Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [483,2,Mod(34,483)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(483, base_ring=CyclotomicField(22))
chi = DirichletCharacter(H, H._module([0, 11, 9]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("483.34");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 483 = 3 \cdot 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 483.r (of order \(22\), degree \(10\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.85677441763\) |
Analytic rank: | \(0\) |
Dimension: | \(320\) |
Relative dimension: | \(32\) over \(\Q(\zeta_{22})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{22}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
34.1 | −2.18339 | + | 1.40318i | −0.989821 | − | 0.142315i | 1.96744 | − | 4.30810i | −1.99005 | + | 0.584333i | 2.36086 | − | 1.07817i | 1.49161 | − | 2.18520i | 1.01061 | + | 7.02895i | 0.959493 | + | 0.281733i | 3.52514 | − | 4.06822i |
34.2 | −2.18339 | + | 1.40318i | 0.989821 | + | 0.142315i | 1.96744 | − | 4.30810i | 1.99005 | − | 0.584333i | −2.36086 | + | 1.07817i | 2.37524 | − | 1.16544i | 1.01061 | + | 7.02895i | 0.959493 | + | 0.281733i | −3.52514 | + | 4.06822i |
34.3 | −2.07156 | + | 1.33131i | −0.989821 | − | 0.142315i | 1.68815 | − | 3.69653i | 3.92324 | − | 1.15197i | 2.23994 | − | 1.02295i | 1.23729 | + | 2.33861i | 0.723239 | + | 5.03024i | 0.959493 | + | 0.281733i | −6.59362 | + | 7.60944i |
34.4 | −2.07156 | + | 1.33131i | 0.989821 | + | 0.142315i | 1.68815 | − | 3.69653i | −3.92324 | + | 1.15197i | −2.23994 | + | 1.02295i | −2.13872 | − | 1.55752i | 0.723239 | + | 5.03024i | 0.959493 | + | 0.281733i | 6.59362 | − | 7.60944i |
34.5 | −1.85697 | + | 1.19340i | −0.989821 | − | 0.142315i | 1.19330 | − | 2.61296i | 1.10668 | − | 0.324952i | 2.00791 | − | 0.916981i | −2.23744 | − | 1.41204i | 0.274107 | + | 1.90645i | 0.959493 | + | 0.281733i | −1.66728 | + | 1.92415i |
34.6 | −1.85697 | + | 1.19340i | 0.989821 | + | 0.142315i | 1.19330 | − | 2.61296i | −1.10668 | + | 0.324952i | −2.00791 | + | 0.916981i | 1.07924 | + | 2.41562i | 0.274107 | + | 1.90645i | 0.959493 | + | 0.281733i | 1.66728 | − | 1.92415i |
34.7 | −1.33182 | + | 0.855909i | −0.989821 | − | 0.142315i | 0.210335 | − | 0.460569i | −4.17306 | + | 1.22532i | 1.44007 | − | 0.657659i | −0.894449 | + | 2.48997i | −0.336531 | − | 2.34062i | 0.959493 | + | 0.281733i | 4.50901 | − | 5.20367i |
34.8 | −1.33182 | + | 0.855909i | 0.989821 | + | 0.142315i | 0.210335 | − | 0.460569i | 4.17306 | − | 1.22532i | −1.44007 | + | 0.657659i | −2.59192 | + | 0.530984i | −0.336531 | − | 2.34062i | 0.959493 | + | 0.281733i | −4.50901 | + | 5.20367i |
34.9 | −1.19713 | + | 0.769346i | −0.989821 | − | 0.142315i | 0.0103865 | − | 0.0227432i | 1.85052 | − | 0.543361i | 1.29443 | − | 0.591146i | 1.99144 | − | 1.74188i | −0.399972 | − | 2.78187i | 0.959493 | + | 0.281733i | −1.79727 | + | 2.07416i |
34.10 | −1.19713 | + | 0.769346i | 0.989821 | + | 0.142315i | 0.0103865 | − | 0.0227432i | −1.85052 | + | 0.543361i | −1.29443 | + | 0.591146i | 2.00756 | − | 1.72328i | −0.399972 | − | 2.78187i | 0.959493 | + | 0.281733i | 1.79727 | − | 2.07416i |
34.11 | −0.818407 | + | 0.525958i | −0.989821 | − | 0.142315i | −0.437672 | + | 0.958368i | −0.929338 | + | 0.272878i | 0.884929 | − | 0.404133i | 2.61509 | + | 0.401643i | −0.422768 | − | 2.94041i | 0.959493 | + | 0.281733i | 0.617054 | − | 0.712119i |
34.12 | −0.818407 | + | 0.525958i | 0.989821 | + | 0.142315i | −0.437672 | + | 0.958368i | 0.929338 | − | 0.272878i | −0.884929 | + | 0.404133i | −0.0253891 | − | 2.64563i | −0.422768 | − | 2.94041i | 0.959493 | + | 0.281733i | −0.617054 | + | 0.712119i |
34.13 | −0.795109 | + | 0.510986i | −0.989821 | − | 0.142315i | −0.459738 | + | 1.00669i | 1.49456 | − | 0.438843i | 0.859737 | − | 0.392629i | −0.275939 | + | 2.63132i | −0.417877 | − | 2.90640i | 0.959493 | + | 0.281733i | −0.964098 | + | 1.11263i |
34.14 | −0.795109 | + | 0.510986i | 0.989821 | + | 0.142315i | −0.459738 | + | 1.00669i | −1.49456 | + | 0.438843i | −0.859737 | + | 0.392629i | −2.64381 | − | 0.101346i | −0.417877 | − | 2.90640i | 0.959493 | + | 0.281733i | 0.964098 | − | 1.11263i |
34.15 | −0.129024 | + | 0.0829186i | −0.989821 | − | 0.142315i | −0.821058 | + | 1.79787i | −3.74200 | + | 1.09875i | 0.139511 | − | 0.0637126i | −0.158342 | − | 2.64101i | −0.0867944 | − | 0.603668i | 0.959493 | + | 0.281733i | 0.391701 | − | 0.452047i |
34.16 | −0.129024 | + | 0.0829186i | 0.989821 | + | 0.142315i | −0.821058 | + | 1.79787i | 3.74200 | − | 1.09875i | −0.139511 | + | 0.0637126i | 2.59159 | + | 0.532585i | −0.0867944 | − | 0.603668i | 0.959493 | + | 0.281733i | −0.391701 | + | 0.452047i |
34.17 | 0.0475988 | − | 0.0305899i | −0.989821 | − | 0.142315i | −0.829500 | + | 1.81635i | 1.34994 | − | 0.396378i | −0.0514677 | + | 0.0235045i | −1.67496 | − | 2.04805i | 0.0321834 | + | 0.223840i | 0.959493 | + | 0.281733i | 0.0521303 | − | 0.0601616i |
34.18 | 0.0475988 | − | 0.0305899i | 0.989821 | + | 0.142315i | −0.829500 | + | 1.81635i | −1.34994 | + | 0.396378i | 0.0514677 | − | 0.0235045i | 1.78883 | + | 1.94938i | 0.0321834 | + | 0.223840i | 0.959493 | + | 0.281733i | −0.0521303 | + | 0.0601616i |
34.19 | 0.227214 | − | 0.146021i | −0.989821 | − | 0.142315i | −0.800526 | + | 1.75291i | −1.03996 | + | 0.305361i | −0.245682 | + | 0.112199i | −2.17465 | + | 1.50695i | 0.150947 | + | 1.04986i | 0.959493 | + | 0.281733i | −0.191705 | + | 0.221239i |
34.20 | 0.227214 | − | 0.146021i | 0.989821 | + | 0.142315i | −0.800526 | + | 1.75291i | 1.03996 | − | 0.305361i | 0.245682 | − | 0.112199i | −1.80110 | + | 1.93805i | 0.150947 | + | 1.04986i | 0.959493 | + | 0.281733i | 0.191705 | − | 0.221239i |
See next 80 embeddings (of 320 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.b | odd | 2 | 1 | inner |
23.d | odd | 22 | 1 | inner |
161.k | even | 22 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 483.2.r.a | ✓ | 320 |
7.b | odd | 2 | 1 | inner | 483.2.r.a | ✓ | 320 |
23.d | odd | 22 | 1 | inner | 483.2.r.a | ✓ | 320 |
161.k | even | 22 | 1 | inner | 483.2.r.a | ✓ | 320 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
483.2.r.a | ✓ | 320 | 1.a | even | 1 | 1 | trivial |
483.2.r.a | ✓ | 320 | 7.b | odd | 2 | 1 | inner |
483.2.r.a | ✓ | 320 | 23.d | odd | 22 | 1 | inner |
483.2.r.a | ✓ | 320 | 161.k | even | 22 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(483, [\chi])\).