Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [483,2,Mod(64,483)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(483, base_ring=CyclotomicField(22))
chi = DirichletCharacter(H, H._module([0, 0, 12]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("483.64");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 483 = 3 \cdot 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 483.q (of order \(11\), degree \(10\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.85677441763\) |
Analytic rank: | \(0\) |
Dimension: | \(60\) |
Relative dimension: | \(6\) over \(\Q(\zeta_{11})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{11}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
64.1 | −2.35051 | − | 0.690173i | 0.654861 | − | 0.755750i | 3.36607 | + | 2.16324i | −0.0495443 | + | 0.344588i | −2.06086 | + | 1.32443i | 0.415415 | + | 0.909632i | −3.21050 | − | 3.70511i | −0.142315 | − | 0.989821i | 0.354280 | − | 0.775765i |
64.2 | −1.03092 | − | 0.302706i | 0.654861 | − | 0.755750i | −0.711340 | − | 0.457151i | −0.107286 | + | 0.746189i | −0.903879 | + | 0.580888i | 0.415415 | + | 0.909632i | 2.00217 | + | 2.31063i | −0.142315 | − | 0.989821i | 0.336479 | − | 0.736786i |
64.3 | −0.0618105 | − | 0.0181492i | 0.654861 | − | 0.755750i | −1.67902 | − | 1.07904i | −0.424340 | + | 2.95135i | −0.0541936 | + | 0.0348281i | 0.415415 | + | 0.909632i | 0.168569 | + | 0.194540i | −0.142315 | − | 0.989821i | 0.0797933 | − | 0.174723i |
64.4 | 1.04309 | + | 0.306279i | 0.654861 | − | 0.755750i | −0.688274 | − | 0.442327i | 0.159962 | − | 1.11256i | 0.914550 | − | 0.587746i | 0.415415 | + | 0.909632i | −2.00629 | − | 2.31538i | −0.142315 | − | 0.989821i | 0.507608 | − | 1.11151i |
64.5 | 2.07162 | + | 0.608284i | 0.654861 | − | 0.755750i | 2.23911 | + | 1.43899i | −0.483629 | + | 3.36371i | 1.81634 | − | 1.16729i | 0.415415 | + | 0.909632i | 0.935489 | + | 1.07961i | −0.142315 | − | 0.989821i | −3.04799 | + | 6.67417i |
64.6 | 2.24006 | + | 0.657740i | 0.654861 | − | 0.755750i | 2.90273 | + | 1.86547i | 0.461461 | − | 3.20953i | 1.96401 | − | 1.26219i | 0.415415 | + | 0.909632i | 2.21758 | + | 2.55922i | −0.142315 | − | 0.989821i | 3.14474 | − | 6.88602i |
85.1 | −1.76537 | + | 2.03734i | −0.841254 | + | 0.540641i | −0.749611 | − | 5.21366i | −1.11741 | − | 2.44678i | 0.383651 | − | 2.66835i | −0.959493 | + | 0.281733i | 7.40965 | + | 4.76189i | 0.415415 | − | 0.909632i | 6.95754 | + | 2.04292i |
85.2 | −1.19069 | + | 1.37413i | −0.841254 | + | 0.540641i | −0.185857 | − | 1.29267i | −0.605948 | − | 1.32684i | 0.258761 | − | 1.79972i | −0.959493 | + | 0.281733i | −1.06160 | − | 0.682248i | 0.415415 | − | 0.909632i | 2.54474 | + | 0.747203i |
85.3 | −1.03904 | + | 1.19912i | −0.841254 | + | 0.540641i | −0.0736471 | − | 0.512227i | 0.945752 | + | 2.07091i | 0.225805 | − | 1.57051i | −0.959493 | + | 0.281733i | −1.97883 | − | 1.27171i | 0.415415 | − | 0.909632i | −3.46594 | − | 1.01769i |
85.4 | −0.247496 | + | 0.285625i | −0.841254 | + | 0.540641i | 0.264302 | + | 1.83826i | 1.62071 | + | 3.54886i | 0.0537860 | − | 0.374090i | −0.959493 | + | 0.281733i | −1.22635 | − | 0.788126i | 0.415415 | − | 0.909632i | −1.41476 | − | 0.415412i |
85.5 | 0.765301 | − | 0.883205i | −0.841254 | + | 0.540641i | 0.0902651 | + | 0.627808i | −0.487321 | − | 1.06708i | −0.166316 | + | 1.15675i | −0.959493 | + | 0.281733i | 2.58982 | + | 1.66438i | 0.415415 | − | 0.909632i | −1.31540 | − | 0.386237i |
85.6 | 1.53423 | − | 1.77059i | −0.841254 | + | 0.540641i | −0.496516 | − | 3.45335i | −0.667274 | − | 1.46113i | −0.333420 | + | 2.31898i | −0.959493 | + | 0.281733i | −2.93441 | − | 1.88583i | 0.415415 | − | 0.909632i | −3.61081 | − | 1.06023i |
127.1 | −2.13310 | + | 1.37086i | 0.142315 | − | 0.989821i | 1.84002 | − | 4.02908i | −1.89262 | + | 0.555724i | 1.05333 | + | 2.30648i | −0.654861 | − | 0.755750i | 0.876645 | + | 6.09720i | −0.959493 | − | 0.281733i | 3.27533 | − | 3.77993i |
127.2 | −1.49352 | + | 0.959824i | 0.142315 | − | 0.989821i | 0.478496 | − | 1.04776i | 1.94954 | − | 0.572436i | 0.737505 | + | 1.61491i | −0.654861 | − | 0.755750i | −0.214292 | − | 1.49043i | −0.959493 | − | 0.281733i | −2.36223 | + | 2.72616i |
127.3 | −0.502226 | + | 0.322761i | 0.142315 | − | 0.989821i | −0.682774 | + | 1.49507i | −0.741298 | + | 0.217665i | 0.248001 | + | 0.543047i | −0.654861 | − | 0.755750i | −0.309565 | − | 2.15307i | −0.959493 | − | 0.281733i | 0.302045 | − | 0.348578i |
127.4 | −0.112067 | + | 0.0720210i | 0.142315 | − | 0.989821i | −0.823458 | + | 1.80312i | −0.784721 | + | 0.230415i | 0.0553392 | + | 0.121176i | −0.654861 | − | 0.755750i | −0.0754970 | − | 0.525093i | −0.959493 | − | 0.281733i | 0.0713466 | − | 0.0823383i |
127.5 | 1.84770 | − | 1.18744i | 0.142315 | − | 0.989821i | 1.17314 | − | 2.56882i | 2.35208 | − | 0.690633i | −0.912403 | − | 1.99788i | −0.654861 | − | 0.755750i | −0.257569 | − | 1.79143i | −0.959493 | − | 0.281733i | 3.52585 | − | 4.06905i |
127.6 | 2.29607 | − | 1.47560i | 0.142315 | − | 0.989821i | 2.26374 | − | 4.95689i | −3.38655 | + | 0.994380i | −1.13381 | − | 2.48270i | −0.654861 | − | 0.755750i | −1.33981 | − | 9.31861i | −0.959493 | − | 0.281733i | −6.30846 | + | 7.28035i |
169.1 | −0.401532 | + | 2.79272i | −0.415415 | − | 0.909632i | −5.71907 | − | 1.67927i | −1.39224 | − | 1.60673i | 2.70715 | − | 0.794891i | 0.841254 | + | 0.540641i | 4.64198 | − | 10.1645i | −0.654861 | + | 0.755750i | 5.04616 | − | 3.24297i |
169.2 | −0.275145 | + | 1.91367i | −0.415415 | − | 0.909632i | −1.66745 | − | 0.489608i | −1.20808 | − | 1.39419i | 1.85504 | − | 0.544688i | 0.841254 | + | 0.540641i | −0.210547 | + | 0.461033i | −0.654861 | + | 0.755750i | 3.00043 | − | 1.92826i |
See all 60 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
23.c | even | 11 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 483.2.q.d | ✓ | 60 |
23.c | even | 11 | 1 | inner | 483.2.q.d | ✓ | 60 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
483.2.q.d | ✓ | 60 | 1.a | even | 1 | 1 | trivial |
483.2.q.d | ✓ | 60 | 23.c | even | 11 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{60} + T_{2}^{59} + 8 T_{2}^{58} - 14 T_{2}^{57} + 50 T_{2}^{56} - 20 T_{2}^{55} + 729 T_{2}^{54} + \cdots + 59049 \) acting on \(S_{2}^{\mathrm{new}}(483, [\chi])\).