(981\) 2.67739 0.0854824
\(982\) 13.9844 0.446260
\(983\) 59.8810 1.90991 0.954953 0.296757i \(-0.0959052\pi\)
0.954953 + 0.296757i \(0.0959052\pi\)
\(984\) −36.1716 −1.15311
\(985\) 0 0
\(986\) −3.51478 −0.111934
\(987\) 5.58403 0.177742
\(988\) 10.5527 0.335728
\(989\) 13.1866 0.419311
\(990\) 0 0
\(991\) 3.79908 0.120682 0.0603408 0.998178i \(-0.480781\pi\)
0.0603408 + 0.998178i \(0.480781\pi\)
\(992\) 43.8376 1.39185
\(993\) −5.01857 −0.159260
\(994\) −5.11169 −0.162133
\(995\) 0 0
\(996\) 7.83449 0.248245
\(997\) −45.4216 −1.43852 −0.719258 0.694743i \(-0.755518\pi\)
−0.719258 + 0.694743i \(0.755518\pi\)
\(998\) −1.53303 −0.0485273
\(999\) 31.9247 1.01005
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4925.2.a.j.1.4 10
5.4 even 2 985.2.a.e.1.7 10
15.14 odd 2 8865.2.a.t.1.4 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
985.2.a.e.1.7 10 5.4 even 2
4925.2.a.j.1.4 10 1.1 even 1 trivial
8865.2.a.t.1.4 10 15.14 odd 2