Defining parameters
Level: | \( N \) | \(=\) | \( 48552 = 2^{3} \cdot 3 \cdot 7 \cdot 17^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 48552.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 103 \) | ||
Sturm bound: | \(19584\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(48552))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 9936 | 814 | 9122 |
Cusp forms | 9649 | 814 | 8835 |
Eisenstein series | 287 | 0 | 287 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(7\) | \(17\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(603\) | \(46\) | \(557\) | \(586\) | \(46\) | \(540\) | \(17\) | \(0\) | \(17\) | |||
\(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(638\) | \(56\) | \(582\) | \(620\) | \(56\) | \(564\) | \(18\) | \(0\) | \(18\) | |||
\(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(630\) | \(53\) | \(577\) | \(612\) | \(53\) | \(559\) | \(18\) | \(0\) | \(18\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(613\) | \(48\) | \(565\) | \(595\) | \(48\) | \(547\) | \(18\) | \(0\) | \(18\) | |||
\(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(621\) | \(53\) | \(568\) | \(603\) | \(53\) | \(550\) | \(18\) | \(0\) | \(18\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(622\) | \(48\) | \(574\) | \(604\) | \(48\) | \(556\) | \(18\) | \(0\) | \(18\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(630\) | \(46\) | \(584\) | \(612\) | \(46\) | \(566\) | \(18\) | \(0\) | \(18\) | |||
\(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(611\) | \(56\) | \(555\) | \(593\) | \(56\) | \(537\) | \(18\) | \(0\) | \(18\) | |||
\(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(639\) | \(50\) | \(589\) | \(621\) | \(50\) | \(571\) | \(18\) | \(0\) | \(18\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(604\) | \(52\) | \(552\) | \(586\) | \(52\) | \(534\) | \(18\) | \(0\) | \(18\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(612\) | \(50\) | \(562\) | \(594\) | \(50\) | \(544\) | \(18\) | \(0\) | \(18\) | |||
\(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(629\) | \(52\) | \(577\) | \(611\) | \(52\) | \(559\) | \(18\) | \(0\) | \(18\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(621\) | \(50\) | \(571\) | \(603\) | \(50\) | \(553\) | \(18\) | \(0\) | \(18\) | |||
\(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(620\) | \(52\) | \(568\) | \(602\) | \(52\) | \(550\) | \(18\) | \(0\) | \(18\) | |||
\(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(612\) | \(50\) | \(562\) | \(594\) | \(50\) | \(544\) | \(18\) | \(0\) | \(18\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(631\) | \(52\) | \(579\) | \(613\) | \(52\) | \(561\) | \(18\) | \(0\) | \(18\) | |||
Plus space | \(+\) | \(4936\) | \(392\) | \(4544\) | \(4793\) | \(392\) | \(4401\) | \(143\) | \(0\) | \(143\) | ||||||
Minus space | \(-\) | \(5000\) | \(422\) | \(4578\) | \(4856\) | \(422\) | \(4434\) | \(144\) | \(0\) | \(144\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(48552))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 3 | 7 | 17 | |||||||
48552.2.a.a | $1$ | $387.690$ | \(\Q\) | None | \(0\) | \(-1\) | \(-4\) | \(1\) | $+$ | $+$ | $-$ | $+$ | \(q-q^{3}-4q^{5}+q^{7}+q^{9}-4q^{11}+2q^{13}+\cdots\) | |
48552.2.a.b | $1$ | $387.690$ | \(\Q\) | None | \(0\) | \(-1\) | \(-3\) | \(-1\) | $+$ | $+$ | $+$ | $+$ | \(q-q^{3}-3q^{5}-q^{7}+q^{9}+3q^{11}+2q^{13}+\cdots\) | |
48552.2.a.c | $1$ | $387.690$ | \(\Q\) | None | \(0\) | \(-1\) | \(-3\) | \(1\) | $-$ | $+$ | $-$ | $+$ | \(q-q^{3}-3q^{5}+q^{7}+q^{9}-5q^{11}-3q^{13}+\cdots\) | |
48552.2.a.d | $1$ | $387.690$ | \(\Q\) | None | \(0\) | \(-1\) | \(-3\) | \(1\) | $+$ | $+$ | $-$ | $+$ | \(q-q^{3}-3q^{5}+q^{7}+q^{9}+5q^{11}-4q^{13}+\cdots\) | |
48552.2.a.e | $1$ | $387.690$ | \(\Q\) | None | \(0\) | \(-1\) | \(-2\) | \(1\) | $+$ | $+$ | $-$ | $+$ | \(q-q^{3}-2q^{5}+q^{7}+q^{9}-6q^{11}+4q^{13}+\cdots\) | |
48552.2.a.f | $1$ | $387.690$ | \(\Q\) | None | \(0\) | \(-1\) | \(-2\) | \(1\) | $+$ | $+$ | $-$ | $+$ | \(q-q^{3}-2q^{5}+q^{7}+q^{9}-2q^{13}+2q^{15}+\cdots\) | |
48552.2.a.g | $1$ | $387.690$ | \(\Q\) | None | \(0\) | \(-1\) | \(-2\) | \(1\) | $+$ | $+$ | $-$ | $+$ | \(q-q^{3}-2q^{5}+q^{7}+q^{9}+2q^{11}-2q^{13}+\cdots\) | |
48552.2.a.h | $1$ | $387.690$ | \(\Q\) | None | \(0\) | \(-1\) | \(-1\) | \(-1\) | $+$ | $+$ | $+$ | $+$ | \(q-q^{3}-q^{5}-q^{7}+q^{9}+q^{11}+q^{15}+\cdots\) | |
48552.2.a.i | $1$ | $387.690$ | \(\Q\) | None | \(0\) | \(-1\) | \(-1\) | \(1\) | $-$ | $+$ | $-$ | $+$ | \(q-q^{3}-q^{5}+q^{7}+q^{9}+3q^{11}-q^{13}+\cdots\) | |
48552.2.a.j | $1$ | $387.690$ | \(\Q\) | None | \(0\) | \(-1\) | \(0\) | \(-1\) | $+$ | $+$ | $+$ | $+$ | \(q-q^{3}-q^{7}+q^{9}-4q^{11}+4q^{13}+\cdots\) | |
48552.2.a.k | $1$ | $387.690$ | \(\Q\) | None | \(0\) | \(-1\) | \(0\) | \(1\) | $+$ | $+$ | $-$ | $+$ | \(q-q^{3}+q^{7}+q^{9}-4q^{11}+2q^{13}+\cdots\) | |
48552.2.a.l | $1$ | $387.690$ | \(\Q\) | None | \(0\) | \(-1\) | \(0\) | \(1\) | $-$ | $+$ | $-$ | $+$ | \(q-q^{3}+q^{7}+q^{9}+4q^{11}+6q^{13}+\cdots\) | |
48552.2.a.m | $1$ | $387.690$ | \(\Q\) | None | \(0\) | \(-1\) | \(1\) | \(-1\) | $-$ | $+$ | $+$ | $+$ | \(q-q^{3}+q^{5}-q^{7}+q^{9}-q^{11}-3q^{13}+\cdots\) | |
48552.2.a.n | $1$ | $387.690$ | \(\Q\) | None | \(0\) | \(-1\) | \(1\) | \(1\) | $+$ | $+$ | $-$ | $+$ | \(q-q^{3}+q^{5}+q^{7}+q^{9}-q^{11}+q^{13}+\cdots\) | |
48552.2.a.o | $1$ | $387.690$ | \(\Q\) | None | \(0\) | \(-1\) | \(1\) | \(1\) | $+$ | $+$ | $-$ | $+$ | \(q-q^{3}+q^{5}+q^{7}+q^{9}+3q^{11}+q^{13}+\cdots\) | |
48552.2.a.p | $1$ | $387.690$ | \(\Q\) | None | \(0\) | \(-1\) | \(2\) | \(-1\) | $+$ | $+$ | $+$ | $+$ | \(q-q^{3}+2q^{5}-q^{7}+q^{9}-6q^{11}-4q^{13}+\cdots\) | |
48552.2.a.q | $1$ | $387.690$ | \(\Q\) | None | \(0\) | \(-1\) | \(2\) | \(-1\) | $+$ | $+$ | $+$ | $+$ | \(q-q^{3}+2q^{5}-q^{7}+q^{9}+4q^{11}+6q^{13}+\cdots\) | |
48552.2.a.r | $1$ | $387.690$ | \(\Q\) | None | \(0\) | \(-1\) | \(2\) | \(1\) | $-$ | $+$ | $-$ | $+$ | \(q-q^{3}+2q^{5}+q^{7}+q^{9}+2q^{13}-2q^{15}+\cdots\) | |
48552.2.a.s | $1$ | $387.690$ | \(\Q\) | None | \(0\) | \(1\) | \(-2\) | \(-1\) | $+$ | $-$ | $+$ | $+$ | \(q+q^{3}-2q^{5}-q^{7}+q^{9}+6q^{13}-2q^{15}+\cdots\) | |
48552.2.a.t | $1$ | $387.690$ | \(\Q\) | None | \(0\) | \(1\) | \(-2\) | \(-1\) | $-$ | $-$ | $+$ | $+$ | \(q+q^{3}-2q^{5}-q^{7}+q^{9}+4q^{11}+2q^{13}+\cdots\) | |
48552.2.a.u | $1$ | $387.690$ | \(\Q\) | None | \(0\) | \(1\) | \(-1\) | \(-1\) | $+$ | $-$ | $+$ | $+$ | \(q+q^{3}-q^{5}-q^{7}+q^{9}+q^{11}+q^{13}+\cdots\) | |
48552.2.a.v | $1$ | $387.690$ | \(\Q\) | None | \(0\) | \(1\) | \(0\) | \(-1\) | $-$ | $-$ | $+$ | $-$ | \(q+q^{3}-q^{7}+q^{9}-4q^{11}+6q^{13}+\cdots\) | |
48552.2.a.w | $1$ | $387.690$ | \(\Q\) | None | \(0\) | \(1\) | \(0\) | \(-1\) | $+$ | $-$ | $+$ | $-$ | \(q+q^{3}-q^{7}+q^{9}+4q^{11}+2q^{13}+\cdots\) | |
48552.2.a.x | $1$ | $387.690$ | \(\Q\) | None | \(0\) | \(1\) | \(0\) | \(1\) | $+$ | $-$ | $-$ | $-$ | \(q+q^{3}+q^{7}+q^{9}+4q^{11}+4q^{13}+\cdots\) | |
48552.2.a.y | $1$ | $387.690$ | \(\Q\) | None | \(0\) | \(1\) | \(1\) | \(-1\) | $-$ | $-$ | $+$ | $+$ | \(q+q^{3}+q^{5}-q^{7}+q^{9}+q^{11}-q^{13}+\cdots\) | |
48552.2.a.z | $1$ | $387.690$ | \(\Q\) | None | \(0\) | \(1\) | \(1\) | \(1\) | $+$ | $-$ | $-$ | $-$ | \(q+q^{3}+q^{5}+q^{7}+q^{9}-q^{11}+q^{15}+\cdots\) | |
48552.2.a.ba | $1$ | $387.690$ | \(\Q\) | None | \(0\) | \(1\) | \(2\) | \(-1\) | $+$ | $-$ | $+$ | $+$ | \(q+q^{3}+2q^{5}-q^{7}+q^{9}-2q^{11}-2q^{13}+\cdots\) | |
48552.2.a.bb | $1$ | $387.690$ | \(\Q\) | None | \(0\) | \(1\) | \(3\) | \(-1\) | $+$ | $-$ | $+$ | $-$ | \(q+q^{3}+3q^{5}-q^{7}+q^{9}-5q^{11}-4q^{13}+\cdots\) | |
48552.2.a.bc | $1$ | $387.690$ | \(\Q\) | None | \(0\) | \(1\) | \(3\) | \(1\) | $+$ | $-$ | $-$ | $-$ | \(q+q^{3}+3q^{5}+q^{7}+q^{9}-3q^{11}+2q^{13}+\cdots\) | |
48552.2.a.bd | $1$ | $387.690$ | \(\Q\) | None | \(0\) | \(1\) | \(4\) | \(-1\) | $+$ | $-$ | $+$ | $+$ | \(q+q^{3}+4q^{5}-q^{7}+q^{9}+4q^{11}+2q^{13}+\cdots\) | |
48552.2.a.be | $2$ | $387.690$ | \(\Q(\sqrt{201}) \) | None | \(0\) | \(-2\) | \(-6\) | \(-2\) | $+$ | $+$ | $+$ | $+$ | ||
48552.2.a.bf | $2$ | $387.690$ | \(\Q(\sqrt{2}) \) | None | \(0\) | \(-2\) | \(0\) | \(-2\) | $-$ | $+$ | $+$ | $+$ | ||
48552.2.a.bg | $2$ | $387.690$ | \(\Q(\sqrt{3}) \) | None | \(0\) | \(-2\) | \(0\) | \(-2\) | $+$ | $+$ | $+$ | $+$ | ||
48552.2.a.bh | $2$ | $387.690$ | \(\Q(\sqrt{15}) \) | None | \(0\) | \(-2\) | \(0\) | \(2\) | $+$ | $+$ | $-$ | $+$ | ||
48552.2.a.bi | $2$ | $387.690$ | \(\Q(\sqrt{33}) \) | None | \(0\) | \(-2\) | \(1\) | \(2\) | $-$ | $+$ | $-$ | $-$ | ||
48552.2.a.bj | $2$ | $387.690$ | \(\Q(\sqrt{17}) \) | None | \(0\) | \(-2\) | \(3\) | \(2\) | $+$ | $+$ | $-$ | $+$ | ||
48552.2.a.bk | $2$ | $387.690$ | \(\Q(\sqrt{33}) \) | None | \(0\) | \(2\) | \(-1\) | \(-2\) | $-$ | $-$ | $+$ | $+$ | ||
48552.2.a.bl | $2$ | $387.690$ | \(\Q(\sqrt{2}) \) | None | \(0\) | \(2\) | \(0\) | \(2\) | $-$ | $-$ | $-$ | $+$ | ||
48552.2.a.bm | $2$ | $387.690$ | \(\Q(\sqrt{17}) \) | None | \(0\) | \(2\) | \(2\) | \(2\) | $-$ | $-$ | $-$ | $+$ | ||
48552.2.a.bn | $2$ | $387.690$ | \(\Q(\sqrt{17}) \) | None | \(0\) | \(2\) | \(3\) | \(2\) | $+$ | $-$ | $-$ | $+$ | ||
48552.2.a.bo | $3$ | $387.690$ | 3.3.1129.1 | None | \(0\) | \(-3\) | \(2\) | \(-3\) | $+$ | $+$ | $+$ | $+$ | ||
48552.2.a.bp | $3$ | $387.690$ | 3.3.316.1 | None | \(0\) | \(-3\) | \(2\) | \(3\) | $-$ | $+$ | $-$ | $+$ | ||
48552.2.a.bq | $3$ | $387.690$ | 3.3.961.1 | None | \(0\) | \(3\) | \(-2\) | \(-3\) | $+$ | $-$ | $+$ | $+$ | ||
48552.2.a.br | $3$ | $387.690$ | 3.3.1129.1 | None | \(0\) | \(3\) | \(-2\) | \(3\) | $+$ | $-$ | $-$ | $-$ | ||
48552.2.a.bs | $3$ | $387.690$ | 3.3.568.1 | None | \(0\) | \(3\) | \(4\) | \(-3\) | $+$ | $-$ | $+$ | $+$ | ||
48552.2.a.bt | $4$ | $387.690$ | 4.4.10889.1 | None | \(0\) | \(-4\) | \(-1\) | \(4\) | $-$ | $+$ | $-$ | $-$ | ||
48552.2.a.bu | $4$ | $387.690$ | 4.4.51153.1 | None | \(0\) | \(-4\) | \(5\) | \(4\) | $+$ | $+$ | $-$ | $+$ | ||
48552.2.a.bv | $4$ | $387.690$ | 4.4.51153.1 | None | \(0\) | \(4\) | \(-5\) | \(-4\) | $+$ | $-$ | $+$ | $-$ | ||
48552.2.a.bw | $4$ | $387.690$ | 4.4.183064.1 | None | \(0\) | \(4\) | \(-5\) | \(4\) | $+$ | $-$ | $-$ | $+$ | ||
48552.2.a.bx | $4$ | $387.690$ | 4.4.7232.1 | None | \(0\) | \(4\) | \(-2\) | \(4\) | $-$ | $-$ | $-$ | $+$ | ||
48552.2.a.by | $4$ | $387.690$ | 4.4.81416.1 | None | \(0\) | \(4\) | \(1\) | \(-4\) | $-$ | $-$ | $+$ | $+$ | ||
48552.2.a.bz | $4$ | $387.690$ | 4.4.10889.1 | None | \(0\) | \(4\) | \(1\) | \(-4\) | $-$ | $-$ | $+$ | $+$ | ||
48552.2.a.ca | $5$ | $387.690$ | 5.5.14050576.1 | None | \(0\) | \(-5\) | \(-1\) | \(-5\) | $-$ | $+$ | $+$ | $+$ | ||
48552.2.a.cb | $5$ | $387.690$ | 5.5.32195949.1 | None | \(0\) | \(-5\) | \(0\) | \(5\) | $-$ | $+$ | $-$ | $+$ | ||
48552.2.a.cc | $5$ | $387.690$ | 5.5.934448.1 | None | \(0\) | \(-5\) | \(5\) | \(5\) | $+$ | $+$ | $-$ | $+$ | ||
48552.2.a.cd | $5$ | $387.690$ | 5.5.934448.1 | None | \(0\) | \(5\) | \(-5\) | \(-5\) | $+$ | $-$ | $+$ | $+$ | ||
48552.2.a.ce | $5$ | $387.690$ | 5.5.32195949.1 | None | \(0\) | \(5\) | \(0\) | \(-5\) | $-$ | $-$ | $+$ | $-$ | ||
48552.2.a.cf | $6$ | $387.690$ | 6.6.274063172.1 | None | \(0\) | \(-6\) | \(-4\) | \(-6\) | $-$ | $+$ | $+$ | $+$ | ||
48552.2.a.cg | $6$ | $387.690$ | \(\mathbb{Q}[x]/(x^{6} - \cdots)\) | None | \(0\) | \(-6\) | \(-2\) | \(6\) | $+$ | $+$ | $-$ | $-$ | ||
48552.2.a.ch | $6$ | $387.690$ | \(\mathbb{Q}[x]/(x^{6} - \cdots)\) | None | \(0\) | \(-6\) | \(0\) | \(-6\) | $-$ | $+$ | $+$ | $-$ | ||
48552.2.a.ci | $6$ | $387.690$ | 6.6.734916349.1 | None | \(0\) | \(-6\) | \(0\) | \(-6\) | $-$ | $+$ | $+$ | $+$ | ||
48552.2.a.cj | $6$ | $387.690$ | 6.6.382404292.1 | None | \(0\) | \(-6\) | \(0\) | \(6\) | $-$ | $+$ | $-$ | $+$ | ||
48552.2.a.ck | $6$ | $387.690$ | 6.6.346669661.1 | None | \(0\) | \(-6\) | \(2\) | \(-6\) | $+$ | $+$ | $+$ | $-$ | ||
48552.2.a.cl | $6$ | $387.690$ | \(\mathbb{Q}[x]/(x^{6} - \cdots)\) | None | \(0\) | \(-6\) | \(4\) | \(-6\) | $+$ | $+$ | $+$ | $+$ | ||
48552.2.a.cm | $6$ | $387.690$ | \(\mathbb{Q}[x]/(x^{6} - \cdots)\) | None | \(0\) | \(6\) | \(-4\) | \(6\) | $+$ | $-$ | $-$ | $+$ | ||
48552.2.a.cn | $6$ | $387.690$ | 6.6.346669661.1 | None | \(0\) | \(6\) | \(-2\) | \(6\) | $+$ | $-$ | $-$ | $+$ | ||
48552.2.a.co | $6$ | $387.690$ | 6.6.382404292.1 | None | \(0\) | \(6\) | \(0\) | \(-6\) | $-$ | $-$ | $+$ | $+$ | ||
48552.2.a.cp | $6$ | $387.690$ | 6.6.734916349.1 | None | \(0\) | \(6\) | \(0\) | \(6\) | $-$ | $-$ | $-$ | $-$ | ||
48552.2.a.cq | $6$ | $387.690$ | \(\mathbb{Q}[x]/(x^{6} - \cdots)\) | None | \(0\) | \(6\) | \(0\) | \(6\) | $-$ | $-$ | $-$ | $+$ | ||
48552.2.a.cr | $6$ | $387.690$ | \(\mathbb{Q}[x]/(x^{6} - \cdots)\) | None | \(0\) | \(6\) | \(2\) | \(-6\) | $+$ | $-$ | $+$ | $+$ | ||
48552.2.a.cs | $6$ | $387.690$ | 6.6.274063172.1 | None | \(0\) | \(6\) | \(4\) | \(6\) | $-$ | $-$ | $-$ | $+$ | ||
48552.2.a.ct | $10$ | $387.690$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(0\) | \(-10\) | \(4\) | \(-10\) | $+$ | $+$ | $+$ | $+$ | ||
48552.2.a.cu | $10$ | $387.690$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(0\) | \(10\) | \(-4\) | \(10\) | $+$ | $-$ | $-$ | $+$ | ||
48552.2.a.cv | $12$ | $387.690$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(0\) | \(-12\) | \(-4\) | \(-12\) | $-$ | $+$ | $+$ | $+$ | ||
48552.2.a.cw | $12$ | $387.690$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(0\) | \(12\) | \(4\) | \(12\) | $-$ | $-$ | $-$ | $+$ | ||
48552.2.a.cx | $14$ | $387.690$ | \(\mathbb{Q}[x]/(x^{14} - \cdots)\) | None | \(0\) | \(-14\) | \(0\) | \(14\) | $+$ | $+$ | $-$ | $+$ | ||
48552.2.a.cy | $14$ | $387.690$ | \(\mathbb{Q}[x]/(x^{14} - \cdots)\) | None | \(0\) | \(-14\) | \(0\) | \(14\) | $-$ | $+$ | $-$ | $+$ | ||
48552.2.a.cz | $14$ | $387.690$ | \(\mathbb{Q}[x]/(x^{14} - \cdots)\) | None | \(0\) | \(14\) | \(0\) | \(-14\) | $-$ | $-$ | $+$ | $+$ | ||
48552.2.a.da | $14$ | $387.690$ | \(\mathbb{Q}[x]/(x^{14} - \cdots)\) | None | \(0\) | \(14\) | \(0\) | \(-14\) | $+$ | $-$ | $+$ | $+$ | ||
48552.2.a.db | $18$ | $387.690$ | \(\mathbb{Q}[x]/(x^{18} - \cdots)\) | None | \(0\) | \(-18\) | \(-6\) | \(-18\) | $+$ | $+$ | $+$ | $+$ | ||
48552.2.a.dc | $18$ | $387.690$ | \(\mathbb{Q}[x]/(x^{18} - \cdots)\) | None | \(0\) | \(-18\) | \(-6\) | \(18\) | $+$ | $+$ | $-$ | $-$ | ||
48552.2.a.dd | $18$ | $387.690$ | \(\mathbb{Q}[x]/(x^{18} - \cdots)\) | None | \(0\) | \(-18\) | \(0\) | \(-18\) | $-$ | $+$ | $+$ | $-$ | ||
48552.2.a.de | $18$ | $387.690$ | \(\mathbb{Q}[x]/(x^{18} - \cdots)\) | None | \(0\) | \(-18\) | \(0\) | \(-18\) | $-$ | $+$ | $+$ | $+$ | ||
48552.2.a.df | $18$ | $387.690$ | \(\mathbb{Q}[x]/(x^{18} - \cdots)\) | None | \(0\) | \(-18\) | \(0\) | \(18\) | $-$ | $+$ | $-$ | $-$ | ||
48552.2.a.dg | $18$ | $387.690$ | \(\mathbb{Q}[x]/(x^{18} - \cdots)\) | None | \(0\) | \(-18\) | \(0\) | \(18\) | $-$ | $+$ | $-$ | $+$ | ||
48552.2.a.dh | $18$ | $387.690$ | \(\mathbb{Q}[x]/(x^{18} - \cdots)\) | None | \(0\) | \(-18\) | \(6\) | \(-18\) | $+$ | $+$ | $+$ | $-$ | ||
48552.2.a.di | $18$ | $387.690$ | \(\mathbb{Q}[x]/(x^{18} - \cdots)\) | None | \(0\) | \(-18\) | \(6\) | \(18\) | $+$ | $+$ | $-$ | $+$ | ||
48552.2.a.dj | $18$ | $387.690$ | \(\mathbb{Q}[x]/(x^{18} - \cdots)\) | None | \(0\) | \(18\) | \(-6\) | \(-18\) | $+$ | $-$ | $+$ | $-$ | ||
48552.2.a.dk | $18$ | $387.690$ | \(\mathbb{Q}[x]/(x^{18} - \cdots)\) | None | \(0\) | \(18\) | \(-6\) | \(18\) | $+$ | $-$ | $-$ | $+$ | ||
48552.2.a.dl | $18$ | $387.690$ | \(\mathbb{Q}[x]/(x^{18} - \cdots)\) | None | \(0\) | \(18\) | \(0\) | \(-18\) | $-$ | $-$ | $+$ | $+$ | ||
48552.2.a.dm | $18$ | $387.690$ | \(\mathbb{Q}[x]/(x^{18} - \cdots)\) | None | \(0\) | \(18\) | \(0\) | \(-18\) | $-$ | $-$ | $+$ | $-$ | ||
48552.2.a.dn | $18$ | $387.690$ | \(\mathbb{Q}[x]/(x^{18} - \cdots)\) | None | \(0\) | \(18\) | \(0\) | \(18\) | $-$ | $-$ | $-$ | $-$ | ||
48552.2.a.do | $18$ | $387.690$ | \(\mathbb{Q}[x]/(x^{18} - \cdots)\) | None | \(0\) | \(18\) | \(0\) | \(18\) | $-$ | $-$ | $-$ | $+$ | ||
48552.2.a.dp | $18$ | $387.690$ | \(\mathbb{Q}[x]/(x^{18} - \cdots)\) | None | \(0\) | \(18\) | \(6\) | \(-18\) | $+$ | $-$ | $+$ | $+$ | ||
48552.2.a.dq | $18$ | $387.690$ | \(\mathbb{Q}[x]/(x^{18} - \cdots)\) | None | \(0\) | \(18\) | \(6\) | \(18\) | $+$ | $-$ | $-$ | $-$ | ||
48552.2.a.dr | $24$ | $387.690$ | None | \(0\) | \(-24\) | \(0\) | \(24\) | $+$ | $+$ | $-$ | $-$ | |||
48552.2.a.ds | $24$ | $387.690$ | None | \(0\) | \(24\) | \(0\) | \(-24\) | $+$ | $-$ | $+$ | $-$ | |||
48552.2.a.dt | $28$ | $387.690$ | None | \(0\) | \(-28\) | \(0\) | \(28\) | $-$ | $+$ | $-$ | $-$ | |||
48552.2.a.du | $28$ | $387.690$ | None | \(0\) | \(-28\) | \(8\) | \(-28\) | $-$ | $+$ | $+$ | $-$ | |||
48552.2.a.dv | $28$ | $387.690$ | None | \(0\) | \(28\) | \(-8\) | \(28\) | $-$ | $-$ | $-$ | $-$ | |||
48552.2.a.dw | $28$ | $387.690$ | None | \(0\) | \(28\) | \(0\) | \(-28\) | $-$ | $-$ | $+$ | $-$ | |||
48552.2.a.dx | $32$ | $387.690$ | None | \(0\) | \(-32\) | \(-8\) | \(-32\) | $+$ | $+$ | $+$ | $-$ | |||
48552.2.a.dy | $32$ | $387.690$ | None | \(0\) | \(32\) | \(8\) | \(32\) | $+$ | $-$ | $-$ | $-$ |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(48552))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(48552)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 32}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(34))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(51))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(56))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(68))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(84))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(102))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(119))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(136))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(168))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(204))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(238))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(289))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(357))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(408))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(476))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(578))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(714))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(867))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(952))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1156))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1428))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1734))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2023))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2312))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2856))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3468))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(4046))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(6069))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(6936))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(8092))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(12138))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(16184))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(24276))\)\(^{\oplus 2}\)