Properties

Label 49.8.c
Level $49$
Weight $8$
Character orbit 49.c
Rep. character $\chi_{49}(18,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $42$
Newform subspaces $8$
Sturm bound $37$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 49 = 7^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 49.c (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 8 \)
Sturm bound: \(37\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(2\), \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(49, [\chi])\).

Total New Old
Modular forms 74 50 24
Cusp forms 58 42 16
Eisenstein series 16 8 8

Trace form

\( 42 q - 13 q^{2} + 28 q^{3} - 969 q^{4} + 252 q^{5} - 2044 q^{6} + 3174 q^{8} - 11269 q^{9} + 4774 q^{10} - 7528 q^{11} - 5404 q^{12} + 2352 q^{13} + 36712 q^{15} + 16571 q^{16} + 56364 q^{17} - 85967 q^{18}+ \cdots + 35531048 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(49, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
49.8.c.a 49.c 7.c $2$ $15.307$ \(\Q(\sqrt{-3}) \) None 7.8.a.a \(6\) \(-42\) \(-84\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+6\zeta_{6}q^{2}+(-42+42\zeta_{6})q^{3}+(92+\cdots)q^{4}+\cdots\)
49.8.c.b 49.c 7.c $2$ $15.307$ \(\Q(\sqrt{-3}) \) None 7.8.a.a \(6\) \(42\) \(84\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+6\zeta_{6}q^{2}+(42-42\zeta_{6})q^{3}+(92-92\zeta_{6})q^{4}+\cdots\)
49.8.c.c 49.c 7.c $2$ $15.307$ \(\Q(\sqrt{-3}) \) \(\Q(\sqrt{-7}) \) 49.8.a.a \(13\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{3}]$ \(q+13\zeta_{6}q^{2}+(-41+41\zeta_{6})q^{4}+1131q^{8}+\cdots\)
49.8.c.d 49.c 7.c $4$ $15.307$ \(\Q(\sqrt{-3}, \sqrt{-230})\) None 49.8.a.d \(-20\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-10+10\beta _{1})q^{2}-\beta _{2}q^{3}+28\beta _{1}q^{4}+\cdots\)
49.8.c.e 49.c 7.c $4$ $15.307$ \(\Q(\sqrt{-3}, \sqrt{865})\) None 7.8.a.b \(3\) \(-94\) \(-330\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(\beta _{1}+\beta _{2})q^{2}+(-48+2\beta _{1}+46\beta _{2}+\cdots)q^{3}+\cdots\)
49.8.c.f 49.c 7.c $4$ $15.307$ \(\Q(\sqrt{-3}, \sqrt{865})\) None 7.8.a.b \(3\) \(94\) \(330\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(\beta _{1}+\beta _{2})q^{2}+(48-2\beta _{1}-46\beta _{2}+\cdots)q^{3}+\cdots\)
49.8.c.g 49.c 7.c $8$ $15.307$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 7.8.c.a \(6\) \(28\) \(252\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+2\beta _{2}+\beta _{3}-\beta _{4})q^{2}+(6-6\beta _{2}+\cdots)q^{3}+\cdots\)
49.8.c.h 49.c 7.c $16$ $15.307$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 49.8.a.g \(-30\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-4-4\beta _{1}-\beta _{2})q^{2}+(-\beta _{7}-\beta _{10}+\cdots)q^{3}+\cdots\)

Decomposition of \(S_{8}^{\mathrm{old}}(49, [\chi])\) into lower level spaces

\( S_{8}^{\mathrm{old}}(49, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 2}\)