Properties

Label 4864.2.a.bd
Level $4864$
Weight $2$
Character orbit 4864.a
Self dual yes
Analytic conductor $38.839$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4864,2,Mod(1,4864)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4864, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4864.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4864 = 2^{8} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4864.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,-1,0,2,0,3,0,8,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.8392355432\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.892.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 8x + 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2432)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{3} + ( - \beta_1 + 1) q^{5} + (\beta_{2} + 1) q^{7} + (\beta_{2} - \beta_1 + 3) q^{9} + ( - \beta_{2} + \beta_1 - 1) q^{11} + ( - \beta_{2} + \beta_1) q^{13} + (\beta_{2} - 2 \beta_1 + 6) q^{15}+ \cdots + ( - \beta_{2} + 3 \beta_1 - 11) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{3} + 2 q^{5} + 3 q^{7} + 8 q^{9} - 2 q^{11} + q^{13} + 16 q^{15} + 9 q^{17} + 3 q^{19} - 7 q^{21} + 11 q^{23} + 3 q^{25} + 11 q^{27} - 5 q^{29} + 12 q^{31} - 10 q^{33} - 4 q^{35} - 8 q^{37} - 11 q^{39}+ \cdots - 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 8x + 10 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + \nu - 6 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - \beta _1 + 6 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.59774
1.31955
−2.91729
0 −2.59774 0 −1.59774 0 4.34596 0 3.74823 0
1.2 0 −1.31955 0 −0.319551 0 −1.93923 0 −1.25879 0
1.3 0 2.91729 0 3.91729 0 0.593272 0 5.51056 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4864.2.a.bd 3
4.b odd 2 1 4864.2.a.bf 3
8.b even 2 1 4864.2.a.be 3
8.d odd 2 1 4864.2.a.bc 3
16.e even 4 2 2432.2.c.f 6
16.f odd 4 2 2432.2.c.g yes 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2432.2.c.f 6 16.e even 4 2
2432.2.c.g yes 6 16.f odd 4 2
4864.2.a.bc 3 8.d odd 2 1
4864.2.a.bd 3 1.a even 1 1 trivial
4864.2.a.be 3 8.b even 2 1
4864.2.a.bf 3 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4864))\):

\( T_{3}^{3} + T_{3}^{2} - 8T_{3} - 10 \) Copy content Toggle raw display
\( T_{5}^{3} - 2T_{5}^{2} - 7T_{5} - 2 \) Copy content Toggle raw display
\( T_{7}^{3} - 3T_{7}^{2} - 7T_{7} + 5 \) Copy content Toggle raw display
\( T_{11}^{3} + 2T_{11}^{2} - 11T_{11} - 20 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} + T^{2} - 8T - 10 \) Copy content Toggle raw display
$5$ \( T^{3} - 2 T^{2} + \cdots - 2 \) Copy content Toggle raw display
$7$ \( T^{3} - 3 T^{2} + \cdots + 5 \) Copy content Toggle raw display
$11$ \( T^{3} + 2 T^{2} + \cdots - 20 \) Copy content Toggle raw display
$13$ \( T^{3} - T^{2} - 12T - 8 \) Copy content Toggle raw display
$17$ \( (T - 3)^{3} \) Copy content Toggle raw display
$19$ \( (T - 1)^{3} \) Copy content Toggle raw display
$23$ \( T^{3} - 11 T^{2} + \cdots + 80 \) Copy content Toggle raw display
$29$ \( T^{3} + 5 T^{2} + \cdots - 274 \) Copy content Toggle raw display
$31$ \( T^{3} - 12 T^{2} + \cdots - 20 \) Copy content Toggle raw display
$37$ \( T^{3} + 8 T^{2} + \cdots - 100 \) Copy content Toggle raw display
$41$ \( T^{3} + 10 T^{2} + \cdots - 200 \) Copy content Toggle raw display
$43$ \( T^{3} - 8 T^{2} + \cdots + 350 \) Copy content Toggle raw display
$47$ \( T^{3} - 16 T^{2} + \cdots - 100 \) Copy content Toggle raw display
$53$ \( T^{3} + 13 T^{2} + \cdots + 38 \) Copy content Toggle raw display
$59$ \( T^{3} - 17 T^{2} + \cdots - 100 \) Copy content Toggle raw display
$61$ \( T^{3} + 14 T^{2} + \cdots - 142 \) Copy content Toggle raw display
$67$ \( T^{3} + 29 T^{2} + \cdots + 830 \) Copy content Toggle raw display
$71$ \( T^{3} - 2 T^{2} + \cdots - 200 \) Copy content Toggle raw display
$73$ \( T^{3} + 17 T^{2} + \cdots - 4309 \) Copy content Toggle raw display
$79$ \( T^{3} - 12 T^{2} + \cdots - 20 \) Copy content Toggle raw display
$83$ \( T^{3} + 16 T^{2} + \cdots - 2560 \) Copy content Toggle raw display
$89$ \( T^{3} + 20 T^{2} + \cdots - 20 \) Copy content Toggle raw display
$97$ \( T^{3} - 22 T^{2} + \cdots + 2800 \) Copy content Toggle raw display
show more
show less