Defining parameters
| Level: | \( N \) | \(=\) | \( 484 = 2^{2} \cdot 11^{2} \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 484.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 9 \) | ||
| Sturm bound: | \(264\) | ||
| Trace bound: | \(7\) | ||
| Distinguishing \(T_p\): | \(3\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(484))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 216 | 27 | 189 |
| Cusp forms | 180 | 27 | 153 |
| Eisenstein series | 36 | 0 | 36 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(11\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(57\) | \(0\) | \(57\) | \(45\) | \(0\) | \(45\) | \(12\) | \(0\) | \(12\) | |||
| \(+\) | \(-\) | \(-\) | \(54\) | \(0\) | \(54\) | \(42\) | \(0\) | \(42\) | \(12\) | \(0\) | \(12\) | |||
| \(-\) | \(+\) | \(-\) | \(51\) | \(12\) | \(39\) | \(45\) | \(12\) | \(33\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(-\) | \(+\) | \(54\) | \(15\) | \(39\) | \(48\) | \(15\) | \(33\) | \(6\) | \(0\) | \(6\) | |||
| Plus space | \(+\) | \(111\) | \(15\) | \(96\) | \(93\) | \(15\) | \(78\) | \(18\) | \(0\) | \(18\) | ||||
| Minus space | \(-\) | \(105\) | \(12\) | \(93\) | \(87\) | \(12\) | \(75\) | \(18\) | \(0\) | \(18\) | ||||
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(484))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(484))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(484)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(22))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(44))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(121))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(242))\)\(^{\oplus 2}\)