Properties

Label 48552.2.a.db
Level $48552$
Weight $2$
Character orbit 48552.a
Self dual yes
Analytic conductor $387.690$
Dimension $18$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [48552,2,Mod(1,48552)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(48552, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("48552.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 48552 = 2^{3} \cdot 3 \cdot 7 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 48552.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [18,0,-18,0,-6,0,-18,0,18,0,-6,0,-6,0,6,0,0,0,15,0,18,0,-12,0, 12,0,-18,0,-6,0,-3,0,6,0,6,0,-27,0,6,0,-21,0,-6,0,-6,0,9,0,18,0,0,0,6, 0,12,0,-15,0,45,0,-15,0,-18,0,-51,0,6,0,12,0,21,0,-6,0,-12,0,6,0,15,0, 18,0,6,0,0,0,6,0,18,0,6,0,3,0,18,0,-18,0,-6,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(387.689671894\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 6 x^{17} - 33 x^{16} + 241 x^{15} + 339 x^{14} - 3708 x^{13} - 689 x^{12} + 28692 x^{11} + \cdots - 4104 \) Copy content Toggle raw display
Twist minimal: not computed
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 18 q - 18 q^{3} - 6 q^{5} - 18 q^{7} + 18 q^{9} - 6 q^{11} - 6 q^{13} + 6 q^{15} + 15 q^{19} + 18 q^{21} - 12 q^{23} + 12 q^{25} - 18 q^{27} - 6 q^{29} - 3 q^{31} + 6 q^{33} + 6 q^{35} - 27 q^{37} + 6 q^{39}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(7\) \( +1 \)
\(17\) \( +1 \)

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.