Newspace parameters
| Level: | \( N \) | \(=\) | \( 49 = 7^{2} \) |
| Weight: | \( k \) | \(=\) | \( 7 \) |
| Character orbit: | \([\chi]\) | \(=\) | 49.f (of order \(14\), degree \(6\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(11.2726500974\) |
| Analytic rank: | \(0\) |
| Dimension: | \(162\) |
| Relative dimension: | \(27\) over \(\Q(\zeta_{14})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{14}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 6.1 | −9.46158 | + | 11.8645i | −18.0354 | + | 37.4509i | −37.0023 | − | 162.118i | −84.6381 | + | 175.753i | −273.691 | − | 568.326i | 152.737 | − | 307.116i | 1398.50 | + | 673.484i | −622.773 | − | 780.932i | −1284.40 | − | 2667.09i |
| 6.2 | −8.72864 | + | 10.9454i | −5.98668 | + | 12.4315i | −29.3706 | − | 128.681i | 59.0592 | − | 122.638i | −83.8115 | − | 174.036i | 147.205 | + | 309.806i | 857.576 | + | 412.987i | 335.823 | + | 421.108i | 826.808 | + | 1716.88i |
| 6.3 | −8.55624 | + | 10.7292i | 13.9693 | − | 29.0077i | −27.6648 | − | 121.208i | −76.3841 | + | 158.613i | 191.703 | + | 398.076i | −283.411 | + | 193.203i | 745.860 | + | 359.187i | −191.777 | − | 240.481i | −1048.23 | − | 2176.67i |
| 6.4 | −8.50954 | + | 10.6706i | 5.48095 | − | 11.3813i | −27.2087 | − | 119.209i | 27.2702 | − | 56.6272i | 74.8053 | + | 155.335i | −203.668 | − | 275.986i | 716.582 | + | 345.088i | 355.031 | + | 445.195i | 372.191 | + | 772.862i |
| 6.5 | −7.44458 | + | 9.33521i | 22.0427 | − | 45.7722i | −17.4830 | − | 76.5981i | 50.1527 | − | 104.143i | 263.194 | + | 546.528i | 342.985 | − | 3.25534i | 156.718 | + | 75.4716i | −1154.69 | − | 1447.93i | 598.832 | + | 1243.49i |
| 6.6 | −5.80604 | + | 7.28055i | −14.9167 | + | 30.9748i | −5.05489 | − | 22.1469i | −9.48695 | + | 19.6998i | −138.907 | − | 288.443i | −315.153 | + | 135.379i | −346.368 | − | 166.802i | −282.408 | − | 354.129i | −88.3440 | − | 183.448i |
| 6.7 | −5.59155 | + | 7.01158i | 4.21448 | − | 8.75145i | −3.65548 | − | 16.0157i | −5.59191 | + | 11.6117i | 37.7960 | + | 78.4842i | 122.008 | − | 320.567i | −384.386 | − | 185.110i | 395.698 | + | 496.190i | −50.1491 | − | 104.136i |
| 6.8 | −5.21294 | + | 6.53682i | −0.592083 | + | 1.22947i | −1.31391 | − | 5.75662i | −71.3439 | + | 148.147i | −4.95035 | − | 10.2795i | 322.225 | + | 117.558i | −437.627 | − | 210.750i | 453.363 | + | 568.499i | −596.499 | − | 1238.64i |
| 6.9 | −4.75016 | + | 5.95651i | −19.8436 | + | 41.2057i | 1.32533 | + | 5.80663i | 70.5425 | − | 146.483i | −151.182 | − | 313.933i | 221.822 | − | 261.618i | −480.190 | − | 231.247i | −849.618 | − | 1065.39i | 537.440 | + | 1116.01i |
| 6.10 | −3.22211 | + | 4.04040i | 9.00678 | − | 18.7028i | 8.29851 | + | 36.3581i | 100.083 | − | 207.825i | 46.5458 | + | 96.6534i | −342.293 | − | 22.0068i | −471.630 | − | 227.125i | 185.852 | + | 233.052i | 517.216 | + | 1074.01i |
| 6.11 | −2.75625 | + | 3.45623i | 14.4977 | − | 30.1049i | 9.89275 | + | 43.3430i | 0.876306 | − | 1.81967i | 64.0898 | + | 133.084i | −48.8736 | + | 339.500i | −431.975 | − | 208.028i | −241.594 | − | 302.950i | 3.87387 | + | 8.04417i |
| 6.12 | −1.24733 | + | 1.56411i | 19.3946 | − | 40.2732i | 13.3507 | + | 58.4935i | −90.5621 | + | 188.054i | 38.8002 | + | 80.5694i | −164.585 | − | 300.933i | −223.500 | − | 107.632i | −791.260 | − | 992.209i | −181.176 | − | 376.215i |
| 6.13 | −0.577544 | + | 0.724218i | −7.31055 | + | 15.1805i | 14.0504 | + | 61.5589i | −59.1331 | + | 122.791i | −6.77183 | − | 14.0619i | −307.715 | − | 151.528i | −106.110 | − | 51.0997i | 277.520 | + | 347.999i | −54.7755 | − | 113.743i |
| 6.14 | −0.409124 | + | 0.513026i | −8.59209 | + | 17.8417i | 14.1455 | + | 61.9756i | 41.8227 | − | 86.8458i | −5.63800 | − | 11.7074i | 172.114 | + | 296.691i | −75.4192 | − | 36.3200i | 210.023 | + | 263.361i | 27.4434 | + | 56.9869i |
| 6.15 | 0.970401 | − | 1.21684i | −4.48048 | + | 9.30382i | 13.7023 | + | 60.0337i | 45.5444 | − | 94.5740i | 6.97343 | + | 14.4805i | 89.6755 | − | 331.070i | 176.094 | + | 84.8023i | 388.038 | + | 486.584i | −70.8855 | − | 147.195i |
| 6.16 | 1.02183 | − | 1.28133i | −20.8983 | + | 43.3959i | 13.6437 | + | 59.7768i | −76.2794 | + | 158.396i | 34.2499 | + | 71.1207i | 283.852 | + | 192.554i | 185.036 | + | 89.1088i | −991.936 | − | 1243.85i | 125.013 | + | 259.592i |
| 6.17 | 1.86787 | − | 2.34223i | 13.7924 | − | 28.6402i | 12.2442 | + | 53.6454i | 17.8467 | − | 37.0591i | −41.3197 | − | 85.8012i | 329.864 | − | 94.0163i | 321.266 | + | 154.714i | −175.506 | − | 220.078i | −53.4657 | − | 111.023i |
| 6.18 | 4.47311 | − | 5.60910i | 5.07295 | − | 10.5341i | 2.78804 | + | 12.2152i | −43.9720 | + | 91.3088i | −36.3949 | − | 75.5747i | −131.478 | + | 316.801i | 494.672 | + | 238.222i | 369.292 | + | 463.077i | 315.469 | + | 655.077i |
| 6.19 | 4.86576 | − | 6.10147i | −10.5310 | + | 21.8679i | 0.689011 | + | 3.01876i | 85.2970 | − | 177.121i | 82.1849 | + | 170.659i | −261.077 | + | 222.459i | 471.770 | + | 227.193i | 87.2214 | + | 109.372i | −665.665 | − | 1382.27i |
| 6.20 | 4.89633 | − | 6.13980i | −19.6341 | + | 40.7707i | 0.518196 | + | 2.27036i | 9.17971 | − | 19.0619i | 154.189 | + | 320.177i | −229.984 | − | 254.472i | 469.303 | + | 226.004i | −822.228 | − | 1031.04i | −72.0892 | − | 149.695i |
| See next 80 embeddings (of 162 total) | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 49.f | odd | 14 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 49.7.f.a | ✓ | 162 |
| 49.f | odd | 14 | 1 | inner | 49.7.f.a | ✓ | 162 |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 49.7.f.a | ✓ | 162 | 1.a | even | 1 | 1 | trivial |
| 49.7.f.a | ✓ | 162 | 49.f | odd | 14 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{7}^{\mathrm{new}}(49, [\chi])\).