Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [483,2,Mod(41,483)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(483, base_ring=CyclotomicField(22))
chi = DirichletCharacter(H, H._module([11, 11, 12]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("483.41");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 483 = 3 \cdot 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 483.v (of order \(22\), degree \(10\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.85677441763\) |
Analytic rank: | \(0\) |
Dimension: | \(600\) |
Relative dimension: | \(60\) over \(\Q(\zeta_{22})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{22}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
41.1 | −0.783018 | + | 2.66671i | −1.29371 | + | 1.15165i | −4.81573 | − | 3.09488i | 0.328519 | − | 2.28490i | −2.05813 | − | 4.35173i | −2.59187 | + | 0.531216i | 7.82307 | − | 6.77873i | 0.347391 | − | 2.97982i | 5.83594 | + | 2.66518i |
41.2 | −0.783018 | + | 2.66671i | 1.29371 | − | 1.15165i | −4.81573 | − | 3.09488i | −0.328519 | + | 2.28490i | 2.05813 | + | 4.35173i | 2.09878 | − | 1.61094i | 7.82307 | − | 6.77873i | 0.347391 | − | 2.97982i | −5.83594 | − | 2.66518i |
41.3 | −0.698454 | + | 2.37872i | −1.39478 | − | 1.02693i | −3.48795 | − | 2.24157i | −0.386473 | + | 2.68798i | 3.41696 | − | 2.60053i | 0.0322339 | + | 2.64555i | 4.02101 | − | 3.48422i | 0.890837 | + | 2.86468i | −6.12401 | − | 2.79674i |
41.4 | −0.698454 | + | 2.37872i | 1.39478 | + | 1.02693i | −3.48795 | − | 2.24157i | 0.386473 | − | 2.68798i | −3.41696 | + | 2.60053i | 1.97827 | + | 1.75683i | 4.02101 | − | 3.48422i | 0.890837 | + | 2.86468i | 6.12401 | + | 2.79674i |
41.5 | −0.688131 | + | 2.34356i | −1.70257 | + | 0.318198i | −3.33623 | − | 2.14407i | −0.310810 | + | 2.16173i | 0.425877 | − | 4.20904i | 1.22272 | − | 2.34626i | 3.62868 | − | 3.14427i | 2.79750 | − | 1.08351i | −4.85226 | − | 2.21595i |
41.6 | −0.688131 | + | 2.34356i | 1.70257 | − | 0.318198i | −3.33623 | − | 2.14407i | 0.310810 | − | 2.16173i | −0.425877 | + | 4.20904i | −2.57390 | − | 0.612403i | 3.62868 | − | 3.14427i | 2.79750 | − | 1.08351i | 4.85226 | + | 2.21595i |
41.7 | −0.659075 | + | 2.24460i | −0.178359 | + | 1.72284i | −2.92135 | − | 1.87744i | −0.169901 | + | 1.18169i | −3.74955 | − | 1.53583i | 2.26497 | + | 1.36744i | 2.60355 | − | 2.25599i | −2.93638 | − | 0.614570i | −2.54044 | − | 1.16018i |
41.8 | −0.659075 | + | 2.24460i | 0.178359 | − | 1.72284i | −2.92135 | − | 1.87744i | 0.169901 | − | 1.18169i | 3.74955 | + | 1.53583i | −0.449799 | + | 2.60724i | 2.60355 | − | 2.25599i | −2.93638 | − | 0.614570i | 2.54044 | + | 1.16018i |
41.9 | −0.601323 | + | 2.04792i | −0.160145 | + | 1.72463i | −2.14987 | − | 1.38164i | −0.358395 | + | 2.49269i | −3.43560 | − | 1.36502i | −2.54603 | + | 0.719520i | 0.896135 | − | 0.776505i | −2.94871 | − | 0.552383i | −4.88932 | − | 2.23288i |
41.10 | −0.601323 | + | 2.04792i | 0.160145 | − | 1.72463i | −2.14987 | − | 1.38164i | 0.358395 | − | 2.49269i | 3.43560 | + | 1.36502i | 2.21107 | − | 1.45298i | 0.896135 | − | 0.776505i | −2.94871 | − | 0.552383i | 4.88932 | + | 2.23288i |
41.11 | −0.549147 | + | 1.87022i | −1.59123 | + | 0.684091i | −1.51367 | − | 0.972774i | 0.245423 | − | 1.70696i | −0.405583 | − | 3.35163i | 2.55196 | − | 0.698205i | −0.295653 | + | 0.256185i | 2.06404 | − | 2.17710i | 3.05762 | + | 1.39637i |
41.12 | −0.549147 | + | 1.87022i | 1.59123 | − | 0.684091i | −1.51367 | − | 0.972774i | −0.245423 | + | 1.70696i | 0.405583 | + | 3.35163i | −2.19885 | + | 1.47142i | −0.295653 | + | 0.256185i | 2.06404 | − | 2.17710i | −3.05762 | − | 1.39637i |
41.13 | −0.493988 | + | 1.68237i | −0.151912 | + | 1.72538i | −0.903836 | − | 0.580860i | 0.558871 | − | 3.88703i | −2.82768 | − | 1.10789i | −0.0105749 | − | 2.64573i | −1.22655 | + | 1.06281i | −2.95385 | − | 0.524209i | 6.26335 | + | 2.86037i |
41.14 | −0.493988 | + | 1.68237i | 0.151912 | − | 1.72538i | −0.903836 | − | 0.580860i | −0.558871 | + | 3.88703i | 2.82768 | + | 1.10789i | −1.99258 | − | 1.74058i | −1.22655 | + | 1.06281i | −2.95385 | − | 0.524209i | −6.26335 | − | 2.86037i |
41.15 | −0.468338 | + | 1.59501i | −1.57515 | − | 0.720338i | −0.642222 | − | 0.412731i | 0.0822804 | − | 0.572273i | 1.88665 | − | 2.17503i | −1.81311 | − | 1.92682i | −1.55355 | + | 1.34616i | 1.96223 | + | 2.26929i | 0.874248 | + | 0.399256i |
41.16 | −0.468338 | + | 1.59501i | 1.57515 | + | 0.720338i | −0.642222 | − | 0.412731i | −0.0822804 | + | 0.572273i | −1.88665 | + | 2.17503i | −0.268855 | − | 2.63206i | −1.55355 | + | 1.34616i | 1.96223 | + | 2.26929i | −0.874248 | − | 0.399256i |
41.17 | −0.454217 | + | 1.54692i | −1.66392 | − | 0.481000i | −0.504143 | − | 0.323993i | 0.562316 | − | 3.91099i | 1.49985 | − | 2.35548i | −1.48783 | + | 2.18778i | −1.70670 | + | 1.47886i | 2.53728 | + | 1.60069i | 5.79458 | + | 2.64630i |
41.18 | −0.454217 | + | 1.54692i | 1.66392 | + | 0.481000i | −0.504143 | − | 0.323993i | −0.562316 | + | 3.91099i | −1.49985 | + | 2.35548i | 2.62773 | + | 0.308264i | −1.70670 | + | 1.47886i | 2.53728 | + | 1.60069i | −5.79458 | − | 2.64630i |
41.19 | −0.340118 | + | 1.15833i | −1.07735 | − | 1.35621i | 0.456447 | + | 0.293341i | −0.0646472 | + | 0.449631i | 1.93738 | − | 0.786663i | 2.56225 | + | 0.659450i | −2.31977 | + | 2.01009i | −0.678624 | + | 2.92224i | −0.498836 | − | 0.227811i |
41.20 | −0.340118 | + | 1.15833i | 1.07735 | + | 1.35621i | 0.456447 | + | 0.293341i | 0.0646472 | − | 0.449631i | −1.93738 | + | 0.786663i | −1.17954 | + | 2.36827i | −2.31977 | + | 2.01009i | −0.678624 | + | 2.92224i | 0.498836 | + | 0.227811i |
See next 80 embeddings (of 600 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
7.b | odd | 2 | 1 | inner |
21.c | even | 2 | 1 | inner |
23.c | even | 11 | 1 | inner |
69.h | odd | 22 | 1 | inner |
161.l | odd | 22 | 1 | inner |
483.v | even | 22 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 483.2.v.a | ✓ | 600 |
3.b | odd | 2 | 1 | inner | 483.2.v.a | ✓ | 600 |
7.b | odd | 2 | 1 | inner | 483.2.v.a | ✓ | 600 |
21.c | even | 2 | 1 | inner | 483.2.v.a | ✓ | 600 |
23.c | even | 11 | 1 | inner | 483.2.v.a | ✓ | 600 |
69.h | odd | 22 | 1 | inner | 483.2.v.a | ✓ | 600 |
161.l | odd | 22 | 1 | inner | 483.2.v.a | ✓ | 600 |
483.v | even | 22 | 1 | inner | 483.2.v.a | ✓ | 600 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
483.2.v.a | ✓ | 600 | 1.a | even | 1 | 1 | trivial |
483.2.v.a | ✓ | 600 | 3.b | odd | 2 | 1 | inner |
483.2.v.a | ✓ | 600 | 7.b | odd | 2 | 1 | inner |
483.2.v.a | ✓ | 600 | 21.c | even | 2 | 1 | inner |
483.2.v.a | ✓ | 600 | 23.c | even | 11 | 1 | inner |
483.2.v.a | ✓ | 600 | 69.h | odd | 22 | 1 | inner |
483.2.v.a | ✓ | 600 | 161.l | odd | 22 | 1 | inner |
483.2.v.a | ✓ | 600 | 483.v | even | 22 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(483, [\chi])\).