Properties

Label 48552.2.a
Level $48552$
Weight $2$
Character orbit 48552.a
Rep. character $\chi_{48552}(1,\cdot)$
Character field $\Q$
Dimension $814$
Newform subspaces $103$
Sturm bound $19584$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 48552 = 2^{3} \cdot 3 \cdot 7 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 48552.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 103 \)
Sturm bound: \(19584\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(48552))\).

Total New Old
Modular forms 9936 814 9122
Cusp forms 9649 814 8835
Eisenstein series 287 0 287

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(7\)\(17\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(+\)\(603\)\(46\)\(557\)\(586\)\(46\)\(540\)\(17\)\(0\)\(17\)
\(+\)\(+\)\(+\)\(-\)\(-\)\(638\)\(56\)\(582\)\(620\)\(56\)\(564\)\(18\)\(0\)\(18\)
\(+\)\(+\)\(-\)\(+\)\(-\)\(630\)\(53\)\(577\)\(612\)\(53\)\(559\)\(18\)\(0\)\(18\)
\(+\)\(+\)\(-\)\(-\)\(+\)\(613\)\(48\)\(565\)\(595\)\(48\)\(547\)\(18\)\(0\)\(18\)
\(+\)\(-\)\(+\)\(+\)\(-\)\(621\)\(53\)\(568\)\(603\)\(53\)\(550\)\(18\)\(0\)\(18\)
\(+\)\(-\)\(+\)\(-\)\(+\)\(622\)\(48\)\(574\)\(604\)\(48\)\(556\)\(18\)\(0\)\(18\)
\(+\)\(-\)\(-\)\(+\)\(+\)\(630\)\(46\)\(584\)\(612\)\(46\)\(566\)\(18\)\(0\)\(18\)
\(+\)\(-\)\(-\)\(-\)\(-\)\(611\)\(56\)\(555\)\(593\)\(56\)\(537\)\(18\)\(0\)\(18\)
\(-\)\(+\)\(+\)\(+\)\(-\)\(639\)\(50\)\(589\)\(621\)\(50\)\(571\)\(18\)\(0\)\(18\)
\(-\)\(+\)\(+\)\(-\)\(+\)\(604\)\(52\)\(552\)\(586\)\(52\)\(534\)\(18\)\(0\)\(18\)
\(-\)\(+\)\(-\)\(+\)\(+\)\(612\)\(50\)\(562\)\(594\)\(50\)\(544\)\(18\)\(0\)\(18\)
\(-\)\(+\)\(-\)\(-\)\(-\)\(629\)\(52\)\(577\)\(611\)\(52\)\(559\)\(18\)\(0\)\(18\)
\(-\)\(-\)\(+\)\(+\)\(+\)\(621\)\(50\)\(571\)\(603\)\(50\)\(553\)\(18\)\(0\)\(18\)
\(-\)\(-\)\(+\)\(-\)\(-\)\(620\)\(52\)\(568\)\(602\)\(52\)\(550\)\(18\)\(0\)\(18\)
\(-\)\(-\)\(-\)\(+\)\(-\)\(612\)\(50\)\(562\)\(594\)\(50\)\(544\)\(18\)\(0\)\(18\)
\(-\)\(-\)\(-\)\(-\)\(+\)\(631\)\(52\)\(579\)\(613\)\(52\)\(561\)\(18\)\(0\)\(18\)
Plus space\(+\)\(4936\)\(392\)\(4544\)\(4793\)\(392\)\(4401\)\(143\)\(0\)\(143\)
Minus space\(-\)\(5000\)\(422\)\(4578\)\(4856\)\(422\)\(4434\)\(144\)\(0\)\(144\)

Trace form

\( 814 q - 4 q^{5} + 814 q^{9} - 4 q^{13} + 2 q^{21} - 8 q^{23} + 818 q^{25} + 4 q^{29} - 4 q^{37} + 8 q^{39} - 4 q^{41} - 8 q^{43} - 4 q^{45} - 48 q^{47} + 814 q^{49} - 12 q^{53} - 32 q^{55} - 32 q^{59} - 4 q^{61}+ \cdots + 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(48552))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 7 17
48552.2.a.a 48552.a 1.a $1$ $387.690$ \(\Q\) None \(0\) \(-1\) \(-4\) \(1\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-4q^{5}+q^{7}+q^{9}-4q^{11}+2q^{13}+\cdots\)
48552.2.a.b 48552.a 1.a $1$ $387.690$ \(\Q\) None \(0\) \(-1\) \(-3\) \(-1\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-3q^{5}-q^{7}+q^{9}+3q^{11}+2q^{13}+\cdots\)
48552.2.a.c 48552.a 1.a $1$ $387.690$ \(\Q\) None \(0\) \(-1\) \(-3\) \(1\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-3q^{5}+q^{7}+q^{9}-5q^{11}-3q^{13}+\cdots\)
48552.2.a.d 48552.a 1.a $1$ $387.690$ \(\Q\) None \(0\) \(-1\) \(-3\) \(1\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-3q^{5}+q^{7}+q^{9}+5q^{11}-4q^{13}+\cdots\)
48552.2.a.e 48552.a 1.a $1$ $387.690$ \(\Q\) None \(0\) \(-1\) \(-2\) \(1\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-2q^{5}+q^{7}+q^{9}-6q^{11}+4q^{13}+\cdots\)
48552.2.a.f 48552.a 1.a $1$ $387.690$ \(\Q\) None \(0\) \(-1\) \(-2\) \(1\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-2q^{5}+q^{7}+q^{9}-2q^{13}+2q^{15}+\cdots\)
48552.2.a.g 48552.a 1.a $1$ $387.690$ \(\Q\) None \(0\) \(-1\) \(-2\) \(1\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-2q^{5}+q^{7}+q^{9}+2q^{11}-2q^{13}+\cdots\)
48552.2.a.h 48552.a 1.a $1$ $387.690$ \(\Q\) None \(0\) \(-1\) \(-1\) \(-1\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{5}-q^{7}+q^{9}+q^{11}+q^{15}+\cdots\)
48552.2.a.i 48552.a 1.a $1$ $387.690$ \(\Q\) None \(0\) \(-1\) \(-1\) \(1\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{5}+q^{7}+q^{9}+3q^{11}-q^{13}+\cdots\)
48552.2.a.j 48552.a 1.a $1$ $387.690$ \(\Q\) None \(0\) \(-1\) \(0\) \(-1\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{7}+q^{9}-4q^{11}+4q^{13}+\cdots\)
48552.2.a.k 48552.a 1.a $1$ $387.690$ \(\Q\) None \(0\) \(-1\) \(0\) \(1\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{7}+q^{9}-4q^{11}+2q^{13}+\cdots\)
48552.2.a.l 48552.a 1.a $1$ $387.690$ \(\Q\) None \(0\) \(-1\) \(0\) \(1\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{7}+q^{9}+4q^{11}+6q^{13}+\cdots\)
48552.2.a.m 48552.a 1.a $1$ $387.690$ \(\Q\) None \(0\) \(-1\) \(1\) \(-1\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{5}-q^{7}+q^{9}-q^{11}-3q^{13}+\cdots\)
48552.2.a.n 48552.a 1.a $1$ $387.690$ \(\Q\) None \(0\) \(-1\) \(1\) \(1\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{5}+q^{7}+q^{9}-q^{11}+q^{13}+\cdots\)
48552.2.a.o 48552.a 1.a $1$ $387.690$ \(\Q\) None \(0\) \(-1\) \(1\) \(1\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{5}+q^{7}+q^{9}+3q^{11}+q^{13}+\cdots\)
48552.2.a.p 48552.a 1.a $1$ $387.690$ \(\Q\) None \(0\) \(-1\) \(2\) \(-1\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+2q^{5}-q^{7}+q^{9}-6q^{11}-4q^{13}+\cdots\)
48552.2.a.q 48552.a 1.a $1$ $387.690$ \(\Q\) None \(0\) \(-1\) \(2\) \(-1\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+2q^{5}-q^{7}+q^{9}+4q^{11}+6q^{13}+\cdots\)
48552.2.a.r 48552.a 1.a $1$ $387.690$ \(\Q\) None \(0\) \(-1\) \(2\) \(1\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+2q^{5}+q^{7}+q^{9}+2q^{13}-2q^{15}+\cdots\)
48552.2.a.s 48552.a 1.a $1$ $387.690$ \(\Q\) None \(0\) \(1\) \(-2\) \(-1\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-2q^{5}-q^{7}+q^{9}+6q^{13}-2q^{15}+\cdots\)
48552.2.a.t 48552.a 1.a $1$ $387.690$ \(\Q\) None \(0\) \(1\) \(-2\) \(-1\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-2q^{5}-q^{7}+q^{9}+4q^{11}+2q^{13}+\cdots\)
48552.2.a.u 48552.a 1.a $1$ $387.690$ \(\Q\) None \(0\) \(1\) \(-1\) \(-1\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{5}-q^{7}+q^{9}+q^{11}+q^{13}+\cdots\)
48552.2.a.v 48552.a 1.a $1$ $387.690$ \(\Q\) None \(0\) \(1\) \(0\) \(-1\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{7}+q^{9}-4q^{11}+6q^{13}+\cdots\)
48552.2.a.w 48552.a 1.a $1$ $387.690$ \(\Q\) None \(0\) \(1\) \(0\) \(-1\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{7}+q^{9}+4q^{11}+2q^{13}+\cdots\)
48552.2.a.x 48552.a 1.a $1$ $387.690$ \(\Q\) None \(0\) \(1\) \(0\) \(1\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{7}+q^{9}+4q^{11}+4q^{13}+\cdots\)
48552.2.a.y 48552.a 1.a $1$ $387.690$ \(\Q\) None \(0\) \(1\) \(1\) \(-1\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{5}-q^{7}+q^{9}+q^{11}-q^{13}+\cdots\)
48552.2.a.z 48552.a 1.a $1$ $387.690$ \(\Q\) None \(0\) \(1\) \(1\) \(1\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{5}+q^{7}+q^{9}-q^{11}+q^{15}+\cdots\)
48552.2.a.ba 48552.a 1.a $1$ $387.690$ \(\Q\) None \(0\) \(1\) \(2\) \(-1\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+2q^{5}-q^{7}+q^{9}-2q^{11}-2q^{13}+\cdots\)
48552.2.a.bb 48552.a 1.a $1$ $387.690$ \(\Q\) None \(0\) \(1\) \(3\) \(-1\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+3q^{5}-q^{7}+q^{9}-5q^{11}-4q^{13}+\cdots\)
48552.2.a.bc 48552.a 1.a $1$ $387.690$ \(\Q\) None \(0\) \(1\) \(3\) \(1\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+3q^{5}+q^{7}+q^{9}-3q^{11}+2q^{13}+\cdots\)
48552.2.a.bd 48552.a 1.a $1$ $387.690$ \(\Q\) None \(0\) \(1\) \(4\) \(-1\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+4q^{5}-q^{7}+q^{9}+4q^{11}+2q^{13}+\cdots\)
48552.2.a.be 48552.a 1.a $2$ $387.690$ \(\Q(\sqrt{201}) \) None \(0\) \(-2\) \(-6\) \(-2\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$
48552.2.a.bf 48552.a 1.a $2$ $387.690$ \(\Q(\sqrt{2}) \) None \(0\) \(-2\) \(0\) \(-2\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$
48552.2.a.bg 48552.a 1.a $2$ $387.690$ \(\Q(\sqrt{3}) \) None \(0\) \(-2\) \(0\) \(-2\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$
48552.2.a.bh 48552.a 1.a $2$ $387.690$ \(\Q(\sqrt{15}) \) None \(0\) \(-2\) \(0\) \(2\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$
48552.2.a.bi 48552.a 1.a $2$ $387.690$ \(\Q(\sqrt{33}) \) None \(0\) \(-2\) \(1\) \(2\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$
48552.2.a.bj 48552.a 1.a $2$ $387.690$ \(\Q(\sqrt{17}) \) None \(0\) \(-2\) \(3\) \(2\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$
48552.2.a.bk 48552.a 1.a $2$ $387.690$ \(\Q(\sqrt{33}) \) None \(0\) \(2\) \(-1\) \(-2\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$
48552.2.a.bl 48552.a 1.a $2$ $387.690$ \(\Q(\sqrt{2}) \) None \(0\) \(2\) \(0\) \(2\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$
48552.2.a.bm 48552.a 1.a $2$ $387.690$ \(\Q(\sqrt{17}) \) None \(0\) \(2\) \(2\) \(2\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$
48552.2.a.bn 48552.a 1.a $2$ $387.690$ \(\Q(\sqrt{17}) \) None \(0\) \(2\) \(3\) \(2\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$
48552.2.a.bo 48552.a 1.a $3$ $387.690$ 3.3.1129.1 None \(0\) \(-3\) \(2\) \(-3\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$
48552.2.a.bp 48552.a 1.a $3$ $387.690$ 3.3.316.1 None \(0\) \(-3\) \(2\) \(3\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$
48552.2.a.bq 48552.a 1.a $3$ $387.690$ 3.3.961.1 None \(0\) \(3\) \(-2\) \(-3\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$
48552.2.a.br 48552.a 1.a $3$ $387.690$ 3.3.1129.1 None \(0\) \(3\) \(-2\) \(3\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$
48552.2.a.bs 48552.a 1.a $3$ $387.690$ 3.3.568.1 None \(0\) \(3\) \(4\) \(-3\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$
48552.2.a.bt 48552.a 1.a $4$ $387.690$ 4.4.10889.1 None \(0\) \(-4\) \(-1\) \(4\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$
48552.2.a.bu 48552.a 1.a $4$ $387.690$ 4.4.51153.1 None \(0\) \(-4\) \(5\) \(4\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$
48552.2.a.bv 48552.a 1.a $4$ $387.690$ 4.4.51153.1 None \(0\) \(4\) \(-5\) \(-4\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$
48552.2.a.bw 48552.a 1.a $4$ $387.690$ 4.4.183064.1 None \(0\) \(4\) \(-5\) \(4\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$
48552.2.a.bx 48552.a 1.a $4$ $387.690$ 4.4.7232.1 None \(0\) \(4\) \(-2\) \(4\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$
48552.2.a.by 48552.a 1.a $4$ $387.690$ 4.4.81416.1 None \(0\) \(4\) \(1\) \(-4\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$
48552.2.a.bz 48552.a 1.a $4$ $387.690$ 4.4.10889.1 None \(0\) \(4\) \(1\) \(-4\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$
48552.2.a.ca 48552.a 1.a $5$ $387.690$ 5.5.14050576.1 None \(0\) \(-5\) \(-1\) \(-5\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$
48552.2.a.cb 48552.a 1.a $5$ $387.690$ 5.5.32195949.1 None \(0\) \(-5\) \(0\) \(5\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$
48552.2.a.cc 48552.a 1.a $5$ $387.690$ 5.5.934448.1 None \(0\) \(-5\) \(5\) \(5\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$
48552.2.a.cd 48552.a 1.a $5$ $387.690$ 5.5.934448.1 None \(0\) \(5\) \(-5\) \(-5\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$
48552.2.a.ce 48552.a 1.a $5$ $387.690$ 5.5.32195949.1 None \(0\) \(5\) \(0\) \(-5\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$
48552.2.a.cf 48552.a 1.a $6$ $387.690$ 6.6.274063172.1 None \(0\) \(-6\) \(-4\) \(-6\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$
48552.2.a.cg 48552.a 1.a $6$ $387.690$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None \(0\) \(-6\) \(-2\) \(6\) $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$
48552.2.a.ch 48552.a 1.a $6$ $387.690$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None \(0\) \(-6\) \(0\) \(-6\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$
48552.2.a.ci 48552.a 1.a $6$ $387.690$ 6.6.734916349.1 None \(0\) \(-6\) \(0\) \(-6\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$
48552.2.a.cj 48552.a 1.a $6$ $387.690$ 6.6.382404292.1 None \(0\) \(-6\) \(0\) \(6\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$
48552.2.a.ck 48552.a 1.a $6$ $387.690$ 6.6.346669661.1 None \(0\) \(-6\) \(2\) \(-6\) $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$
48552.2.a.cl 48552.a 1.a $6$ $387.690$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None \(0\) \(-6\) \(4\) \(-6\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$
48552.2.a.cm 48552.a 1.a $6$ $387.690$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None \(0\) \(6\) \(-4\) \(6\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$
48552.2.a.cn 48552.a 1.a $6$ $387.690$ 6.6.346669661.1 None \(0\) \(6\) \(-2\) \(6\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$
48552.2.a.co 48552.a 1.a $6$ $387.690$ 6.6.382404292.1 None \(0\) \(6\) \(0\) \(-6\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$
48552.2.a.cp 48552.a 1.a $6$ $387.690$ 6.6.734916349.1 None \(0\) \(6\) \(0\) \(6\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$
48552.2.a.cq 48552.a 1.a $6$ $387.690$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None \(0\) \(6\) \(0\) \(6\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$
48552.2.a.cr 48552.a 1.a $6$ $387.690$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None \(0\) \(6\) \(2\) \(-6\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$
48552.2.a.cs 48552.a 1.a $6$ $387.690$ 6.6.274063172.1 None \(0\) \(6\) \(4\) \(6\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$
48552.2.a.ct 48552.a 1.a $10$ $387.690$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None \(0\) \(-10\) \(4\) \(-10\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$
48552.2.a.cu 48552.a 1.a $10$ $387.690$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None \(0\) \(10\) \(-4\) \(10\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$
48552.2.a.cv 48552.a 1.a $12$ $387.690$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None \(0\) \(-12\) \(-4\) \(-12\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$
48552.2.a.cw 48552.a 1.a $12$ $387.690$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None \(0\) \(12\) \(4\) \(12\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$
48552.2.a.cx 48552.a 1.a $14$ $387.690$ \(\mathbb{Q}[x]/(x^{14} - \cdots)\) None \(0\) \(-14\) \(0\) \(14\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$
48552.2.a.cy 48552.a 1.a $14$ $387.690$ \(\mathbb{Q}[x]/(x^{14} - \cdots)\) None \(0\) \(-14\) \(0\) \(14\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$
48552.2.a.cz 48552.a 1.a $14$ $387.690$ \(\mathbb{Q}[x]/(x^{14} - \cdots)\) None \(0\) \(14\) \(0\) \(-14\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$
48552.2.a.da 48552.a 1.a $14$ $387.690$ \(\mathbb{Q}[x]/(x^{14} - \cdots)\) None \(0\) \(14\) \(0\) \(-14\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$
48552.2.a.db 48552.a 1.a $18$ $387.690$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None \(0\) \(-18\) \(-6\) \(-18\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$
48552.2.a.dc 48552.a 1.a $18$ $387.690$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None \(0\) \(-18\) \(-6\) \(18\) $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$
48552.2.a.dd 48552.a 1.a $18$ $387.690$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None \(0\) \(-18\) \(0\) \(-18\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$
48552.2.a.de 48552.a 1.a $18$ $387.690$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None \(0\) \(-18\) \(0\) \(-18\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$
48552.2.a.df 48552.a 1.a $18$ $387.690$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None \(0\) \(-18\) \(0\) \(18\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$
48552.2.a.dg 48552.a 1.a $18$ $387.690$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None \(0\) \(-18\) \(0\) \(18\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$
48552.2.a.dh 48552.a 1.a $18$ $387.690$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None \(0\) \(-18\) \(6\) \(-18\) $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$
48552.2.a.di 48552.a 1.a $18$ $387.690$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None \(0\) \(-18\) \(6\) \(18\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$
48552.2.a.dj 48552.a 1.a $18$ $387.690$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None \(0\) \(18\) \(-6\) \(-18\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$
48552.2.a.dk 48552.a 1.a $18$ $387.690$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None \(0\) \(18\) \(-6\) \(18\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$
48552.2.a.dl 48552.a 1.a $18$ $387.690$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None \(0\) \(18\) \(0\) \(-18\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$
48552.2.a.dm 48552.a 1.a $18$ $387.690$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None \(0\) \(18\) \(0\) \(-18\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$
48552.2.a.dn 48552.a 1.a $18$ $387.690$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None \(0\) \(18\) \(0\) \(18\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$
48552.2.a.do 48552.a 1.a $18$ $387.690$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None \(0\) \(18\) \(0\) \(18\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$
48552.2.a.dp 48552.a 1.a $18$ $387.690$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None \(0\) \(18\) \(6\) \(-18\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$
48552.2.a.dq 48552.a 1.a $18$ $387.690$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None \(0\) \(18\) \(6\) \(18\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$
48552.2.a.dr 48552.a 1.a $24$ $387.690$ None \(0\) \(-24\) \(0\) \(24\) $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$
48552.2.a.ds 48552.a 1.a $24$ $387.690$ None \(0\) \(24\) \(0\) \(-24\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$
48552.2.a.dt 48552.a 1.a $28$ $387.690$ None \(0\) \(-28\) \(0\) \(28\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$
48552.2.a.du 48552.a 1.a $28$ $387.690$ None \(0\) \(-28\) \(8\) \(-28\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$
48552.2.a.dv 48552.a 1.a $28$ $387.690$ None \(0\) \(28\) \(-8\) \(28\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$
48552.2.a.dw 48552.a 1.a $28$ $387.690$ None \(0\) \(28\) \(0\) \(-28\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$
48552.2.a.dx 48552.a 1.a $32$ $387.690$ None \(0\) \(-32\) \(-8\) \(-32\) $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$
48552.2.a.dy 48552.a 1.a $32$ $387.690$ None \(0\) \(32\) \(8\) \(32\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(48552))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(48552)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 32}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(34))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(51))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(56))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(68))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(84))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(102))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(119))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(136))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(168))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(204))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(238))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(289))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(357))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(408))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(476))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(578))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(714))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(867))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(952))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1156))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1428))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1734))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2023))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2312))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2856))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3468))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(4046))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(6069))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(6936))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(8092))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(12138))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(16184))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(24276))\)\(^{\oplus 2}\)