Defining parameters
Level: | \( N \) | \(=\) | \( 486 = 2 \cdot 3^{5} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 486.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 8 \) | ||
Sturm bound: | \(162\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(5\), \(7\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(486))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 99 | 12 | 87 |
Cusp forms | 64 | 12 | 52 |
Eisenstein series | 35 | 0 | 35 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||
\(+\) | \(+\) | \(+\) | \(20\) | \(2\) | \(18\) | \(12\) | \(2\) | \(10\) | \(8\) | \(0\) | \(8\) | |||
\(+\) | \(-\) | \(-\) | \(29\) | \(4\) | \(25\) | \(20\) | \(4\) | \(16\) | \(9\) | \(0\) | \(9\) | |||
\(-\) | \(+\) | \(-\) | \(25\) | \(5\) | \(20\) | \(16\) | \(5\) | \(11\) | \(9\) | \(0\) | \(9\) | |||
\(-\) | \(-\) | \(+\) | \(25\) | \(1\) | \(24\) | \(16\) | \(1\) | \(15\) | \(9\) | \(0\) | \(9\) | |||
Plus space | \(+\) | \(45\) | \(3\) | \(42\) | \(28\) | \(3\) | \(25\) | \(17\) | \(0\) | \(17\) | ||||
Minus space | \(-\) | \(54\) | \(9\) | \(45\) | \(36\) | \(9\) | \(27\) | \(18\) | \(0\) | \(18\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(486))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(486))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(486)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(54))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(81))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(162))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(243))\)\(^{\oplus 2}\)