Defining parameters
Level: | \( N \) | = | \( 484 = 2^{2} \cdot 11^{2} \) |
Weight: | \( k \) | = | \( 4 \) |
Nonzero newspaces: | \( 8 \) | ||
Sturm bound: | \(58080\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(484))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 22180 | 12635 | 9545 |
Cusp forms | 21380 | 12355 | 9025 |
Eisenstein series | 800 | 280 | 520 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(484))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
484.4.a | \(\chi_{484}(1, \cdot)\) | 484.4.a.a | 1 | 1 |
484.4.a.b | 2 | |||
484.4.a.c | 2 | |||
484.4.a.d | 2 | |||
484.4.a.e | 2 | |||
484.4.a.f | 3 | |||
484.4.a.g | 3 | |||
484.4.a.h | 6 | |||
484.4.a.i | 6 | |||
484.4.c | \(\chi_{484}(483, \cdot)\) | n/a | 154 | 1 |
484.4.e | \(\chi_{484}(9, \cdot)\) | n/a | 108 | 4 |
484.4.g | \(\chi_{484}(215, \cdot)\) | n/a | 616 | 4 |
484.4.i | \(\chi_{484}(45, \cdot)\) | n/a | 330 | 10 |
484.4.j | \(\chi_{484}(43, \cdot)\) | n/a | 1960 | 10 |
484.4.m | \(\chi_{484}(5, \cdot)\) | n/a | 1320 | 40 |
484.4.p | \(\chi_{484}(7, \cdot)\) | n/a | 7840 | 40 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(484))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_1(484)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(44))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(121))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(242))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(484))\)\(^{\oplus 1}\)