Newspace parameters
| Level: | \( N \) | \(=\) | \( 49 = 7^{2} \) |
| Weight: | \( k \) | \(=\) | \( 7 \) |
| Character orbit: | \([\chi]\) | \(=\) | 49.d (of order \(6\), degree \(2\), not minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(11.2726500974\) |
| Analytic rank: | \(0\) |
| Dimension: | \(24\) |
| Relative dimension: | \(12\) over \(\Q(\zeta_{6})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 19.1 | −7.22006 | + | 12.5055i | −5.48749 | + | 3.16820i | −72.2584 | − | 125.155i | −169.953 | − | 98.1223i | − | 91.4984i | 0 | 1162.67 | −344.425 | + | 596.562i | 2454.14 | − | 1416.90i | |||||
| 19.2 | −7.22006 | + | 12.5055i | 5.48749 | − | 3.16820i | −72.2584 | − | 125.155i | 169.953 | + | 98.1223i | 91.4984i | 0 | 1162.67 | −344.425 | + | 596.562i | −2454.14 | + | 1416.90i | ||||||
| 19.3 | −6.49614 | + | 11.2516i | −40.4001 | + | 23.3250i | −52.3997 | − | 90.7589i | 26.6652 | + | 15.3952i | − | 606.091i | 0 | 530.077 | 723.614 | − | 1253.34i | −346.442 | + | 200.018i | |||||
| 19.4 | −6.49614 | + | 11.2516i | 40.4001 | − | 23.3250i | −52.3997 | − | 90.7589i | −26.6652 | − | 15.3952i | 606.091i | 0 | 530.077 | 723.614 | − | 1253.34i | 346.442 | − | 200.018i | ||||||
| 19.5 | −2.33452 | + | 4.04351i | −32.1003 | + | 18.5331i | 21.1000 | + | 36.5463i | −189.226 | − | 109.250i | − | 173.064i | 0 | −495.852 | 322.454 | − | 558.506i | 883.503 | − | 510.091i | |||||
| 19.6 | −2.33452 | + | 4.04351i | 32.1003 | − | 18.5331i | 21.1000 | + | 36.5463i | 189.226 | + | 109.250i | 173.064i | 0 | −495.852 | 322.454 | − | 558.506i | −883.503 | + | 510.091i | ||||||
| 19.7 | 0.171081 | − | 0.296322i | −8.41775 | + | 4.85999i | 31.9415 | + | 55.3242i | −69.2835 | − | 40.0009i | 3.32582i | 0 | 43.7568 | −317.261 | + | 549.512i | −23.7063 | + | 13.6868i | ||||||
| 19.8 | 0.171081 | − | 0.296322i | 8.41775 | − | 4.85999i | 31.9415 | + | 55.3242i | 69.2835 | + | 40.0009i | − | 3.32582i | 0 | 43.7568 | −317.261 | + | 549.512i | 23.7063 | − | 13.6868i | |||||
| 19.9 | 3.50223 | − | 6.06605i | −10.6752 | + | 6.16334i | 7.46871 | + | 12.9362i | −100.778 | − | 58.1845i | 86.3419i | 0 | 552.915 | −288.526 | + | 499.742i | −705.899 | + | 407.551i | ||||||
| 19.10 | 3.50223 | − | 6.06605i | 10.6752 | − | 6.16334i | 7.46871 | + | 12.9362i | 100.778 | + | 58.1845i | − | 86.3419i | 0 | 552.915 | −288.526 | + | 499.742i | 705.899 | − | 407.551i | |||||
| 19.11 | 7.37740 | − | 12.7780i | −29.5376 | + | 17.0535i | −76.8521 | − | 133.112i | −27.8768 | − | 16.0947i | 503.243i | 0 | −1323.57 | 217.145 | − | 376.106i | −411.317 | + | 237.474i | ||||||
| 19.12 | 7.37740 | − | 12.7780i | 29.5376 | − | 17.0535i | −76.8521 | − | 133.112i | 27.8768 | + | 16.0947i | − | 503.243i | 0 | −1323.57 | 217.145 | − | 376.106i | 411.317 | − | 237.474i | |||||
| 31.1 | −7.22006 | − | 12.5055i | −5.48749 | − | 3.16820i | −72.2584 | + | 125.155i | −169.953 | + | 98.1223i | 91.4984i | 0 | 1162.67 | −344.425 | − | 596.562i | 2454.14 | + | 1416.90i | ||||||
| 31.2 | −7.22006 | − | 12.5055i | 5.48749 | + | 3.16820i | −72.2584 | + | 125.155i | 169.953 | − | 98.1223i | − | 91.4984i | 0 | 1162.67 | −344.425 | − | 596.562i | −2454.14 | − | 1416.90i | |||||
| 31.3 | −6.49614 | − | 11.2516i | −40.4001 | − | 23.3250i | −52.3997 | + | 90.7589i | 26.6652 | − | 15.3952i | 606.091i | 0 | 530.077 | 723.614 | + | 1253.34i | −346.442 | − | 200.018i | ||||||
| 31.4 | −6.49614 | − | 11.2516i | 40.4001 | + | 23.3250i | −52.3997 | + | 90.7589i | −26.6652 | + | 15.3952i | − | 606.091i | 0 | 530.077 | 723.614 | + | 1253.34i | 346.442 | + | 200.018i | |||||
| 31.5 | −2.33452 | − | 4.04351i | −32.1003 | − | 18.5331i | 21.1000 | − | 36.5463i | −189.226 | + | 109.250i | 173.064i | 0 | −495.852 | 322.454 | + | 558.506i | 883.503 | + | 510.091i | ||||||
| 31.6 | −2.33452 | − | 4.04351i | 32.1003 | + | 18.5331i | 21.1000 | − | 36.5463i | 189.226 | − | 109.250i | − | 173.064i | 0 | −495.852 | 322.454 | + | 558.506i | −883.503 | − | 510.091i | |||||
| 31.7 | 0.171081 | + | 0.296322i | −8.41775 | − | 4.85999i | 31.9415 | − | 55.3242i | −69.2835 | + | 40.0009i | − | 3.32582i | 0 | 43.7568 | −317.261 | − | 549.512i | −23.7063 | − | 13.6868i | |||||
| 31.8 | 0.171081 | + | 0.296322i | 8.41775 | + | 4.85999i | 31.9415 | − | 55.3242i | 69.2835 | − | 40.0009i | 3.32582i | 0 | 43.7568 | −317.261 | − | 549.512i | 23.7063 | + | 13.6868i | ||||||
| See all 24 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 7.b | odd | 2 | 1 | inner |
| 7.c | even | 3 | 1 | inner |
| 7.d | odd | 6 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 49.7.d.e | 24 | |
| 7.b | odd | 2 | 1 | inner | 49.7.d.e | 24 | |
| 7.c | even | 3 | 1 | 49.7.b.c | ✓ | 12 | |
| 7.c | even | 3 | 1 | inner | 49.7.d.e | 24 | |
| 7.d | odd | 6 | 1 | 49.7.b.c | ✓ | 12 | |
| 7.d | odd | 6 | 1 | inner | 49.7.d.e | 24 | |
| 21.g | even | 6 | 1 | 441.7.d.e | 12 | ||
| 21.h | odd | 6 | 1 | 441.7.d.e | 12 | ||
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 49.7.b.c | ✓ | 12 | 7.c | even | 3 | 1 | |
| 49.7.b.c | ✓ | 12 | 7.d | odd | 6 | 1 | |
| 49.7.d.e | 24 | 1.a | even | 1 | 1 | trivial | |
| 49.7.d.e | 24 | 7.b | odd | 2 | 1 | inner | |
| 49.7.d.e | 24 | 7.c | even | 3 | 1 | inner | |
| 49.7.d.e | 24 | 7.d | odd | 6 | 1 | inner | |
| 441.7.d.e | 12 | 21.g | even | 6 | 1 | ||
| 441.7.d.e | 12 | 21.h | odd | 6 | 1 | ||
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{12} + 10 T_{2}^{11} + 383 T_{2}^{10} + 2330 T_{2}^{9} + 91407 T_{2}^{8} + 526388 T_{2}^{7} + \cdots + 959512576 \)
acting on \(S_{7}^{\mathrm{new}}(49, [\chi])\).