Properties

Label 49.8.a.f.1.4
Level $49$
Weight $8$
Character 49.1
Self dual yes
Analytic conductor $15.307$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [49,8,Mod(1,49)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("49.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(49, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 49 = 7^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 49.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-6,28] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(15.3068662487\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 102x^{2} + 240x + 900 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4}\cdot 7 \)
Twist minimal: no (minimal twist has level 7)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-2.05919\) of defining polynomial
Character \(\chi\) \(=\) 49.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+19.0193 q^{2} +39.4615 q^{3} +233.735 q^{4} +350.005 q^{5} +750.531 q^{6} +2011.00 q^{8} -629.788 q^{9} +6656.85 q^{10} -6269.29 q^{11} +9223.52 q^{12} -4122.67 q^{13} +13811.7 q^{15} +8329.82 q^{16} +11142.7 q^{17} -11978.1 q^{18} +16879.6 q^{19} +81808.2 q^{20} -119238. q^{22} +34791.9 q^{23} +79357.1 q^{24} +44378.3 q^{25} -78410.4 q^{26} -111155. q^{27} +40847.7 q^{29} +262690. q^{30} -43911.2 q^{31} -98980.4 q^{32} -247396. q^{33} +211927. q^{34} -147203. q^{36} +77996.4 q^{37} +321038. q^{38} -162687. q^{39} +703859. q^{40} -41821.6 q^{41} +331256. q^{43} -1.46535e6 q^{44} -220429. q^{45} +661718. q^{46} +1.10085e6 q^{47} +328707. q^{48} +844045. q^{50} +439708. q^{51} -963611. q^{52} -1.56064e6 q^{53} -2.11409e6 q^{54} -2.19428e6 q^{55} +666093. q^{57} +776896. q^{58} -274335. q^{59} +3.22828e6 q^{60} -3.05087e6 q^{61} -835161. q^{62} -2.94876e6 q^{64} -1.44295e6 q^{65} -4.70530e6 q^{66} -645864. q^{67} +2.60444e6 q^{68} +1.37294e6 q^{69} +531485. q^{71} -1.26650e6 q^{72} +4.65746e6 q^{73} +1.48344e6 q^{74} +1.75124e6 q^{75} +3.94533e6 q^{76} -3.09419e6 q^{78} +2.35011e6 q^{79} +2.91548e6 q^{80} -3.00899e6 q^{81} -795418. q^{82} -107925. q^{83} +3.90000e6 q^{85} +6.30027e6 q^{86} +1.61191e6 q^{87} -1.26075e7 q^{88} +7.96573e6 q^{89} -4.19240e6 q^{90} +8.13206e6 q^{92} -1.73280e6 q^{93} +2.09375e7 q^{94} +5.90792e6 q^{95} -3.90592e6 q^{96} +1.44749e7 q^{97} +3.94832e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6 q^{2} + 28 q^{3} + 348 q^{4} + 252 q^{5} + 1022 q^{6} - 984 q^{8} + 2008 q^{9} + 4774 q^{10} - 3972 q^{11} - 5404 q^{12} - 1176 q^{13} - 16556 q^{15} + 57264 q^{16} + 56364 q^{17} - 35908 q^{18}+ \cdots + 15213976 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 19.0193 1.68109 0.840543 0.541745i \(-0.182236\pi\)
0.840543 + 0.541745i \(0.182236\pi\)
\(3\) 39.4615 0.843819 0.421910 0.906638i \(-0.361360\pi\)
0.421910 + 0.906638i \(0.361360\pi\)
\(4\) 233.735 1.82605
\(5\) 350.005 1.25221 0.626107 0.779737i \(-0.284647\pi\)
0.626107 + 0.779737i \(0.284647\pi\)
\(6\) 750.531 1.41853
\(7\) 0 0
\(8\) 2011.00 1.38866
\(9\) −629.788 −0.287969
\(10\) 6656.85 2.10508
\(11\) −6269.29 −1.42018 −0.710090 0.704111i \(-0.751346\pi\)
−0.710090 + 0.704111i \(0.751346\pi\)
\(12\) 9223.52 1.54086
\(13\) −4122.67 −0.520448 −0.260224 0.965548i \(-0.583796\pi\)
−0.260224 + 0.965548i \(0.583796\pi\)
\(14\) 0 0
\(15\) 13811.7 1.05664
\(16\) 8329.82 0.508412
\(17\) 11142.7 0.550072 0.275036 0.961434i \(-0.411310\pi\)
0.275036 + 0.961434i \(0.411310\pi\)
\(18\) −11978.1 −0.484101
\(19\) 16879.6 0.564577 0.282289 0.959330i \(-0.408906\pi\)
0.282289 + 0.959330i \(0.408906\pi\)
\(20\) 81808.2 2.28661
\(21\) 0 0
\(22\) −119238. −2.38745
\(23\) 34791.9 0.596253 0.298126 0.954526i \(-0.403638\pi\)
0.298126 + 0.954526i \(0.403638\pi\)
\(24\) 79357.1 1.17178
\(25\) 44378.3 0.568042
\(26\) −78410.4 −0.874917
\(27\) −111155. −1.08681
\(28\) 0 0
\(29\) 40847.7 0.311010 0.155505 0.987835i \(-0.450299\pi\)
0.155505 + 0.987835i \(0.450299\pi\)
\(30\) 262690. 1.77631
\(31\) −43911.2 −0.264734 −0.132367 0.991201i \(-0.542258\pi\)
−0.132367 + 0.991201i \(0.542258\pi\)
\(32\) −98980.4 −0.533979
\(33\) −247396. −1.19838
\(34\) 211927. 0.924718
\(35\) 0 0
\(36\) −147203. −0.525846
\(37\) 77996.4 0.253144 0.126572 0.991957i \(-0.459602\pi\)
0.126572 + 0.991957i \(0.459602\pi\)
\(38\) 321038. 0.949103
\(39\) −162687. −0.439164
\(40\) 703859. 1.73890
\(41\) −41821.6 −0.0947670 −0.0473835 0.998877i \(-0.515088\pi\)
−0.0473835 + 0.998877i \(0.515088\pi\)
\(42\) 0 0
\(43\) 331256. 0.635366 0.317683 0.948197i \(-0.397095\pi\)
0.317683 + 0.948197i \(0.397095\pi\)
\(44\) −1.46535e6 −2.59332
\(45\) −220429. −0.360599
\(46\) 661718. 1.00235
\(47\) 1.10085e6 1.54663 0.773317 0.634019i \(-0.218596\pi\)
0.773317 + 0.634019i \(0.218596\pi\)
\(48\) 328707. 0.429008
\(49\) 0 0
\(50\) 844045. 0.954928
\(51\) 439708. 0.464161
\(52\) −963611. −0.950364
\(53\) −1.56064e6 −1.43992 −0.719960 0.694015i \(-0.755840\pi\)
−0.719960 + 0.694015i \(0.755840\pi\)
\(54\) −2.11409e6 −1.82703
\(55\) −2.19428e6 −1.77837
\(56\) 0 0
\(57\) 666093. 0.476401
\(58\) 776896. 0.522835
\(59\) −274335. −0.173900 −0.0869498 0.996213i \(-0.527712\pi\)
−0.0869498 + 0.996213i \(0.527712\pi\)
\(60\) 3.22828e6 1.92948
\(61\) −3.05087e6 −1.72095 −0.860476 0.509491i \(-0.829834\pi\)
−0.860476 + 0.509491i \(0.829834\pi\)
\(62\) −835161. −0.445040
\(63\) 0 0
\(64\) −2.94876e6 −1.40608
\(65\) −1.44295e6 −0.651712
\(66\) −4.70530e6 −2.01457
\(67\) −645864. −0.262349 −0.131174 0.991359i \(-0.541875\pi\)
−0.131174 + 0.991359i \(0.541875\pi\)
\(68\) 2.60444e6 1.00446
\(69\) 1.37294e6 0.503130
\(70\) 0 0
\(71\) 531485. 0.176233 0.0881165 0.996110i \(-0.471915\pi\)
0.0881165 + 0.996110i \(0.471915\pi\)
\(72\) −1.26650e6 −0.399892
\(73\) 4.65746e6 1.40126 0.700630 0.713525i \(-0.252902\pi\)
0.700630 + 0.713525i \(0.252902\pi\)
\(74\) 1.48344e6 0.425558
\(75\) 1.75124e6 0.479325
\(76\) 3.94533e6 1.03095
\(77\) 0 0
\(78\) −3.09419e6 −0.738272
\(79\) 2.35011e6 0.536283 0.268141 0.963380i \(-0.413591\pi\)
0.268141 + 0.963380i \(0.413591\pi\)
\(80\) 2.91548e6 0.636641
\(81\) −3.00899e6 −0.629105
\(82\) −795418. −0.159311
\(83\) −107925. −0.0207181 −0.0103591 0.999946i \(-0.503297\pi\)
−0.0103591 + 0.999946i \(0.503297\pi\)
\(84\) 0 0
\(85\) 3.90000e6 0.688808
\(86\) 6.30027e6 1.06811
\(87\) 1.61191e6 0.262437
\(88\) −1.26075e7 −1.97215
\(89\) 7.96573e6 1.19774 0.598868 0.800848i \(-0.295618\pi\)
0.598868 + 0.800848i \(0.295618\pi\)
\(90\) −4.19240e6 −0.606198
\(91\) 0 0
\(92\) 8.13206e6 1.08879
\(93\) −1.73280e6 −0.223388
\(94\) 2.09375e7 2.60003
\(95\) 5.90792e6 0.706972
\(96\) −3.90592e6 −0.450582
\(97\) 1.44749e7 1.61033 0.805167 0.593048i \(-0.202076\pi\)
0.805167 + 0.593048i \(0.202076\pi\)
\(98\) 0 0
\(99\) 3.94832e6 0.408968
\(100\) 1.03727e7 1.03727
\(101\) −5.42470e6 −0.523903 −0.261951 0.965081i \(-0.584366\pi\)
−0.261951 + 0.965081i \(0.584366\pi\)
\(102\) 8.36295e6 0.780295
\(103\) 1.70839e7 1.54049 0.770243 0.637751i \(-0.220135\pi\)
0.770243 + 0.637751i \(0.220135\pi\)
\(104\) −8.29069e6 −0.722726
\(105\) 0 0
\(106\) −2.96824e7 −2.42063
\(107\) −2.24913e7 −1.77489 −0.887447 0.460911i \(-0.847523\pi\)
−0.887447 + 0.460911i \(0.847523\pi\)
\(108\) −2.59807e7 −1.98458
\(109\) 1.10912e6 0.0820322 0.0410161 0.999158i \(-0.486941\pi\)
0.0410161 + 0.999158i \(0.486941\pi\)
\(110\) −4.17337e7 −2.98960
\(111\) 3.07786e6 0.213608
\(112\) 0 0
\(113\) −1.59055e7 −1.03698 −0.518492 0.855082i \(-0.673507\pi\)
−0.518492 + 0.855082i \(0.673507\pi\)
\(114\) 1.26686e7 0.800871
\(115\) 1.21773e7 0.746637
\(116\) 9.54752e6 0.567921
\(117\) 2.59641e6 0.149873
\(118\) −5.21766e6 −0.292340
\(119\) 0 0
\(120\) 2.77754e7 1.46732
\(121\) 1.98168e7 1.01691
\(122\) −5.80254e7 −2.89307
\(123\) −1.65034e6 −0.0799662
\(124\) −1.02636e7 −0.483418
\(125\) −1.18115e7 −0.540904
\(126\) 0 0
\(127\) 2.24962e7 0.974532 0.487266 0.873254i \(-0.337994\pi\)
0.487266 + 0.873254i \(0.337994\pi\)
\(128\) −4.34139e7 −1.82976
\(129\) 1.30719e7 0.536135
\(130\) −2.74440e7 −1.09558
\(131\) 1.87818e7 0.729940 0.364970 0.931019i \(-0.381079\pi\)
0.364970 + 0.931019i \(0.381079\pi\)
\(132\) −5.78249e7 −2.18830
\(133\) 0 0
\(134\) −1.22839e7 −0.441031
\(135\) −3.89047e7 −1.36092
\(136\) 2.24080e7 0.763865
\(137\) 3.93601e7 1.30778 0.653889 0.756590i \(-0.273136\pi\)
0.653889 + 0.756590i \(0.273136\pi\)
\(138\) 2.61124e7 0.845805
\(139\) 2.45180e7 0.774343 0.387172 0.922008i \(-0.373452\pi\)
0.387172 + 0.922008i \(0.373452\pi\)
\(140\) 0 0
\(141\) 4.34414e7 1.30508
\(142\) 1.01085e7 0.296263
\(143\) 2.58462e7 0.739130
\(144\) −5.24602e6 −0.146407
\(145\) 1.42969e7 0.389452
\(146\) 8.85816e7 2.35564
\(147\) 0 0
\(148\) 1.82304e7 0.462255
\(149\) 4.33973e7 1.07476 0.537379 0.843341i \(-0.319414\pi\)
0.537379 + 0.843341i \(0.319414\pi\)
\(150\) 3.33073e7 0.805787
\(151\) −3.36042e7 −0.794281 −0.397140 0.917758i \(-0.629997\pi\)
−0.397140 + 0.917758i \(0.629997\pi\)
\(152\) 3.39448e7 0.784008
\(153\) −7.01754e6 −0.158404
\(154\) 0 0
\(155\) −1.53691e7 −0.331504
\(156\) −3.80256e7 −0.801935
\(157\) −6.41848e7 −1.32368 −0.661841 0.749644i \(-0.730225\pi\)
−0.661841 + 0.749644i \(0.730225\pi\)
\(158\) 4.46975e7 0.901537
\(159\) −6.15854e7 −1.21503
\(160\) −3.46436e7 −0.668657
\(161\) 0 0
\(162\) −5.72289e7 −1.05758
\(163\) 4.12358e7 0.745793 0.372897 0.927873i \(-0.378365\pi\)
0.372897 + 0.927873i \(0.378365\pi\)
\(164\) −9.77515e6 −0.173049
\(165\) −8.65896e7 −1.50062
\(166\) −2.05267e6 −0.0348290
\(167\) −5.94520e7 −0.987776 −0.493888 0.869526i \(-0.664425\pi\)
−0.493888 + 0.869526i \(0.664425\pi\)
\(168\) 0 0
\(169\) −4.57521e7 −0.729134
\(170\) 7.41753e7 1.15795
\(171\) −1.06305e7 −0.162581
\(172\) 7.74260e7 1.16021
\(173\) −4.43816e7 −0.651691 −0.325845 0.945423i \(-0.605649\pi\)
−0.325845 + 0.945423i \(0.605649\pi\)
\(174\) 3.06575e7 0.441179
\(175\) 0 0
\(176\) −5.22220e7 −0.722037
\(177\) −1.08257e7 −0.146740
\(178\) 1.51503e8 2.01350
\(179\) −6.36105e7 −0.828978 −0.414489 0.910054i \(-0.636040\pi\)
−0.414489 + 0.910054i \(0.636040\pi\)
\(180\) −5.15218e7 −0.658472
\(181\) −1.52914e6 −0.0191678 −0.00958389 0.999954i \(-0.503051\pi\)
−0.00958389 + 0.999954i \(0.503051\pi\)
\(182\) 0 0
\(183\) −1.20392e8 −1.45217
\(184\) 6.99664e7 0.827995
\(185\) 2.72991e7 0.316991
\(186\) −3.29567e7 −0.375534
\(187\) −6.98568e7 −0.781202
\(188\) 2.57308e8 2.82423
\(189\) 0 0
\(190\) 1.12365e8 1.18848
\(191\) −5.50290e7 −0.571446 −0.285723 0.958312i \(-0.592234\pi\)
−0.285723 + 0.958312i \(0.592234\pi\)
\(192\) −1.16362e8 −1.18648
\(193\) 1.35920e8 1.36092 0.680458 0.732787i \(-0.261781\pi\)
0.680458 + 0.732787i \(0.261781\pi\)
\(194\) 2.75304e8 2.70711
\(195\) −5.69412e7 −0.549927
\(196\) 0 0
\(197\) 1.66347e8 1.55018 0.775091 0.631850i \(-0.217704\pi\)
0.775091 + 0.631850i \(0.217704\pi\)
\(198\) 7.50944e7 0.687510
\(199\) −6.39211e7 −0.574987 −0.287494 0.957783i \(-0.592822\pi\)
−0.287494 + 0.957783i \(0.592822\pi\)
\(200\) 8.92447e7 0.788819
\(201\) −2.54868e7 −0.221375
\(202\) −1.03174e8 −0.880726
\(203\) 0 0
\(204\) 1.02775e8 0.847582
\(205\) −1.46378e7 −0.118669
\(206\) 3.24925e8 2.58969
\(207\) −2.19115e7 −0.171702
\(208\) −3.43411e7 −0.264602
\(209\) −1.05823e8 −0.801802
\(210\) 0 0
\(211\) −6.44393e7 −0.472239 −0.236120 0.971724i \(-0.575876\pi\)
−0.236120 + 0.971724i \(0.575876\pi\)
\(212\) −3.64777e8 −2.62937
\(213\) 2.09732e7 0.148709
\(214\) −4.27770e8 −2.98375
\(215\) 1.15941e8 0.795615
\(216\) −2.23532e8 −1.50922
\(217\) 0 0
\(218\) 2.10946e7 0.137903
\(219\) 1.83790e8 1.18241
\(220\) −5.12879e8 −3.24740
\(221\) −4.59377e7 −0.286284
\(222\) 5.85387e7 0.359094
\(223\) 9.27372e7 0.559998 0.279999 0.960000i \(-0.409666\pi\)
0.279999 + 0.960000i \(0.409666\pi\)
\(224\) 0 0
\(225\) −2.79489e7 −0.163578
\(226\) −3.02512e8 −1.74326
\(227\) −3.22533e7 −0.183014 −0.0915070 0.995804i \(-0.529168\pi\)
−0.0915070 + 0.995804i \(0.529168\pi\)
\(228\) 1.55689e8 0.869933
\(229\) −2.85949e8 −1.57349 −0.786746 0.617277i \(-0.788236\pi\)
−0.786746 + 0.617277i \(0.788236\pi\)
\(230\) 2.31604e8 1.25516
\(231\) 0 0
\(232\) 8.21447e7 0.431889
\(233\) 6.43667e7 0.333362 0.166681 0.986011i \(-0.446695\pi\)
0.166681 + 0.986011i \(0.446695\pi\)
\(234\) 4.93819e7 0.251949
\(235\) 3.85304e8 1.93672
\(236\) −6.41215e7 −0.317550
\(237\) 9.27390e7 0.452526
\(238\) 0 0
\(239\) −7.70718e7 −0.365177 −0.182588 0.983189i \(-0.558448\pi\)
−0.182588 + 0.983189i \(0.558448\pi\)
\(240\) 1.15049e8 0.537210
\(241\) −2.31733e8 −1.06642 −0.533210 0.845983i \(-0.679014\pi\)
−0.533210 + 0.845983i \(0.679014\pi\)
\(242\) 3.76901e8 1.70952
\(243\) 1.24356e8 0.555962
\(244\) −7.13093e8 −3.14255
\(245\) 0 0
\(246\) −3.13884e7 −0.134430
\(247\) −6.95888e7 −0.293833
\(248\) −8.83054e7 −0.367626
\(249\) −4.25890e6 −0.0174824
\(250\) −2.24647e8 −0.909306
\(251\) 4.88898e8 1.95146 0.975731 0.218975i \(-0.0702712\pi\)
0.975731 + 0.218975i \(0.0702712\pi\)
\(252\) 0 0
\(253\) −2.18120e8 −0.846787
\(254\) 4.27862e8 1.63827
\(255\) 1.53900e8 0.581230
\(256\) −4.48261e8 −1.66990
\(257\) 3.84669e7 0.141358 0.0706791 0.997499i \(-0.477483\pi\)
0.0706791 + 0.997499i \(0.477483\pi\)
\(258\) 2.48618e8 0.901288
\(259\) 0 0
\(260\) −3.37268e8 −1.19006
\(261\) −2.57254e7 −0.0895613
\(262\) 3.57217e8 1.22709
\(263\) 2.47568e8 0.839171 0.419585 0.907716i \(-0.362176\pi\)
0.419585 + 0.907716i \(0.362176\pi\)
\(264\) −4.97512e8 −1.66414
\(265\) −5.46233e8 −1.80309
\(266\) 0 0
\(267\) 3.14340e8 1.01067
\(268\) −1.50961e8 −0.479062
\(269\) −2.48276e7 −0.0777682 −0.0388841 0.999244i \(-0.512380\pi\)
−0.0388841 + 0.999244i \(0.512380\pi\)
\(270\) −7.39941e8 −2.28783
\(271\) 1.83516e8 0.560121 0.280061 0.959982i \(-0.409645\pi\)
0.280061 + 0.959982i \(0.409645\pi\)
\(272\) 9.28167e7 0.279663
\(273\) 0 0
\(274\) 7.48602e8 2.19849
\(275\) −2.78220e8 −0.806723
\(276\) 3.20904e8 0.918741
\(277\) −3.78154e8 −1.06903 −0.534515 0.845159i \(-0.679506\pi\)
−0.534515 + 0.845159i \(0.679506\pi\)
\(278\) 4.66316e8 1.30174
\(279\) 2.76547e7 0.0762351
\(280\) 0 0
\(281\) −6.03667e8 −1.62302 −0.811512 0.584335i \(-0.801355\pi\)
−0.811512 + 0.584335i \(0.801355\pi\)
\(282\) 8.26226e8 2.19395
\(283\) −1.55837e8 −0.408713 −0.204356 0.978897i \(-0.565510\pi\)
−0.204356 + 0.978897i \(0.565510\pi\)
\(284\) 1.24227e8 0.321810
\(285\) 2.33136e8 0.596557
\(286\) 4.91577e8 1.24254
\(287\) 0 0
\(288\) 6.23367e7 0.153769
\(289\) −2.86179e8 −0.697421
\(290\) 2.71917e8 0.654702
\(291\) 5.71204e8 1.35883
\(292\) 1.08861e9 2.55877
\(293\) 4.10409e8 0.953191 0.476596 0.879123i \(-0.341871\pi\)
0.476596 + 0.879123i \(0.341871\pi\)
\(294\) 0 0
\(295\) −9.60185e7 −0.217760
\(296\) 1.56851e8 0.351532
\(297\) 6.96861e8 1.54347
\(298\) 8.25387e8 1.80676
\(299\) −1.43435e8 −0.310318
\(300\) 4.09324e8 0.875272
\(301\) 0 0
\(302\) −6.39129e8 −1.33525
\(303\) −2.14067e8 −0.442079
\(304\) 1.40604e8 0.287038
\(305\) −1.06782e9 −2.15500
\(306\) −1.33469e8 −0.266290
\(307\) 6.12316e8 1.20779 0.603895 0.797064i \(-0.293615\pi\)
0.603895 + 0.797064i \(0.293615\pi\)
\(308\) 0 0
\(309\) 6.74158e8 1.29989
\(310\) −2.92310e8 −0.557286
\(311\) 8.14865e7 0.153612 0.0768058 0.997046i \(-0.475528\pi\)
0.0768058 + 0.997046i \(0.475528\pi\)
\(312\) −3.27163e8 −0.609851
\(313\) −4.66510e8 −0.859916 −0.429958 0.902849i \(-0.641472\pi\)
−0.429958 + 0.902849i \(0.641472\pi\)
\(314\) −1.22075e9 −2.22522
\(315\) 0 0
\(316\) 5.49302e8 0.979279
\(317\) 4.37865e8 0.772027 0.386014 0.922493i \(-0.373852\pi\)
0.386014 + 0.922493i \(0.373852\pi\)
\(318\) −1.17131e9 −2.04257
\(319\) −2.56086e8 −0.441691
\(320\) −1.03208e9 −1.76071
\(321\) −8.87543e8 −1.49769
\(322\) 0 0
\(323\) 1.88084e8 0.310558
\(324\) −7.03305e8 −1.14878
\(325\) −1.82957e8 −0.295636
\(326\) 7.84278e8 1.25374
\(327\) 4.37674e7 0.0692203
\(328\) −8.41032e7 −0.131599
\(329\) 0 0
\(330\) −1.64688e9 −2.52268
\(331\) 1.18359e9 1.79392 0.896960 0.442112i \(-0.145771\pi\)
0.896960 + 0.442112i \(0.145771\pi\)
\(332\) −2.52259e7 −0.0378324
\(333\) −4.91212e7 −0.0728977
\(334\) −1.13074e9 −1.66054
\(335\) −2.26055e8 −0.328517
\(336\) 0 0
\(337\) 2.24486e8 0.319510 0.159755 0.987157i \(-0.448930\pi\)
0.159755 + 0.987157i \(0.448930\pi\)
\(338\) −8.70174e8 −1.22574
\(339\) −6.27655e8 −0.875028
\(340\) 9.11565e8 1.25780
\(341\) 2.75292e8 0.375970
\(342\) −2.02186e8 −0.273312
\(343\) 0 0
\(344\) 6.66156e8 0.882310
\(345\) 4.80536e8 0.630027
\(346\) −8.44108e8 −1.09555
\(347\) 5.66996e8 0.728496 0.364248 0.931302i \(-0.381326\pi\)
0.364248 + 0.931302i \(0.381326\pi\)
\(348\) 3.76760e8 0.479223
\(349\) −1.28642e9 −1.61992 −0.809958 0.586487i \(-0.800510\pi\)
−0.809958 + 0.586487i \(0.800510\pi\)
\(350\) 0 0
\(351\) 4.58255e8 0.565629
\(352\) 6.20537e8 0.758347
\(353\) −3.12019e8 −0.377546 −0.188773 0.982021i \(-0.560451\pi\)
−0.188773 + 0.982021i \(0.560451\pi\)
\(354\) −2.05897e8 −0.246682
\(355\) 1.86022e8 0.220682
\(356\) 1.86187e9 2.18713
\(357\) 0 0
\(358\) −1.20983e9 −1.39358
\(359\) −1.44457e9 −1.64781 −0.823906 0.566726i \(-0.808210\pi\)
−0.823906 + 0.566726i \(0.808210\pi\)
\(360\) −4.43282e8 −0.500750
\(361\) −6.08952e8 −0.681253
\(362\) −2.90832e7 −0.0322227
\(363\) 7.82000e8 0.858091
\(364\) 0 0
\(365\) 1.63013e9 1.75468
\(366\) −2.28977e9 −2.44123
\(367\) 1.28857e9 1.36075 0.680373 0.732866i \(-0.261818\pi\)
0.680373 + 0.732866i \(0.261818\pi\)
\(368\) 2.89810e8 0.303142
\(369\) 2.63387e7 0.0272899
\(370\) 5.19210e8 0.532890
\(371\) 0 0
\(372\) −4.05016e8 −0.407917
\(373\) −8.95722e8 −0.893701 −0.446850 0.894609i \(-0.647454\pi\)
−0.446850 + 0.894609i \(0.647454\pi\)
\(374\) −1.32863e9 −1.31327
\(375\) −4.66100e8 −0.456425
\(376\) 2.21382e9 2.14775
\(377\) −1.68402e8 −0.161865
\(378\) 0 0
\(379\) −1.52727e9 −1.44105 −0.720527 0.693427i \(-0.756100\pi\)
−0.720527 + 0.693427i \(0.756100\pi\)
\(380\) 1.38089e9 1.29097
\(381\) 8.87734e8 0.822329
\(382\) −1.04661e9 −0.960650
\(383\) 1.75124e9 1.59276 0.796380 0.604796i \(-0.206745\pi\)
0.796380 + 0.604796i \(0.206745\pi\)
\(384\) −1.71318e9 −1.54398
\(385\) 0 0
\(386\) 2.58510e9 2.28782
\(387\) −2.08621e8 −0.182966
\(388\) 3.38330e9 2.94055
\(389\) −6.20733e8 −0.534664 −0.267332 0.963604i \(-0.586142\pi\)
−0.267332 + 0.963604i \(0.586142\pi\)
\(390\) −1.08298e9 −0.924475
\(391\) 3.87676e8 0.327982
\(392\) 0 0
\(393\) 7.41157e8 0.615937
\(394\) 3.16380e9 2.60599
\(395\) 8.22550e8 0.671541
\(396\) 9.22859e8 0.746796
\(397\) −1.59069e9 −1.27590 −0.637952 0.770076i \(-0.720218\pi\)
−0.637952 + 0.770076i \(0.720218\pi\)
\(398\) −1.21574e9 −0.966604
\(399\) 0 0
\(400\) 3.69663e8 0.288799
\(401\) 4.98917e8 0.386388 0.193194 0.981161i \(-0.438115\pi\)
0.193194 + 0.981161i \(0.438115\pi\)
\(402\) −4.84741e8 −0.372151
\(403\) 1.81031e8 0.137780
\(404\) −1.26794e9 −0.956673
\(405\) −1.05316e9 −0.787775
\(406\) 0 0
\(407\) −4.88981e8 −0.359511
\(408\) 8.84253e8 0.644564
\(409\) −2.37156e9 −1.71397 −0.856984 0.515343i \(-0.827664\pi\)
−0.856984 + 0.515343i \(0.827664\pi\)
\(410\) −2.78400e8 −0.199492
\(411\) 1.55321e9 1.10353
\(412\) 3.99311e9 2.81301
\(413\) 0 0
\(414\) −4.16742e8 −0.288646
\(415\) −3.77744e7 −0.0259435
\(416\) 4.08064e8 0.277908
\(417\) 9.67519e8 0.653406
\(418\) −2.01268e9 −1.34790
\(419\) 8.82367e8 0.586003 0.293002 0.956112i \(-0.405346\pi\)
0.293002 + 0.956112i \(0.405346\pi\)
\(420\) 0 0
\(421\) −1.22486e9 −0.800019 −0.400010 0.916511i \(-0.630993\pi\)
−0.400010 + 0.916511i \(0.630993\pi\)
\(422\) −1.22559e9 −0.793875
\(423\) −6.93305e8 −0.445382
\(424\) −3.13845e9 −1.99956
\(425\) 4.94494e8 0.312464
\(426\) 3.98897e8 0.249992
\(427\) 0 0
\(428\) −5.25700e9 −3.24105
\(429\) 1.01993e9 0.623692
\(430\) 2.20512e9 1.33750
\(431\) 6.42740e8 0.386692 0.193346 0.981131i \(-0.438066\pi\)
0.193346 + 0.981131i \(0.438066\pi\)
\(432\) −9.25899e8 −0.552548
\(433\) 2.02652e9 1.19962 0.599811 0.800142i \(-0.295243\pi\)
0.599811 + 0.800142i \(0.295243\pi\)
\(434\) 0 0
\(435\) 5.64177e8 0.328627
\(436\) 2.59239e8 0.149795
\(437\) 5.87271e8 0.336631
\(438\) 3.49557e9 1.98773
\(439\) −1.28650e8 −0.0725746 −0.0362873 0.999341i \(-0.511553\pi\)
−0.0362873 + 0.999341i \(0.511553\pi\)
\(440\) −4.41269e9 −2.46956
\(441\) 0 0
\(442\) −8.73704e8 −0.481267
\(443\) 8.55957e7 0.0467777 0.0233889 0.999726i \(-0.492554\pi\)
0.0233889 + 0.999726i \(0.492554\pi\)
\(444\) 7.19401e8 0.390059
\(445\) 2.78804e9 1.49982
\(446\) 1.76380e9 0.941406
\(447\) 1.71252e9 0.906902
\(448\) 0 0
\(449\) 4.64175e8 0.242002 0.121001 0.992652i \(-0.461390\pi\)
0.121001 + 0.992652i \(0.461390\pi\)
\(450\) −5.31569e8 −0.274989
\(451\) 2.62191e8 0.134586
\(452\) −3.71766e9 −1.89359
\(453\) −1.32607e9 −0.670229
\(454\) −6.13437e8 −0.307662
\(455\) 0 0
\(456\) 1.33951e9 0.661561
\(457\) −5.45972e8 −0.267586 −0.133793 0.991009i \(-0.542716\pi\)
−0.133793 + 0.991009i \(0.542716\pi\)
\(458\) −5.43856e9 −2.64518
\(459\) −1.23856e9 −0.597825
\(460\) 2.84626e9 1.36340
\(461\) −1.36175e9 −0.647355 −0.323678 0.946167i \(-0.604919\pi\)
−0.323678 + 0.946167i \(0.604919\pi\)
\(462\) 0 0
\(463\) −1.76640e9 −0.827097 −0.413549 0.910482i \(-0.635711\pi\)
−0.413549 + 0.910482i \(0.635711\pi\)
\(464\) 3.40254e8 0.158121
\(465\) −6.06489e8 −0.279729
\(466\) 1.22421e9 0.560409
\(467\) −1.71412e9 −0.778811 −0.389405 0.921066i \(-0.627319\pi\)
−0.389405 + 0.921066i \(0.627319\pi\)
\(468\) 6.06870e8 0.273675
\(469\) 0 0
\(470\) 7.32823e9 3.25579
\(471\) −2.53283e9 −1.11695
\(472\) −5.51687e8 −0.241488
\(473\) −2.07674e9 −0.902335
\(474\) 1.76383e9 0.760735
\(475\) 7.49086e8 0.320704
\(476\) 0 0
\(477\) 9.82875e8 0.414652
\(478\) −1.46585e9 −0.613894
\(479\) 3.59504e9 1.49462 0.747308 0.664477i \(-0.231346\pi\)
0.747308 + 0.664477i \(0.231346\pi\)
\(480\) −1.36709e9 −0.564226
\(481\) −3.21553e8 −0.131748
\(482\) −4.40740e9 −1.79274
\(483\) 0 0
\(484\) 4.63186e9 1.85694
\(485\) 5.06630e9 2.01648
\(486\) 2.36517e9 0.934620
\(487\) 2.10947e9 0.827603 0.413802 0.910367i \(-0.364201\pi\)
0.413802 + 0.910367i \(0.364201\pi\)
\(488\) −6.13529e9 −2.38982
\(489\) 1.62723e9 0.629315
\(490\) 0 0
\(491\) −1.92961e9 −0.735671 −0.367835 0.929891i \(-0.619901\pi\)
−0.367835 + 0.929891i \(0.619901\pi\)
\(492\) −3.85742e8 −0.146022
\(493\) 4.55154e8 0.171078
\(494\) −1.32353e9 −0.493958
\(495\) 1.38193e9 0.512116
\(496\) −3.65772e8 −0.134594
\(497\) 0 0
\(498\) −8.10014e7 −0.0293893
\(499\) −3.82144e9 −1.37681 −0.688407 0.725325i \(-0.741690\pi\)
−0.688407 + 0.725325i \(0.741690\pi\)
\(500\) −2.76076e9 −0.987719
\(501\) −2.34606e9 −0.833505
\(502\) 9.29850e9 3.28057
\(503\) 1.26027e8 0.0441547 0.0220773 0.999756i \(-0.492972\pi\)
0.0220773 + 0.999756i \(0.492972\pi\)
\(504\) 0 0
\(505\) −1.89867e9 −0.656039
\(506\) −4.14850e9 −1.42352
\(507\) −1.80545e9 −0.615258
\(508\) 5.25814e9 1.77955
\(509\) 2.05967e8 0.0692284 0.0346142 0.999401i \(-0.488980\pi\)
0.0346142 + 0.999401i \(0.488980\pi\)
\(510\) 2.92707e9 0.977097
\(511\) 0 0
\(512\) −2.96865e9 −0.977494
\(513\) −1.87624e9 −0.613590
\(514\) 7.31614e8 0.237635
\(515\) 5.97946e9 1.92902
\(516\) 3.05535e9 0.979009
\(517\) −6.90157e9 −2.19650
\(518\) 0 0
\(519\) −1.75137e9 −0.549909
\(520\) −2.90178e9 −0.905009
\(521\) −2.53117e9 −0.784131 −0.392066 0.919937i \(-0.628239\pi\)
−0.392066 + 0.919937i \(0.628239\pi\)
\(522\) −4.89280e8 −0.150560
\(523\) −2.84816e9 −0.870578 −0.435289 0.900291i \(-0.643354\pi\)
−0.435289 + 0.900291i \(0.643354\pi\)
\(524\) 4.38995e9 1.33291
\(525\) 0 0
\(526\) 4.70858e9 1.41072
\(527\) −4.89290e8 −0.145623
\(528\) −2.06076e9 −0.609268
\(529\) −2.19435e9 −0.644482
\(530\) −1.03890e10 −3.03115
\(531\) 1.72773e8 0.0500777
\(532\) 0 0
\(533\) 1.72417e8 0.0493212
\(534\) 5.97853e9 1.69903
\(535\) −7.87208e9 −2.22255
\(536\) −1.29883e9 −0.364314
\(537\) −2.51017e9 −0.699508
\(538\) −4.72205e8 −0.130735
\(539\) 0 0
\(540\) −9.09337e9 −2.48512
\(541\) 5.96667e9 1.62010 0.810049 0.586362i \(-0.199440\pi\)
0.810049 + 0.586362i \(0.199440\pi\)
\(542\) 3.49035e9 0.941612
\(543\) −6.03422e7 −0.0161741
\(544\) −1.10291e9 −0.293727
\(545\) 3.88196e8 0.102722
\(546\) 0 0
\(547\) 4.54821e9 1.18819 0.594093 0.804396i \(-0.297511\pi\)
0.594093 + 0.804396i \(0.297511\pi\)
\(548\) 9.19981e9 2.38807
\(549\) 1.92140e9 0.495581
\(550\) −5.29156e9 −1.35617
\(551\) 6.89491e8 0.175589
\(552\) 2.76098e9 0.698678
\(553\) 0 0
\(554\) −7.19224e9 −1.79713
\(555\) 1.07726e9 0.267483
\(556\) 5.73071e9 1.41399
\(557\) −4.18975e9 −1.02729 −0.513647 0.858002i \(-0.671706\pi\)
−0.513647 + 0.858002i \(0.671706\pi\)
\(558\) 5.25975e8 0.128158
\(559\) −1.36566e9 −0.330675
\(560\) 0 0
\(561\) −2.75666e9 −0.659193
\(562\) −1.14813e10 −2.72844
\(563\) 1.69918e9 0.401291 0.200646 0.979664i \(-0.435696\pi\)
0.200646 + 0.979664i \(0.435696\pi\)
\(564\) 1.01538e10 2.38314
\(565\) −5.56699e9 −1.29853
\(566\) −2.96392e9 −0.687082
\(567\) 0 0
\(568\) 1.06882e9 0.244728
\(569\) −4.48579e8 −0.102081 −0.0510406 0.998697i \(-0.516254\pi\)
−0.0510406 + 0.998697i \(0.516254\pi\)
\(570\) 4.43408e9 1.00286
\(571\) −3.09015e8 −0.0694630 −0.0347315 0.999397i \(-0.511058\pi\)
−0.0347315 + 0.999397i \(0.511058\pi\)
\(572\) 6.04115e9 1.34969
\(573\) −2.17153e9 −0.482197
\(574\) 0 0
\(575\) 1.54400e9 0.338697
\(576\) 1.85709e9 0.404906
\(577\) −5.69700e9 −1.23461 −0.617307 0.786723i \(-0.711776\pi\)
−0.617307 + 0.786723i \(0.711776\pi\)
\(578\) −5.44293e9 −1.17242
\(579\) 5.36359e9 1.14837
\(580\) 3.34168e9 0.711159
\(581\) 0 0
\(582\) 1.08639e10 2.28431
\(583\) 9.78413e9 2.04495
\(584\) 9.36614e9 1.94588
\(585\) 9.08755e8 0.187673
\(586\) 7.80570e9 1.60240
\(587\) −1.74145e8 −0.0355368 −0.0177684 0.999842i \(-0.505656\pi\)
−0.0177684 + 0.999842i \(0.505656\pi\)
\(588\) 0 0
\(589\) −7.41202e8 −0.149463
\(590\) −1.82621e9 −0.366073
\(591\) 6.56430e9 1.30807
\(592\) 6.49695e8 0.128702
\(593\) 3.83650e8 0.0755517 0.0377758 0.999286i \(-0.487973\pi\)
0.0377758 + 0.999286i \(0.487973\pi\)
\(594\) 1.32538e10 2.59471
\(595\) 0 0
\(596\) 1.01434e10 1.96256
\(597\) −2.52242e9 −0.485186
\(598\) −2.72805e9 −0.521672
\(599\) −1.26883e9 −0.241217 −0.120609 0.992700i \(-0.538485\pi\)
−0.120609 + 0.992700i \(0.538485\pi\)
\(600\) 3.52173e9 0.665621
\(601\) 2.12270e9 0.398867 0.199434 0.979911i \(-0.436090\pi\)
0.199434 + 0.979911i \(0.436090\pi\)
\(602\) 0 0
\(603\) 4.06757e8 0.0755483
\(604\) −7.85446e9 −1.45040
\(605\) 6.93596e9 1.27339
\(606\) −4.07141e9 −0.743174
\(607\) −3.47687e9 −0.630999 −0.315499 0.948926i \(-0.602172\pi\)
−0.315499 + 0.948926i \(0.602172\pi\)
\(608\) −1.67075e9 −0.301473
\(609\) 0 0
\(610\) −2.03092e10 −3.62274
\(611\) −4.53846e9 −0.804942
\(612\) −1.64024e9 −0.289253
\(613\) 4.57439e9 0.802087 0.401043 0.916059i \(-0.368648\pi\)
0.401043 + 0.916059i \(0.368648\pi\)
\(614\) 1.16458e10 2.03040
\(615\) −5.77628e8 −0.100135
\(616\) 0 0
\(617\) 4.07855e9 0.699049 0.349525 0.936927i \(-0.386343\pi\)
0.349525 + 0.936927i \(0.386343\pi\)
\(618\) 1.28220e10 2.18523
\(619\) 4.85260e8 0.0822351 0.0411176 0.999154i \(-0.486908\pi\)
0.0411176 + 0.999154i \(0.486908\pi\)
\(620\) −3.59230e9 −0.605343
\(621\) −3.86728e9 −0.648015
\(622\) 1.54982e9 0.258234
\(623\) 0 0
\(624\) −1.35515e9 −0.223276
\(625\) −7.60114e9 −1.24537
\(626\) −8.87271e9 −1.44559
\(627\) −4.17593e9 −0.676576
\(628\) −1.50022e10 −2.41711
\(629\) 8.69091e8 0.139248
\(630\) 0 0
\(631\) 5.74787e9 0.910760 0.455380 0.890297i \(-0.349503\pi\)
0.455380 + 0.890297i \(0.349503\pi\)
\(632\) 4.72607e9 0.744716
\(633\) −2.54287e9 −0.398485
\(634\) 8.32789e9 1.29784
\(635\) 7.87378e9 1.22032
\(636\) −1.43946e10 −2.21871
\(637\) 0 0
\(638\) −4.87058e9 −0.742521
\(639\) −3.34723e8 −0.0507496
\(640\) −1.51951e10 −2.29125
\(641\) −5.67745e9 −0.851432 −0.425716 0.904857i \(-0.639978\pi\)
−0.425716 + 0.904857i \(0.639978\pi\)
\(642\) −1.68805e10 −2.51774
\(643\) −9.43725e9 −1.39993 −0.699966 0.714176i \(-0.746802\pi\)
−0.699966 + 0.714176i \(0.746802\pi\)
\(644\) 0 0
\(645\) 4.57522e9 0.671356
\(646\) 3.57723e9 0.522075
\(647\) −6.61857e8 −0.0960725 −0.0480362 0.998846i \(-0.515296\pi\)
−0.0480362 + 0.998846i \(0.515296\pi\)
\(648\) −6.05108e9 −0.873615
\(649\) 1.71988e9 0.246969
\(650\) −3.47972e9 −0.496990
\(651\) 0 0
\(652\) 9.63824e9 1.36186
\(653\) −2.13437e9 −0.299967 −0.149983 0.988689i \(-0.547922\pi\)
−0.149983 + 0.988689i \(0.547922\pi\)
\(654\) 8.32426e8 0.116365
\(655\) 6.57371e9 0.914041
\(656\) −3.48366e8 −0.0481806
\(657\) −2.93321e9 −0.403519
\(658\) 0 0
\(659\) −9.15512e9 −1.24613 −0.623067 0.782168i \(-0.714114\pi\)
−0.623067 + 0.782168i \(0.714114\pi\)
\(660\) −2.02390e10 −2.74022
\(661\) 2.81453e9 0.379054 0.189527 0.981876i \(-0.439305\pi\)
0.189527 + 0.981876i \(0.439305\pi\)
\(662\) 2.25111e10 3.01573
\(663\) −1.81277e9 −0.241572
\(664\) −2.17038e8 −0.0287705
\(665\) 0 0
\(666\) −9.34251e8 −0.122547
\(667\) 1.42117e9 0.185441
\(668\) −1.38960e10 −1.80373
\(669\) 3.65955e9 0.472537
\(670\) −4.29942e9 −0.552266
\(671\) 1.91268e10 2.44406
\(672\) 0 0
\(673\) −1.09650e10 −1.38661 −0.693307 0.720643i \(-0.743847\pi\)
−0.693307 + 0.720643i \(0.743847\pi\)
\(674\) 4.26956e9 0.537123
\(675\) −4.93286e9 −0.617356
\(676\) −1.06938e10 −1.33144
\(677\) 1.03601e10 1.28322 0.641612 0.767029i \(-0.278266\pi\)
0.641612 + 0.767029i \(0.278266\pi\)
\(678\) −1.19376e10 −1.47100
\(679\) 0 0
\(680\) 7.84290e9 0.956523
\(681\) −1.27277e9 −0.154431
\(682\) 5.23587e9 0.632038
\(683\) −8.47880e9 −1.01827 −0.509134 0.860687i \(-0.670034\pi\)
−0.509134 + 0.860687i \(0.670034\pi\)
\(684\) −2.48472e9 −0.296881
\(685\) 1.37762e10 1.63762
\(686\) 0 0
\(687\) −1.12840e10 −1.32774
\(688\) 2.75930e9 0.323028
\(689\) 6.43402e9 0.749403
\(690\) 9.13946e9 1.05913
\(691\) −9.95648e8 −0.114798 −0.0573988 0.998351i \(-0.518281\pi\)
−0.0573988 + 0.998351i \(0.518281\pi\)
\(692\) −1.03735e10 −1.19002
\(693\) 0 0
\(694\) 1.07839e10 1.22466
\(695\) 8.58142e9 0.969644
\(696\) 3.24156e9 0.364436
\(697\) −4.66006e8 −0.0521287
\(698\) −2.44668e10 −2.72322
\(699\) 2.54001e9 0.281297
\(700\) 0 0
\(701\) 1.18853e10 1.30316 0.651579 0.758581i \(-0.274107\pi\)
0.651579 + 0.758581i \(0.274107\pi\)
\(702\) 8.71569e9 0.950872
\(703\) 1.31654e9 0.142920
\(704\) 1.84866e10 1.99688
\(705\) 1.52047e10 1.63424
\(706\) −5.93439e9 −0.634687
\(707\) 0 0
\(708\) −2.53033e9 −0.267955
\(709\) −1.38325e10 −1.45760 −0.728802 0.684725i \(-0.759922\pi\)
−0.728802 + 0.684725i \(0.759922\pi\)
\(710\) 3.53802e9 0.370985
\(711\) −1.48007e9 −0.154433
\(712\) 1.60191e10 1.66325
\(713\) −1.52775e9 −0.157848
\(714\) 0 0
\(715\) 9.04629e9 0.925549
\(716\) −1.48680e10 −1.51376
\(717\) −3.04137e9 −0.308143
\(718\) −2.74747e10 −2.77011
\(719\) −5.48605e9 −0.550438 −0.275219 0.961382i \(-0.588750\pi\)
−0.275219 + 0.961382i \(0.588750\pi\)
\(720\) −1.83613e9 −0.183333
\(721\) 0 0
\(722\) −1.15819e10 −1.14524
\(723\) −9.14453e9 −0.899865
\(724\) −3.57413e8 −0.0350014
\(725\) 1.81275e9 0.176667
\(726\) 1.48731e10 1.44253
\(727\) 4.80453e9 0.463746 0.231873 0.972746i \(-0.425515\pi\)
0.231873 + 0.972746i \(0.425515\pi\)
\(728\) 0 0
\(729\) 1.14879e10 1.09824
\(730\) 3.10040e10 2.94977
\(731\) 3.69109e9 0.349497
\(732\) −2.81397e10 −2.65174
\(733\) 9.96386e9 0.934467 0.467233 0.884134i \(-0.345251\pi\)
0.467233 + 0.884134i \(0.345251\pi\)
\(734\) 2.45078e10 2.28753
\(735\) 0 0
\(736\) −3.44372e9 −0.318387
\(737\) 4.04910e9 0.372583
\(738\) 5.00945e8 0.0458767
\(739\) 6.89414e9 0.628383 0.314192 0.949360i \(-0.398267\pi\)
0.314192 + 0.949360i \(0.398267\pi\)
\(740\) 6.38074e9 0.578842
\(741\) −2.74608e9 −0.247942
\(742\) 0 0
\(743\) 7.75055e9 0.693221 0.346610 0.938009i \(-0.387333\pi\)
0.346610 + 0.938009i \(0.387333\pi\)
\(744\) −3.48467e9 −0.310210
\(745\) 1.51893e10 1.34583
\(746\) −1.70360e10 −1.50239
\(747\) 6.79701e7 0.00596617
\(748\) −1.63279e10 −1.42651
\(749\) 0 0
\(750\) −8.86491e9 −0.767290
\(751\) 8.59013e9 0.740048 0.370024 0.929022i \(-0.379349\pi\)
0.370024 + 0.929022i \(0.379349\pi\)
\(752\) 9.16992e9 0.786327
\(753\) 1.92926e10 1.64668
\(754\) −3.20289e9 −0.272108
\(755\) −1.17616e10 −0.994610
\(756\) 0 0
\(757\) −3.04455e9 −0.255087 −0.127543 0.991833i \(-0.540709\pi\)
−0.127543 + 0.991833i \(0.540709\pi\)
\(758\) −2.90477e10 −2.42253
\(759\) −8.60736e9 −0.714535
\(760\) 1.18808e10 0.981746
\(761\) −2.88950e9 −0.237671 −0.118835 0.992914i \(-0.537916\pi\)
−0.118835 + 0.992914i \(0.537916\pi\)
\(762\) 1.68841e10 1.38241
\(763\) 0 0
\(764\) −1.28622e10 −1.04349
\(765\) −2.45617e9 −0.198355
\(766\) 3.33074e10 2.67757
\(767\) 1.13099e9 0.0905057
\(768\) −1.76891e10 −1.40910
\(769\) −3.71789e9 −0.294818 −0.147409 0.989076i \(-0.547093\pi\)
−0.147409 + 0.989076i \(0.547093\pi\)
\(770\) 0 0
\(771\) 1.51796e9 0.119281
\(772\) 3.17691e10 2.48510
\(773\) −4.56149e9 −0.355205 −0.177602 0.984102i \(-0.556834\pi\)
−0.177602 + 0.984102i \(0.556834\pi\)
\(774\) −3.96783e9 −0.307581
\(775\) −1.94870e9 −0.150380
\(776\) 2.91091e10 2.23621
\(777\) 0 0
\(778\) −1.18059e10 −0.898817
\(779\) −7.05930e8 −0.0535033
\(780\) −1.33091e10 −1.00420
\(781\) −3.33203e9 −0.250283
\(782\) 7.37333e9 0.551366
\(783\) −4.54042e9 −0.338010
\(784\) 0 0
\(785\) −2.24650e10 −1.65753
\(786\) 1.40963e10 1.03544
\(787\) 6.51750e9 0.476617 0.238308 0.971190i \(-0.423407\pi\)
0.238308 + 0.971190i \(0.423407\pi\)
\(788\) 3.88810e10 2.83071
\(789\) 9.76943e9 0.708108
\(790\) 1.56443e10 1.12892
\(791\) 0 0
\(792\) 7.94007e9 0.567919
\(793\) 1.25777e10 0.895665
\(794\) −3.02538e10 −2.14491
\(795\) −2.15552e10 −1.52148
\(796\) −1.49406e10 −1.04996
\(797\) 5.00841e9 0.350425 0.175213 0.984531i \(-0.443939\pi\)
0.175213 + 0.984531i \(0.443939\pi\)
\(798\) 0 0
\(799\) 1.22665e10 0.850760
\(800\) −4.39258e9 −0.303323
\(801\) −5.01672e9 −0.344910
\(802\) 9.48906e9 0.649551
\(803\) −2.91989e10 −1.99004
\(804\) −5.95714e9 −0.404242
\(805\) 0 0
\(806\) 3.44310e9 0.231620
\(807\) −9.79736e8 −0.0656223
\(808\) −1.09091e10 −0.727525
\(809\) 8.98130e8 0.0596375 0.0298187 0.999555i \(-0.490507\pi\)
0.0298187 + 0.999555i \(0.490507\pi\)
\(810\) −2.00304e10 −1.32432
\(811\) −1.37233e10 −0.903413 −0.451707 0.892167i \(-0.649185\pi\)
−0.451707 + 0.892167i \(0.649185\pi\)
\(812\) 0 0
\(813\) 7.24183e9 0.472641
\(814\) −9.30009e9 −0.604369
\(815\) 1.44327e10 0.933893
\(816\) 3.66269e9 0.235985
\(817\) 5.59145e9 0.358713
\(818\) −4.51055e10 −2.88133
\(819\) 0 0
\(820\) −3.42135e9 −0.216695
\(821\) 1.45744e10 0.919159 0.459580 0.888137i \(-0.348000\pi\)
0.459580 + 0.888137i \(0.348000\pi\)
\(822\) 2.95410e10 1.85513
\(823\) −2.55933e10 −1.60039 −0.800196 0.599738i \(-0.795271\pi\)
−0.800196 + 0.599738i \(0.795271\pi\)
\(824\) 3.43558e10 2.13922
\(825\) −1.09790e10 −0.680728
\(826\) 0 0
\(827\) 5.33790e9 0.328172 0.164086 0.986446i \(-0.447533\pi\)
0.164086 + 0.986446i \(0.447533\pi\)
\(828\) −5.12148e9 −0.313537
\(829\) −1.88092e10 −1.14664 −0.573322 0.819330i \(-0.694345\pi\)
−0.573322 + 0.819330i \(0.694345\pi\)
\(830\) −7.18444e8 −0.0436133
\(831\) −1.49225e10 −0.902068
\(832\) 1.21568e10 0.731789
\(833\) 0 0
\(834\) 1.84015e10 1.09843
\(835\) −2.08085e10 −1.23691
\(836\) −2.47344e10 −1.46413
\(837\) 4.88094e9 0.287716
\(838\) 1.67820e10 0.985122
\(839\) −1.81462e10 −1.06077 −0.530383 0.847758i \(-0.677952\pi\)
−0.530383 + 0.847758i \(0.677952\pi\)
\(840\) 0 0
\(841\) −1.55813e10 −0.903273
\(842\) −2.32961e10 −1.34490
\(843\) −2.38216e10 −1.36954
\(844\) −1.50617e10 −0.862333
\(845\) −1.60134e10 −0.913033
\(846\) −1.31862e10 −0.748726
\(847\) 0 0
\(848\) −1.29999e10 −0.732072
\(849\) −6.14957e9 −0.344880
\(850\) 9.40495e9 0.525279
\(851\) 2.71364e9 0.150938
\(852\) 4.90217e9 0.271550
\(853\) 2.76121e10 1.52327 0.761637 0.648004i \(-0.224396\pi\)
0.761637 + 0.648004i \(0.224396\pi\)
\(854\) 0 0
\(855\) −3.72074e9 −0.203586
\(856\) −4.52301e10 −2.46473
\(857\) −2.08004e9 −0.112885 −0.0564427 0.998406i \(-0.517976\pi\)
−0.0564427 + 0.998406i \(0.517976\pi\)
\(858\) 1.93984e10 1.04848
\(859\) 1.20480e10 0.648545 0.324272 0.945964i \(-0.394881\pi\)
0.324272 + 0.945964i \(0.394881\pi\)
\(860\) 2.70995e10 1.45283
\(861\) 0 0
\(862\) 1.22245e10 0.650062
\(863\) 2.45958e10 1.30264 0.651319 0.758804i \(-0.274216\pi\)
0.651319 + 0.758804i \(0.274216\pi\)
\(864\) 1.10021e10 0.580336
\(865\) −1.55338e10 −0.816057
\(866\) 3.85431e10 2.01667
\(867\) −1.12931e10 −0.588497
\(868\) 0 0
\(869\) −1.47335e10 −0.761618
\(870\) 1.07303e10 0.552450
\(871\) 2.66268e9 0.136539
\(872\) 2.23043e9 0.113915
\(873\) −9.11615e9 −0.463726
\(874\) 1.11695e10 0.565905
\(875\) 0 0
\(876\) 4.29581e10 2.15914
\(877\) −1.35458e10 −0.678118 −0.339059 0.940765i \(-0.610109\pi\)
−0.339059 + 0.940765i \(0.610109\pi\)
\(878\) −2.44684e9 −0.122004
\(879\) 1.61954e10 0.804321
\(880\) −1.82779e10 −0.904145
\(881\) 2.21441e10 1.09105 0.545523 0.838096i \(-0.316331\pi\)
0.545523 + 0.838096i \(0.316331\pi\)
\(882\) 0 0
\(883\) 2.02852e10 0.991556 0.495778 0.868449i \(-0.334883\pi\)
0.495778 + 0.868449i \(0.334883\pi\)
\(884\) −1.07372e10 −0.522769
\(885\) −3.78903e9 −0.183750
\(886\) 1.62797e9 0.0786374
\(887\) 3.17249e10 1.52640 0.763198 0.646164i \(-0.223628\pi\)
0.763198 + 0.646164i \(0.223628\pi\)
\(888\) 6.18957e9 0.296630
\(889\) 0 0
\(890\) 5.30267e10 2.52133
\(891\) 1.88642e10 0.893443
\(892\) 2.16759e10 1.02259
\(893\) 1.85819e10 0.873194
\(894\) 3.25710e10 1.52458
\(895\) −2.22640e10 −1.03806
\(896\) 0 0
\(897\) −5.66018e9 −0.261853
\(898\) 8.82829e9 0.406827
\(899\) −1.79367e9 −0.0823350
\(900\) −6.53263e9 −0.298703
\(901\) −1.73898e10 −0.792060
\(902\) 4.98670e9 0.226251
\(903\) 0 0
\(904\) −3.19859e10 −1.44002
\(905\) −5.35206e8 −0.0240022
\(906\) −2.52210e10 −1.12671
\(907\) 2.65662e8 0.0118223 0.00591117 0.999983i \(-0.498118\pi\)
0.00591117 + 0.999983i \(0.498118\pi\)
\(908\) −7.53872e9 −0.334193
\(909\) 3.41641e9 0.150868
\(910\) 0 0
\(911\) −3.13936e10 −1.37571 −0.687854 0.725849i \(-0.741447\pi\)
−0.687854 + 0.725849i \(0.741447\pi\)
\(912\) 5.54843e9 0.242208
\(913\) 6.76615e8 0.0294235
\(914\) −1.03840e10 −0.449836
\(915\) −4.21377e10 −1.81843
\(916\) −6.68362e10 −2.87328
\(917\) 0 0
\(918\) −2.35567e10 −1.00500
\(919\) 3.35660e9 0.142658 0.0713288 0.997453i \(-0.477276\pi\)
0.0713288 + 0.997453i \(0.477276\pi\)
\(920\) 2.44886e10 1.03683
\(921\) 2.41629e10 1.01916
\(922\) −2.58995e10 −1.08826
\(923\) −2.19114e9 −0.0917200
\(924\) 0 0
\(925\) 3.46135e9 0.143797
\(926\) −3.35958e10 −1.39042
\(927\) −1.07593e10 −0.443612
\(928\) −4.04313e9 −0.166073
\(929\) −3.09152e10 −1.26508 −0.632539 0.774528i \(-0.717987\pi\)
−0.632539 + 0.774528i \(0.717987\pi\)
\(930\) −1.15350e10 −0.470249
\(931\) 0 0
\(932\) 1.50447e10 0.608735
\(933\) 3.21558e9 0.129621
\(934\) −3.26014e10 −1.30925
\(935\) −2.44502e10 −0.978232
\(936\) 5.22138e9 0.208123
\(937\) −5.91421e9 −0.234860 −0.117430 0.993081i \(-0.537466\pi\)
−0.117430 + 0.993081i \(0.537466\pi\)
\(938\) 0 0
\(939\) −1.84092e10 −0.725614
\(940\) 9.00590e10 3.53655
\(941\) 5.01276e10 1.96116 0.980580 0.196121i \(-0.0628344\pi\)
0.980580 + 0.196121i \(0.0628344\pi\)
\(942\) −4.81727e10 −1.87769
\(943\) −1.45505e9 −0.0565051
\(944\) −2.28516e9 −0.0884126
\(945\) 0 0
\(946\) −3.94982e10 −1.51690
\(947\) −6.47196e9 −0.247635 −0.123817 0.992305i \(-0.539514\pi\)
−0.123817 + 0.992305i \(0.539514\pi\)
\(948\) 2.16763e10 0.826335
\(949\) −1.92012e10 −0.729282
\(950\) 1.42471e10 0.539130
\(951\) 1.72788e10 0.651452
\(952\) 0 0
\(953\) 1.92800e9 0.0721575 0.0360788 0.999349i \(-0.488513\pi\)
0.0360788 + 0.999349i \(0.488513\pi\)
\(954\) 1.86936e10 0.697066
\(955\) −1.92604e10 −0.715573
\(956\) −1.80144e10 −0.666831
\(957\) −1.01055e10 −0.372707
\(958\) 6.83753e10 2.51258
\(959\) 0 0
\(960\) −4.07274e10 −1.48572
\(961\) −2.55844e10 −0.929916
\(962\) −6.11573e9 −0.221480
\(963\) 1.41648e10 0.511114
\(964\) −5.41640e10 −1.94734
\(965\) 4.75725e10 1.70416
\(966\) 0 0
\(967\) 9.68312e9 0.344368 0.172184 0.985065i \(-0.444918\pi\)
0.172184 + 0.985065i \(0.444918\pi\)
\(968\) 3.98515e10 1.41215
\(969\) 7.42208e9 0.262055
\(970\) 9.63576e10 3.38988
\(971\) 4.24418e10 1.48774 0.743870 0.668325i \(-0.232988\pi\)
0.743870 + 0.668325i \(0.232988\pi\)
\(972\) 2.90663e10 1.01522
\(973\) 0 0
\(974\) 4.01207e10 1.39127
\(975\) −7.21977e9 −0.249464
\(976\) −2.54132e10 −0.874952
\(977\) 4.37670e10 1.50147 0.750734 0.660605i \(-0.229700\pi\)
0.750734 + 0.660605i \(0.229700\pi\)
\(978\) 3.09488e10 1.05793
\(979\) −4.99395e10 −1.70100
\(980\) 0 0
\(981\) −6.98508e8 −0.0236227
\(982\) −3.66998e10 −1.23673
\(983\) 1.14491e9 0.0384445 0.0192223 0.999815i \(-0.493881\pi\)
0.0192223 + 0.999815i \(0.493881\pi\)
\(984\) −3.31884e9 −0.111046
\(985\) 5.82221e10 1.94116
\(986\) 8.65672e9 0.287597
\(987\) 0 0
\(988\) −1.62653e10 −0.536554
\(989\) 1.15250e10 0.378839
\(990\) 2.62834e10 0.860911
\(991\) 1.50163e10 0.490122 0.245061 0.969508i \(-0.421192\pi\)
0.245061 + 0.969508i \(0.421192\pi\)
\(992\) 4.34635e9 0.141362
\(993\) 4.67062e10 1.51374
\(994\) 0 0
\(995\) −2.23727e10 −0.720008
\(996\) −9.95453e8 −0.0319237
\(997\) −5.34366e10 −1.70768 −0.853839 0.520538i \(-0.825732\pi\)
−0.853839 + 0.520538i \(0.825732\pi\)
\(998\) −7.26812e10 −2.31454
\(999\) −8.66967e9 −0.275121
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 49.8.a.f.1.4 4
3.2 odd 2 441.8.a.s.1.1 4
7.2 even 3 7.8.c.a.4.1 yes 8
7.3 odd 6 49.8.c.g.30.1 8
7.4 even 3 7.8.c.a.2.1 8
7.5 odd 6 49.8.c.g.18.1 8
7.6 odd 2 49.8.a.e.1.4 4
21.2 odd 6 63.8.e.b.46.4 8
21.11 odd 6 63.8.e.b.37.4 8
21.20 even 2 441.8.a.t.1.1 4
28.11 odd 6 112.8.i.c.65.3 8
28.23 odd 6 112.8.i.c.81.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7.8.c.a.2.1 8 7.4 even 3
7.8.c.a.4.1 yes 8 7.2 even 3
49.8.a.e.1.4 4 7.6 odd 2
49.8.a.f.1.4 4 1.1 even 1 trivial
49.8.c.g.18.1 8 7.5 odd 6
49.8.c.g.30.1 8 7.3 odd 6
63.8.e.b.37.4 8 21.11 odd 6
63.8.e.b.46.4 8 21.2 odd 6
112.8.i.c.65.3 8 28.11 odd 6
112.8.i.c.81.3 8 28.23 odd 6
441.8.a.s.1.1 4 3.2 odd 2
441.8.a.t.1.1 4 21.20 even 2