Properties

Label 483.2.q.c.463.2
Level $483$
Weight $2$
Character 483.463
Analytic conductor $3.857$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 483.q (of order \(11\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.85677441763\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(2\) over \(\Q(\zeta_{11})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Defining polynomial: \(x^{20} - 8 x^{19} + 40 x^{18} - 117 x^{17} + 295 x^{16} - 575 x^{15} + 1777 x^{14} - 1560 x^{13} + 4383 x^{12} - 6446 x^{11} + 7261 x^{10} + 7700 x^{9} + 7852 x^{8} - 39430 x^{7} - 101709 x^{6} + 156742 x^{5} + 999838 x^{4} + 2029154 x^{3} + 3616480 x^{2} + 4299390 x + 2374681\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 463.2
Root \(-0.318425 + 2.21469i\) of defining polynomial
Character \(\chi\) \(=\) 483.463
Dual form 483.2.q.c.169.2

$q$-expansion

\(f(q)\) \(=\) \(q+(0.186393 + 1.29639i) q^{2} +(0.415415 - 0.909632i) q^{3} +(0.273100 - 0.0801894i) q^{4} +(1.65162 - 1.90608i) q^{5} +(1.25667 + 0.368991i) q^{6} +(0.841254 - 0.540641i) q^{7} +(1.24302 + 2.72183i) q^{8} +(-0.654861 - 0.755750i) q^{9} +O(q^{10})\) \(q+(0.186393 + 1.29639i) q^{2} +(0.415415 - 0.909632i) q^{3} +(0.273100 - 0.0801894i) q^{4} +(1.65162 - 1.90608i) q^{5} +(1.25667 + 0.368991i) q^{6} +(0.841254 - 0.540641i) q^{7} +(1.24302 + 2.72183i) q^{8} +(-0.654861 - 0.755750i) q^{9} +(2.77887 + 1.78587i) q^{10} +(0.470231 - 3.27053i) q^{11} +(0.0405070 - 0.281733i) q^{12} +(-2.21826 - 1.42559i) q^{13} +(0.857685 + 0.989821i) q^{14} +(-1.04772 - 2.29418i) q^{15} +(-2.81797 + 1.81100i) q^{16} +(-2.87118 - 0.843054i) q^{17} +(0.857685 - 0.989821i) q^{18} +(-4.39983 + 1.29191i) q^{19} +(0.298212 - 0.652992i) q^{20} +(-0.142315 - 0.989821i) q^{21} +4.32753 q^{22} +(4.63215 + 1.24226i) q^{23} +2.99223 q^{24} +(-0.193688 - 1.34713i) q^{25} +(1.43465 - 3.14145i) q^{26} +(-0.959493 + 0.281733i) q^{27} +(0.186393 - 0.215109i) q^{28} +(8.79997 + 2.58390i) q^{29} +(2.77887 - 1.78587i) q^{30} +(-0.0842219 - 0.184420i) q^{31} +(1.04598 + 1.20712i) q^{32} +(-2.77963 - 1.78636i) q^{33} +(0.557760 - 3.87931i) q^{34} +(0.358932 - 2.49643i) q^{35} +(-0.239446 - 0.153882i) q^{36} +(-1.42086 - 1.63976i) q^{37} +(-2.49491 - 5.46310i) q^{38} +(-2.21826 + 1.42559i) q^{39} +(7.24100 + 2.12615i) q^{40} +(-8.17344 + 9.43265i) q^{41} +(1.25667 - 0.368991i) q^{42} +(-3.94480 + 8.63790i) q^{43} +(-0.133842 - 0.930889i) q^{44} -2.52210 q^{45} +(-0.747049 + 6.23662i) q^{46} +5.57125 q^{47} +(0.476716 + 3.31563i) q^{48} +(0.415415 - 0.909632i) q^{49} +(1.71030 - 0.502190i) q^{50} +(-1.95960 + 2.26150i) q^{51} +(-0.720124 - 0.211448i) q^{52} +(8.67612 - 5.57580i) q^{53} +(-0.544078 - 1.19136i) q^{54} +(-5.45722 - 6.29797i) q^{55} +(2.51722 + 1.61772i) q^{56} +(-0.652596 + 4.53891i) q^{57} +(-1.70950 + 11.8898i) q^{58} +(1.24495 + 0.800081i) q^{59} +(-0.470101 - 0.542526i) q^{60} +(1.38782 + 3.03890i) q^{61} +(0.223382 - 0.143559i) q^{62} +(-0.959493 - 0.281733i) q^{63} +(-5.75714 + 6.64410i) q^{64} +(-6.38101 + 1.87363i) q^{65} +(1.79772 - 3.93646i) q^{66} +(1.58647 + 11.0342i) q^{67} -0.851723 q^{68} +(3.05426 - 3.69750i) q^{69} +3.30325 q^{70} +(1.08372 + 7.53743i) q^{71} +(1.24302 - 2.72183i) q^{72} +(4.67859 - 1.37376i) q^{73} +(1.86093 - 2.14763i) q^{74} +(-1.30585 - 0.383433i) q^{75} +(-1.09800 + 0.705640i) q^{76} +(-1.37260 - 3.00557i) q^{77} +(-2.26159 - 2.61001i) q^{78} +(-14.2391 - 9.15090i) q^{79} +(-1.20232 + 8.36235i) q^{80} +(-0.142315 + 0.989821i) q^{81} +(-13.7519 - 8.83779i) q^{82} +(-3.75858 - 4.33764i) q^{83} +(-0.118239 - 0.258908i) q^{84} +(-6.34903 + 4.08027i) q^{85} +(-11.9334 - 3.50395i) q^{86} +(6.00604 - 6.93134i) q^{87} +(9.48631 - 2.78543i) q^{88} +(5.48049 - 12.0006i) q^{89} +(-0.470101 - 3.26962i) q^{90} -2.63685 q^{91} +(1.36466 - 0.0321892i) q^{92} -0.202742 q^{93} +(1.03844 + 7.22251i) q^{94} +(-4.80439 + 10.5202i) q^{95} +(1.53255 - 0.449997i) q^{96} +(-4.55992 + 5.26243i) q^{97} +(1.25667 + 0.368991i) q^{98} +(-2.77963 + 1.78636i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20q - 4q^{2} - 2q^{3} - 4q^{4} - q^{5} - 4q^{6} - 2q^{7} - 2q^{9} + O(q^{10}) \) \( 20q - 4q^{2} - 2q^{3} - 4q^{4} - q^{5} - 4q^{6} - 2q^{7} - 2q^{9} + 9q^{10} + 3q^{11} + 18q^{12} - 2q^{13} + 18q^{14} - q^{15} + 8q^{16} + 8q^{17} + 18q^{18} + 6q^{19} - 2q^{20} - 2q^{21} + 6q^{22} + 11q^{23} + 9q^{25} + 7q^{26} - 2q^{27} - 4q^{28} + 23q^{29} + 9q^{30} + q^{31} - 28q^{32} + 14q^{33} - 28q^{34} + 10q^{35} - 4q^{36} - 9q^{37} + 34q^{38} - 2q^{39} - 15q^{41} - 4q^{42} - 23q^{43} - 16q^{44} - 12q^{45} + 11q^{46} - 66q^{47} - 36q^{48} - 2q^{49} - 26q^{50} - 14q^{51} + 7q^{52} + 9q^{53} - 4q^{54} - 62q^{55} + 22q^{56} - 27q^{57} - 20q^{58} + 49q^{59} - 2q^{60} + 46q^{61} - 9q^{62} - 2q^{63} + 16q^{64} + 11q^{65} - 16q^{66} + 14q^{67} + 38q^{68} + 11q^{69} - 2q^{70} + 36q^{71} - q^{73} + 4q^{74} - 2q^{75} + 34q^{76} - 8q^{77} - 15q^{78} - 22q^{79} + 15q^{80} - 2q^{81} - 30q^{82} + 8q^{83} - 4q^{84} - 32q^{85} - 68q^{86} + q^{87} - 11q^{88} - 2q^{89} - 2q^{90} - 24q^{91} + 11q^{92} - 32q^{93} + 33q^{94} - 107q^{95} + 16q^{96} + 18q^{97} - 4q^{98} + 14q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/483\mathbb{Z}\right)^\times\).

\(n\) \(323\) \(346\) \(442\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{8}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.186393 + 1.29639i 0.131800 + 0.916686i 0.943207 + 0.332205i \(0.107793\pi\)
−0.811407 + 0.584481i \(0.801298\pi\)
\(3\) 0.415415 0.909632i 0.239840 0.525176i
\(4\) 0.273100 0.0801894i 0.136550 0.0400947i
\(5\) 1.65162 1.90608i 0.738628 0.852423i −0.254786 0.966997i \(-0.582005\pi\)
0.993415 + 0.114575i \(0.0365505\pi\)
\(6\) 1.25667 + 0.368991i 0.513033 + 0.150640i
\(7\) 0.841254 0.540641i 0.317964 0.204343i
\(8\) 1.24302 + 2.72183i 0.439473 + 0.962311i
\(9\) −0.654861 0.755750i −0.218287 0.251917i
\(10\) 2.77887 + 1.78587i 0.878755 + 0.564742i
\(11\) 0.470231 3.27053i 0.141780 0.986100i −0.787392 0.616453i \(-0.788569\pi\)
0.929172 0.369648i \(-0.120522\pi\)
\(12\) 0.0405070 0.281733i 0.0116934 0.0813292i
\(13\) −2.21826 1.42559i −0.615234 0.395387i 0.195582 0.980687i \(-0.437340\pi\)
−0.810817 + 0.585300i \(0.800977\pi\)
\(14\) 0.857685 + 0.989821i 0.229226 + 0.264541i
\(15\) −1.04772 2.29418i −0.270520 0.592355i
\(16\) −2.81797 + 1.81100i −0.704492 + 0.452750i
\(17\) −2.87118 0.843054i −0.696363 0.204471i −0.0856531 0.996325i \(-0.527298\pi\)
−0.610710 + 0.791854i \(0.709116\pi\)
\(18\) 0.857685 0.989821i 0.202158 0.233303i
\(19\) −4.39983 + 1.29191i −1.00939 + 0.296384i −0.744304 0.667841i \(-0.767219\pi\)
−0.265087 + 0.964225i \(0.585401\pi\)
\(20\) 0.298212 0.652992i 0.0666821 0.146013i
\(21\) −0.142315 0.989821i −0.0310556 0.215997i
\(22\) 4.32753 0.922631
\(23\) 4.63215 + 1.24226i 0.965870 + 0.259028i
\(24\) 2.99223 0.610786
\(25\) −0.193688 1.34713i −0.0387376 0.269426i
\(26\) 1.43465 3.14145i 0.281358 0.616089i
\(27\) −0.959493 + 0.281733i −0.184655 + 0.0542195i
\(28\) 0.186393 0.215109i 0.0352249 0.0406517i
\(29\) 8.79997 + 2.58390i 1.63411 + 0.479819i 0.964761 0.263127i \(-0.0847538\pi\)
0.669352 + 0.742946i \(0.266572\pi\)
\(30\) 2.77887 1.78587i 0.507350 0.326054i
\(31\) −0.0842219 0.184420i −0.0151267 0.0331229i 0.901918 0.431908i \(-0.142159\pi\)
−0.917045 + 0.398785i \(0.869432\pi\)
\(32\) 1.04598 + 1.20712i 0.184904 + 0.213391i
\(33\) −2.77963 1.78636i −0.483872 0.310966i
\(34\) 0.557760 3.87931i 0.0956551 0.665296i
\(35\) 0.358932 2.49643i 0.0606706 0.421973i
\(36\) −0.239446 0.153882i −0.0399076 0.0256471i
\(37\) −1.42086 1.63976i −0.233588 0.269575i 0.626839 0.779149i \(-0.284349\pi\)
−0.860427 + 0.509574i \(0.829803\pi\)
\(38\) −2.49491 5.46310i −0.404728 0.886232i
\(39\) −2.21826 + 1.42559i −0.355206 + 0.228277i
\(40\) 7.24100 + 2.12615i 1.14490 + 0.336174i
\(41\) −8.17344 + 9.43265i −1.27648 + 1.47313i −0.469040 + 0.883177i \(0.655400\pi\)
−0.807436 + 0.589955i \(0.799145\pi\)
\(42\) 1.25667 0.368991i 0.193908 0.0569366i
\(43\) −3.94480 + 8.63790i −0.601576 + 1.31727i 0.326613 + 0.945158i \(0.394093\pi\)
−0.928189 + 0.372109i \(0.878635\pi\)
\(44\) −0.133842 0.930889i −0.0201774 0.140337i
\(45\) −2.52210 −0.375972
\(46\) −0.747049 + 6.23662i −0.110146 + 0.919540i
\(47\) 5.57125 0.812650 0.406325 0.913729i \(-0.366810\pi\)
0.406325 + 0.913729i \(0.366810\pi\)
\(48\) 0.476716 + 3.31563i 0.0688080 + 0.478570i
\(49\) 0.415415 0.909632i 0.0593450 0.129947i
\(50\) 1.71030 0.502190i 0.241873 0.0710204i
\(51\) −1.95960 + 2.26150i −0.274399 + 0.316673i
\(52\) −0.720124 0.211448i −0.0998633 0.0293225i
\(53\) 8.67612 5.57580i 1.19176 0.765895i 0.214245 0.976780i \(-0.431271\pi\)
0.977511 + 0.210885i \(0.0676345\pi\)
\(54\) −0.544078 1.19136i −0.0740396 0.162124i
\(55\) −5.45722 6.29797i −0.735852 0.849218i
\(56\) 2.51722 + 1.61772i 0.336378 + 0.216177i
\(57\) −0.652596 + 4.53891i −0.0864385 + 0.601193i
\(58\) −1.70950 + 11.8898i −0.224468 + 1.56121i
\(59\) 1.24495 + 0.800081i 0.162079 + 0.104162i 0.619166 0.785260i \(-0.287471\pi\)
−0.457087 + 0.889422i \(0.651107\pi\)
\(60\) −0.470101 0.542526i −0.0606898 0.0700397i
\(61\) 1.38782 + 3.03890i 0.177692 + 0.389092i 0.977431 0.211257i \(-0.0677557\pi\)
−0.799738 + 0.600349i \(0.795028\pi\)
\(62\) 0.223382 0.143559i 0.0283696 0.0182320i
\(63\) −0.959493 0.281733i −0.120885 0.0354950i
\(64\) −5.75714 + 6.64410i −0.719643 + 0.830512i
\(65\) −6.38101 + 1.87363i −0.791467 + 0.232396i
\(66\) 1.79772 3.93646i 0.221284 0.484544i
\(67\) 1.58647 + 11.0342i 0.193819 + 1.34804i 0.821785 + 0.569798i \(0.192979\pi\)
−0.627966 + 0.778241i \(0.716112\pi\)
\(68\) −0.851723 −0.103287
\(69\) 3.05426 3.69750i 0.367690 0.445127i
\(70\) 3.30325 0.394814
\(71\) 1.08372 + 7.53743i 0.128614 + 0.894528i 0.947314 + 0.320307i \(0.103786\pi\)
−0.818700 + 0.574221i \(0.805305\pi\)
\(72\) 1.24302 2.72183i 0.146491 0.320770i
\(73\) 4.67859 1.37376i 0.547588 0.160786i 0.00377516 0.999993i \(-0.498798\pi\)
0.543813 + 0.839207i \(0.316980\pi\)
\(74\) 1.86093 2.14763i 0.216329 0.249657i
\(75\) −1.30585 0.383433i −0.150787 0.0442750i
\(76\) −1.09800 + 0.705640i −0.125949 + 0.0809425i
\(77\) −1.37260 3.00557i −0.156422 0.342516i
\(78\) −2.26159 2.61001i −0.256074 0.295526i
\(79\) −14.2391 9.15090i −1.60202 1.02956i −0.966225 0.257699i \(-0.917036\pi\)
−0.635796 0.771858i \(-0.719328\pi\)
\(80\) −1.20232 + 8.36235i −0.134424 + 0.934939i
\(81\) −0.142315 + 0.989821i −0.0158128 + 0.109980i
\(82\) −13.7519 8.83779i −1.51864 0.975970i
\(83\) −3.75858 4.33764i −0.412558 0.476117i 0.510997 0.859582i \(-0.329276\pi\)
−0.923555 + 0.383465i \(0.874731\pi\)
\(84\) −0.118239 0.258908i −0.0129010 0.0282492i
\(85\) −6.34903 + 4.08027i −0.688649 + 0.442568i
\(86\) −11.9334 3.50395i −1.28681 0.377841i
\(87\) 6.00604 6.93134i 0.643915 0.743118i
\(88\) 9.48631 2.78543i 1.01124 0.296928i
\(89\) 5.48049 12.0006i 0.580931 1.27206i −0.359839 0.933015i \(-0.617168\pi\)
0.940770 0.339047i \(-0.110104\pi\)
\(90\) −0.470101 3.26962i −0.0495530 0.344649i
\(91\) −2.63685 −0.276417
\(92\) 1.36466 0.0321892i 0.142275 0.00335595i
\(93\) −0.202742 −0.0210233
\(94\) 1.03844 + 7.22251i 0.107107 + 0.744945i
\(95\) −4.80439 + 10.5202i −0.492920 + 1.07935i
\(96\) 1.53255 0.449997i 0.156415 0.0459276i
\(97\) −4.55992 + 5.26243i −0.462990 + 0.534319i −0.938449 0.345419i \(-0.887737\pi\)
0.475458 + 0.879738i \(0.342282\pi\)
\(98\) 1.25667 + 0.368991i 0.126943 + 0.0372737i
\(99\) −2.77963 + 1.78636i −0.279364 + 0.179536i
\(100\) −0.160922 0.352370i −0.0160922 0.0352370i
\(101\) −1.49221 1.72210i −0.148480 0.171356i 0.676637 0.736317i \(-0.263437\pi\)
−0.825118 + 0.564961i \(0.808891\pi\)
\(102\) −3.29704 2.11888i −0.326456 0.209800i
\(103\) −0.468013 + 3.25510i −0.0461147 + 0.320735i 0.953687 + 0.300802i \(0.0972543\pi\)
−0.999801 + 0.0199329i \(0.993655\pi\)
\(104\) 1.12287 7.80975i 0.110107 0.765809i
\(105\) −2.12172 1.36355i −0.207059 0.133069i
\(106\) 8.84558 + 10.2083i 0.859159 + 0.991522i
\(107\) −4.00784 8.77594i −0.387452 0.848402i −0.998390 0.0567236i \(-0.981935\pi\)
0.610938 0.791679i \(-0.290793\pi\)
\(108\) −0.239446 + 0.153882i −0.0230407 + 0.0148073i
\(109\) −12.7008 3.72928i −1.21651 0.357201i −0.390369 0.920659i \(-0.627652\pi\)
−0.826145 + 0.563458i \(0.809471\pi\)
\(110\) 7.14744 8.24859i 0.681482 0.786472i
\(111\) −2.08183 + 0.611280i −0.197598 + 0.0580201i
\(112\) −1.39153 + 3.04702i −0.131487 + 0.287916i
\(113\) −1.43771 9.99948i −0.135248 0.940672i −0.938561 0.345114i \(-0.887840\pi\)
0.803313 0.595558i \(-0.203069\pi\)
\(114\) −6.00583 −0.562498
\(115\) 10.0184 6.77748i 0.934220 0.632004i
\(116\) 2.61047 0.242376
\(117\) 0.375263 + 2.61001i 0.0346931 + 0.241296i
\(118\) −0.805168 + 1.76307i −0.0741217 + 0.162304i
\(119\) −2.87118 + 0.843054i −0.263200 + 0.0772826i
\(120\) 4.94203 5.70341i 0.451144 0.520648i
\(121\) 0.0792039 + 0.0232563i 0.00720035 + 0.00211421i
\(122\) −3.68092 + 2.36559i −0.333255 + 0.214170i
\(123\) 5.18487 + 11.3533i 0.467504 + 1.02369i
\(124\) −0.0377896 0.0436115i −0.00339360 0.00391643i
\(125\) 7.72099 + 4.96198i 0.690587 + 0.443813i
\(126\) 0.186393 1.29639i 0.0166052 0.115492i
\(127\) 1.32005 9.18113i 0.117135 0.814694i −0.843549 0.537052i \(-0.819538\pi\)
0.960685 0.277642i \(-0.0895529\pi\)
\(128\) −6.99906 4.49802i −0.618635 0.397573i
\(129\) 6.21858 + 7.17663i 0.547516 + 0.631867i
\(130\) −3.61833 7.92305i −0.317349 0.694897i
\(131\) −16.8739 + 10.8442i −1.47428 + 0.947460i −0.476614 + 0.879113i \(0.658136\pi\)
−0.997662 + 0.0683471i \(0.978227\pi\)
\(132\) −0.902366 0.264959i −0.0785409 0.0230617i
\(133\) −3.00292 + 3.46555i −0.260386 + 0.300501i
\(134\) −14.0089 + 4.11338i −1.21018 + 0.355342i
\(135\) −1.04772 + 2.29418i −0.0901732 + 0.197452i
\(136\) −1.27428 8.86278i −0.109268 0.759977i
\(137\) 8.77044 0.749310 0.374655 0.927164i \(-0.377761\pi\)
0.374655 + 0.927164i \(0.377761\pi\)
\(138\) 5.36269 + 3.27033i 0.456503 + 0.278389i
\(139\) −0.374915 −0.0317999 −0.0158999 0.999874i \(-0.505061\pi\)
−0.0158999 + 0.999874i \(0.505061\pi\)
\(140\) −0.102163 0.710557i −0.00863433 0.0600531i
\(141\) 2.31438 5.06779i 0.194906 0.426784i
\(142\) −9.56945 + 2.80984i −0.803051 + 0.235797i
\(143\) −5.70552 + 6.58452i −0.477119 + 0.550625i
\(144\) 3.21404 + 0.943727i 0.267837 + 0.0786439i
\(145\) 19.4593 12.5058i 1.61601 1.03855i
\(146\) 2.65298 + 5.80923i 0.219563 + 0.480775i
\(147\) −0.654861 0.755750i −0.0540120 0.0623332i
\(148\) −0.519529 0.333881i −0.0427050 0.0274449i
\(149\) −1.40976 + 9.80512i −0.115492 + 0.803267i 0.846929 + 0.531706i \(0.178449\pi\)
−0.962421 + 0.271561i \(0.912460\pi\)
\(150\) 0.253677 1.76436i 0.0207127 0.144060i
\(151\) 0.955818 + 0.614267i 0.0777833 + 0.0499883i 0.578954 0.815360i \(-0.303461\pi\)
−0.501171 + 0.865348i \(0.667097\pi\)
\(152\) −8.98541 10.3697i −0.728813 0.841095i
\(153\) 1.24308 + 2.72197i 0.100497 + 0.220059i
\(154\) 3.64055 2.33964i 0.293364 0.188533i
\(155\) −0.490622 0.144060i −0.0394077 0.0115711i
\(156\) −0.491490 + 0.567210i −0.0393507 + 0.0454131i
\(157\) 4.65872 1.36792i 0.371807 0.109172i −0.0904906 0.995897i \(-0.528844\pi\)
0.462297 + 0.886725i \(0.347025\pi\)
\(158\) 9.20907 20.1651i 0.732635 1.60425i
\(159\) −1.46774 10.2083i −0.116399 0.809574i
\(160\) 4.02842 0.318474
\(161\) 4.56843 1.45928i 0.360042 0.115007i
\(162\) −1.30972 −0.102901
\(163\) 2.38814 + 16.6099i 0.187054 + 1.30099i 0.839587 + 0.543226i \(0.182797\pi\)
−0.652533 + 0.757760i \(0.726294\pi\)
\(164\) −1.47577 + 3.23148i −0.115238 + 0.252336i
\(165\) −7.99585 + 2.34779i −0.622476 + 0.182775i
\(166\) 4.92270 5.68110i 0.382075 0.440939i
\(167\) −21.1766 6.21800i −1.63869 0.481164i −0.672739 0.739880i \(-0.734882\pi\)
−0.965953 + 0.258716i \(0.916701\pi\)
\(168\) 2.51722 1.61772i 0.194208 0.124810i
\(169\) −2.51202 5.50056i −0.193233 0.423120i
\(170\) −6.47304 7.47029i −0.496460 0.572945i
\(171\) 3.85764 + 2.47915i 0.295001 + 0.189586i
\(172\) −0.384656 + 2.67534i −0.0293298 + 0.203993i
\(173\) 0.766000 5.32765i 0.0582379 0.405054i −0.939762 0.341831i \(-0.888953\pi\)
0.997999 0.0632228i \(-0.0201379\pi\)
\(174\) 10.1052 + 6.49422i 0.766074 + 0.492326i
\(175\) −0.891254 1.02856i −0.0673724 0.0777520i
\(176\) 4.59782 + 10.0678i 0.346574 + 0.758891i
\(177\) 1.24495 0.800081i 0.0935762 0.0601378i
\(178\) 16.5790 + 4.86803i 1.24265 + 0.364874i
\(179\) 4.47124 5.16009i 0.334197 0.385683i −0.563634 0.826025i \(-0.690597\pi\)
0.897830 + 0.440341i \(0.145143\pi\)
\(180\) −0.688786 + 0.202246i −0.0513390 + 0.0150745i
\(181\) 4.26883 9.34743i 0.317300 0.694789i −0.682033 0.731321i \(-0.738904\pi\)
0.999332 + 0.0365324i \(0.0116312\pi\)
\(182\) −0.491490 3.41839i −0.0364317 0.253388i
\(183\) 3.34080 0.246959
\(184\) 2.37663 + 14.1521i 0.175208 + 1.04330i
\(185\) −5.47224 −0.402327
\(186\) −0.0377896 0.262832i −0.00277087 0.0192718i
\(187\) −4.10734 + 8.99383i −0.300359 + 0.657694i
\(188\) 1.52151 0.446755i 0.110967 0.0325830i
\(189\) −0.654861 + 0.755750i −0.0476341 + 0.0549727i
\(190\) −14.5337 4.26749i −1.05439 0.309596i
\(191\) −21.3802 + 13.7402i −1.54702 + 0.994207i −0.560951 + 0.827849i \(0.689565\pi\)
−0.986065 + 0.166359i \(0.946799\pi\)
\(192\) 3.65208 + 7.99694i 0.263566 + 0.577130i
\(193\) −13.7810 15.9041i −0.991979 1.14480i −0.989460 0.144808i \(-0.953744\pi\)
−0.00251935 0.999997i \(-0.500802\pi\)
\(194\) −7.67210 4.93056i −0.550825 0.353994i
\(195\) −0.946450 + 6.58270i −0.0677767 + 0.471397i
\(196\) 0.0405070 0.281733i 0.00289336 0.0201238i
\(197\) −3.66346 2.35436i −0.261011 0.167742i 0.403590 0.914940i \(-0.367762\pi\)
−0.664601 + 0.747198i \(0.731399\pi\)
\(198\) −2.83393 3.27053i −0.201398 0.232426i
\(199\) −1.44805 3.17078i −0.102649 0.224771i 0.851338 0.524618i \(-0.175792\pi\)
−0.953987 + 0.299847i \(0.903064\pi\)
\(200\) 3.42590 2.20169i 0.242247 0.155683i
\(201\) 10.6961 + 3.14065i 0.754443 + 0.221525i
\(202\) 1.95438 2.25547i 0.137510 0.158695i
\(203\) 8.79997 2.58390i 0.617637 0.181354i
\(204\) −0.353819 + 0.774755i −0.0247723 + 0.0542437i
\(205\) 4.47990 + 31.1584i 0.312890 + 2.17619i
\(206\) −4.30712 −0.300091
\(207\) −2.09458 4.31425i −0.145583 0.299861i
\(208\) 8.83273 0.612439
\(209\) 2.15628 + 14.9973i 0.149153 + 1.03738i
\(210\) 1.37222 3.00474i 0.0946921 0.207347i
\(211\) −2.00966 + 0.590091i −0.138351 + 0.0406235i −0.350175 0.936684i \(-0.613878\pi\)
0.211824 + 0.977308i \(0.432060\pi\)
\(212\) 1.92233 2.21849i 0.132026 0.152366i
\(213\) 7.30648 + 2.14538i 0.500632 + 0.146999i
\(214\) 10.6300 6.83150i 0.726653 0.466991i
\(215\) 9.94917 + 21.7856i 0.678528 + 1.48577i
\(216\) −1.95949 2.26138i −0.133327 0.153867i
\(217\) −0.170557 0.109610i −0.0115782 0.00744084i
\(218\) 2.46727 17.1603i 0.167105 1.16224i
\(219\) 0.693943 4.82648i 0.0468923 0.326143i
\(220\) −1.99540 1.28237i −0.134530 0.0864570i
\(221\) 5.16717 + 5.96323i 0.347581 + 0.401130i
\(222\) −1.18049 2.58492i −0.0792296 0.173489i
\(223\) 1.31799 0.847020i 0.0882591 0.0567207i −0.495767 0.868456i \(-0.665113\pi\)
0.584026 + 0.811735i \(0.301477\pi\)
\(224\) 1.53255 + 0.449997i 0.102398 + 0.0300667i
\(225\) −0.891254 + 1.02856i −0.0594169 + 0.0685708i
\(226\) 12.6952 3.72766i 0.844475 0.247960i
\(227\) 7.70344 16.8682i 0.511295 1.11958i −0.461336 0.887226i \(-0.652630\pi\)
0.972631 0.232355i \(-0.0746431\pi\)
\(228\) 0.185748 + 1.29191i 0.0123015 + 0.0855587i
\(229\) 22.5410 1.48955 0.744775 0.667316i \(-0.232557\pi\)
0.744775 + 0.667316i \(0.232557\pi\)
\(230\) 10.6536 + 11.7245i 0.702479 + 0.773089i
\(231\) −3.30416 −0.217398
\(232\) 3.90557 + 27.1638i 0.256413 + 1.78339i
\(233\) −2.49059 + 5.45364i −0.163164 + 0.357280i −0.973500 0.228686i \(-0.926557\pi\)
0.810336 + 0.585965i \(0.199285\pi\)
\(234\) −3.31365 + 0.972974i −0.216620 + 0.0636053i
\(235\) 9.20160 10.6192i 0.600246 0.692721i
\(236\) 0.404154 + 0.118670i 0.0263082 + 0.00772478i
\(237\) −14.2391 + 9.15090i −0.924927 + 0.594415i
\(238\) −1.62809 3.56503i −0.105534 0.231086i
\(239\) −0.803055 0.926775i −0.0519453 0.0599481i 0.729182 0.684320i \(-0.239901\pi\)
−0.781128 + 0.624371i \(0.785355\pi\)
\(240\) 7.10720 + 4.56752i 0.458768 + 0.294832i
\(241\) 0.631571 4.39267i 0.0406831 0.282957i −0.959317 0.282332i \(-0.908892\pi\)
1.00000 0.000624904i \(-0.000198913\pi\)
\(242\) −0.0153863 + 0.107014i −0.000989068 + 0.00687912i
\(243\) 0.841254 + 0.540641i 0.0539664 + 0.0346821i
\(244\) 0.622702 + 0.718636i 0.0398644 + 0.0460060i
\(245\) −1.04772 2.29418i −0.0669362 0.146570i
\(246\) −13.7519 + 8.83779i −0.876787 + 0.563477i
\(247\) 11.6017 + 3.40657i 0.738198 + 0.216755i
\(248\) 0.397271 0.458475i 0.0252267 0.0291132i
\(249\) −5.50703 + 1.61701i −0.348994 + 0.102474i
\(250\) −4.99353 + 10.9343i −0.315818 + 0.691546i
\(251\) 4.09327 + 28.4693i 0.258365 + 1.79697i 0.544482 + 0.838773i \(0.316726\pi\)
−0.286117 + 0.958195i \(0.592365\pi\)
\(252\) −0.284630 −0.0179300
\(253\) 6.24101 14.5654i 0.392369 0.915720i
\(254\) 12.1484 0.762257
\(255\) 1.07407 + 7.47029i 0.0672606 + 0.467807i
\(256\) −2.77755 + 6.08198i −0.173597 + 0.380124i
\(257\) 2.75513 0.808978i 0.171860 0.0504626i −0.194670 0.980869i \(-0.562364\pi\)
0.366530 + 0.930406i \(0.380546\pi\)
\(258\) −8.14461 + 9.39938i −0.507061 + 0.585180i
\(259\) −2.08183 0.611280i −0.129358 0.0379831i
\(260\) −1.59241 + 1.02338i −0.0987570 + 0.0634673i
\(261\) −3.80997 8.34267i −0.235831 0.516398i
\(262\) −17.2034 19.8538i −1.06283 1.22657i
\(263\) 26.2897 + 16.8954i 1.62109 + 1.04181i 0.955283 + 0.295692i \(0.0955502\pi\)
0.665810 + 0.746121i \(0.268086\pi\)
\(264\) 1.40704 9.78616i 0.0865972 0.602296i
\(265\) 3.70178 25.7465i 0.227399 1.58159i
\(266\) −5.05243 3.24700i −0.309784 0.199086i
\(267\) −8.63945 9.97046i −0.528726 0.610182i
\(268\) 1.31809 + 2.88622i 0.0805152 + 0.176304i
\(269\) 12.7375 8.18588i 0.776618 0.499102i −0.0912919 0.995824i \(-0.529100\pi\)
0.867909 + 0.496722i \(0.165463\pi\)
\(270\) −3.16944 0.930632i −0.192886 0.0566365i
\(271\) −15.3456 + 17.7097i −0.932176 + 1.07579i 0.0647855 + 0.997899i \(0.479364\pi\)
−0.996962 + 0.0778898i \(0.975182\pi\)
\(272\) 9.61766 2.82400i 0.583156 0.171230i
\(273\) −1.09539 + 2.39856i −0.0662958 + 0.145168i
\(274\) 1.63475 + 11.3699i 0.0987587 + 0.686882i
\(275\) −4.49690 −0.271173
\(276\) 0.537618 1.25471i 0.0323608 0.0755245i
\(277\) −4.56128 −0.274060 −0.137030 0.990567i \(-0.543756\pi\)
−0.137030 + 0.990567i \(0.543756\pi\)
\(278\) −0.0698814 0.486036i −0.00419121 0.0291505i
\(279\) −0.0842219 + 0.184420i −0.00504223 + 0.0110410i
\(280\) 7.24100 2.12615i 0.432733 0.127062i
\(281\) 4.82033 5.56296i 0.287557 0.331858i −0.593531 0.804811i \(-0.702267\pi\)
0.881088 + 0.472953i \(0.156812\pi\)
\(282\) 7.00121 + 2.05574i 0.416916 + 0.122418i
\(283\) 17.6435 11.3388i 1.04880 0.674023i 0.101652 0.994820i \(-0.467587\pi\)
0.947148 + 0.320797i \(0.103951\pi\)
\(284\) 0.900386 + 1.97157i 0.0534281 + 0.116991i
\(285\) 7.57365 + 8.74046i 0.448624 + 0.517740i
\(286\) −9.59957 6.16927i −0.567635 0.364797i
\(287\) −1.77626 + 12.3541i −0.104849 + 0.729242i
\(288\) 0.227312 1.58099i 0.0133945 0.0931608i
\(289\) −6.76839 4.34978i −0.398140 0.255869i
\(290\) 19.8394 + 22.8959i 1.16501 + 1.34450i
\(291\) 2.89262 + 6.33395i 0.169568 + 0.371302i
\(292\) 1.16756 0.750348i 0.0683265 0.0439108i
\(293\) 4.43145 + 1.30119i 0.258888 + 0.0760164i 0.408601 0.912713i \(-0.366017\pi\)
−0.149713 + 0.988729i \(0.547835\pi\)
\(294\) 0.857685 0.989821i 0.0500212 0.0577276i
\(295\) 3.58120 1.05154i 0.208506 0.0612228i
\(296\) 2.69699 5.90559i 0.156760 0.343256i
\(297\) 0.470231 + 3.27053i 0.0272855 + 0.189775i
\(298\) −12.9740 −0.751566
\(299\) −8.50436 9.35918i −0.491820 0.541256i
\(300\) −0.387376 −0.0223652
\(301\) 1.35143 + 9.39938i 0.0778950 + 0.541771i
\(302\) −0.618172 + 1.35361i −0.0355718 + 0.0778914i
\(303\) −2.18637 + 0.641975i −0.125603 + 0.0368805i
\(304\) 10.0590 11.6086i 0.576920 0.665802i
\(305\) 8.08453 + 2.37383i 0.462919 + 0.135925i
\(306\) −3.29704 + 2.11888i −0.188479 + 0.121128i
\(307\) −10.4397 22.8598i −0.595827 1.30468i −0.931856 0.362828i \(-0.881811\pi\)
0.336029 0.941852i \(-0.390916\pi\)
\(308\) −0.615871 0.710753i −0.0350925 0.0404989i
\(309\) 2.76653 + 1.77794i 0.157382 + 0.101143i
\(310\) 0.0953090 0.662889i 0.00541319 0.0376496i
\(311\) 2.43854 16.9604i 0.138277 0.961737i −0.796027 0.605261i \(-0.793069\pi\)
0.934304 0.356476i \(-0.116022\pi\)
\(312\) −6.63754 4.26569i −0.375777 0.241497i
\(313\) 2.17026 + 2.50461i 0.122670 + 0.141569i 0.813762 0.581198i \(-0.197416\pi\)
−0.691092 + 0.722767i \(0.742870\pi\)
\(314\) 2.64172 + 5.78455i 0.149081 + 0.326441i
\(315\) −2.12172 + 1.36355i −0.119546 + 0.0768273i
\(316\) −4.62250 1.35729i −0.260036 0.0763534i
\(317\) −2.34826 + 2.71004i −0.131891 + 0.152211i −0.817854 0.575426i \(-0.804836\pi\)
0.685962 + 0.727637i \(0.259382\pi\)
\(318\) 12.9604 3.80552i 0.726784 0.213403i
\(319\) 12.5887 27.5655i 0.704834 1.54337i
\(320\) 3.15552 + 21.9471i 0.176399 + 1.22688i
\(321\) −9.64779 −0.538487
\(322\) 2.74331 + 5.65046i 0.152879 + 0.314888i
\(323\) 13.7219 0.763504
\(324\) 0.0405070 + 0.281733i 0.00225039 + 0.0156518i
\(325\) −1.49080 + 3.26440i −0.0826948 + 0.181076i
\(326\) −21.0878 + 6.19192i −1.16794 + 0.342939i
\(327\) −8.66837 + 10.0038i −0.479362 + 0.553213i
\(328\) −35.8337 10.5217i −1.97859 0.580966i
\(329\) 4.68683 3.01204i 0.258393 0.166059i
\(330\) −4.53402 9.92813i −0.249590 0.546526i
\(331\) 12.3090 + 14.2053i 0.676562 + 0.780794i 0.985388 0.170325i \(-0.0544816\pi\)
−0.308826 + 0.951118i \(0.599936\pi\)
\(332\) −1.37430 0.883211i −0.0754247 0.0484725i
\(333\) −0.308783 + 2.14763i −0.0169212 + 0.117689i
\(334\) 4.11380 28.6121i 0.225097 1.56558i
\(335\) 23.6522 + 15.2004i 1.29226 + 0.830484i
\(336\) 2.19360 + 2.53155i 0.119671 + 0.138108i
\(337\) −12.3013 26.9360i −0.670093 1.46730i −0.872809 0.488062i \(-0.837704\pi\)
0.202715 0.979238i \(-0.435023\pi\)
\(338\) 6.66266 4.28183i 0.362401 0.232901i
\(339\) −9.69309 2.84615i −0.526456 0.154582i
\(340\) −1.40673 + 1.62345i −0.0762904 + 0.0880439i
\(341\) −0.642755 + 0.188730i −0.0348071 + 0.0102203i
\(342\) −2.49491 + 5.46310i −0.134909 + 0.295411i
\(343\) −0.142315 0.989821i −0.00768428 0.0534453i
\(344\) −28.4143 −1.53200
\(345\) −2.00322 11.9285i −0.107850 0.642210i
\(346\) 7.04949 0.378983
\(347\) 2.07532 + 14.4342i 0.111409 + 0.774867i 0.966551 + 0.256473i \(0.0825606\pi\)
−0.855142 + 0.518393i \(0.826530\pi\)
\(348\) 1.08443 2.37457i 0.0581316 0.127290i
\(349\) −4.53253 + 1.33087i −0.242621 + 0.0712399i −0.400782 0.916173i \(-0.631262\pi\)
0.158161 + 0.987413i \(0.449443\pi\)
\(350\) 1.16729 1.34713i 0.0623945 0.0720071i
\(351\) 2.53004 + 0.742887i 0.135043 + 0.0396523i
\(352\) 4.43976 2.85326i 0.236640 0.152079i
\(353\) −3.40829 7.46310i −0.181405 0.397221i 0.796982 0.604003i \(-0.206428\pi\)
−0.978387 + 0.206782i \(0.933701\pi\)
\(354\) 1.26927 + 1.46481i 0.0674608 + 0.0778539i
\(355\) 16.1568 + 10.3833i 0.857514 + 0.551091i
\(356\) 0.534401 3.71684i 0.0283232 0.196992i
\(357\) −0.425862 + 2.96193i −0.0225390 + 0.156762i
\(358\) 7.52290 + 4.83467i 0.397598 + 0.255520i
\(359\) −6.56431 7.57562i −0.346451 0.399826i 0.555604 0.831447i \(-0.312487\pi\)
−0.902055 + 0.431621i \(0.857942\pi\)
\(360\) −3.13501 6.86472i −0.165230 0.361802i
\(361\) 1.70568 1.09618i 0.0897729 0.0576935i
\(362\) 12.9136 + 3.79177i 0.678724 + 0.199291i
\(363\) 0.0540572 0.0623853i 0.00283727 0.00327438i
\(364\) −0.720124 + 0.211448i −0.0377448 + 0.0110829i
\(365\) 5.10879 11.1867i 0.267406 0.585538i
\(366\) 0.622702 + 4.33099i 0.0325491 + 0.226384i
\(367\) −12.0408 −0.628523 −0.314262 0.949336i \(-0.601757\pi\)
−0.314262 + 0.949336i \(0.601757\pi\)
\(368\) −15.3030 + 4.88818i −0.797723 + 0.254814i
\(369\) 12.4812 0.649744
\(370\) −1.01999 7.09416i −0.0530265 0.368808i
\(371\) 4.28431 9.38132i 0.222430 0.487054i
\(372\) −0.0553688 + 0.0162577i −0.00287074 + 0.000842924i
\(373\) 22.7774 26.2865i 1.17937 1.36106i 0.260997 0.965340i \(-0.415949\pi\)
0.918370 0.395722i \(-0.129506\pi\)
\(374\) −12.4251 3.64834i −0.642486 0.188651i
\(375\) 7.72099 4.96198i 0.398710 0.256236i
\(376\) 6.92515 + 15.1640i 0.357138 + 0.782022i
\(377\) −15.8370 18.2769i −0.815648 0.941308i
\(378\) −1.10181 0.708089i −0.0566709 0.0364202i
\(379\) 0.816121 5.67625i 0.0419213 0.291569i −0.958066 0.286547i \(-0.907492\pi\)
0.999987 0.00502178i \(-0.00159849\pi\)
\(380\) −0.468475 + 3.25832i −0.0240323 + 0.167148i
\(381\) −7.80308 5.01474i −0.399764 0.256913i
\(382\) −21.7978 25.1560i −1.11527 1.28709i
\(383\) −5.00784 10.9656i −0.255889 0.560318i 0.737470 0.675380i \(-0.236021\pi\)
−0.993358 + 0.115062i \(0.963293\pi\)
\(384\) −6.99906 + 4.49802i −0.357169 + 0.229539i
\(385\) −7.99585 2.34779i −0.407506 0.119655i
\(386\) 18.0493 20.8300i 0.918685 1.06022i
\(387\) 9.11138 2.67534i 0.463158 0.135995i
\(388\) −0.823324 + 1.80283i −0.0417980 + 0.0915248i
\(389\) −0.186520 1.29728i −0.00945694 0.0657745i 0.984546 0.175124i \(-0.0560325\pi\)
−0.994003 + 0.109349i \(0.965123\pi\)
\(390\) −8.71017 −0.441056
\(391\) −12.2524 7.47189i −0.619632 0.377870i
\(392\) 2.99223 0.151130
\(393\) 2.85455 + 19.8538i 0.143993 + 1.00149i
\(394\) 2.36933 5.18811i 0.119365 0.261373i
\(395\) −40.9599 + 12.0269i −2.06092 + 0.605139i
\(396\) −0.615871 + 0.710753i −0.0309487 + 0.0357167i
\(397\) 6.06013 + 1.77941i 0.304149 + 0.0893062i 0.430246 0.902712i \(-0.358427\pi\)
−0.126097 + 0.992018i \(0.540245\pi\)
\(398\) 3.84067 2.46825i 0.192515 0.123722i
\(399\) 1.90492 + 4.17119i 0.0953652 + 0.208821i
\(400\) 2.98546 + 3.44540i 0.149273 + 0.172270i
\(401\) −3.11533 2.00210i −0.155572 0.0999801i 0.460539 0.887640i \(-0.347656\pi\)
−0.616111 + 0.787660i \(0.711293\pi\)
\(402\) −2.07784 + 14.4517i −0.103633 + 0.720785i
\(403\) −0.0760814 + 0.529158i −0.00378988 + 0.0263592i
\(404\) −0.545617 0.350647i −0.0271455 0.0174453i
\(405\) 1.65162 + 1.90608i 0.0820698 + 0.0947136i
\(406\) 4.99000 + 10.9266i 0.247649 + 0.542277i
\(407\) −6.03102 + 3.87590i −0.298946 + 0.192121i
\(408\) −8.59122 2.52261i −0.425329 0.124888i
\(409\) 3.53251 4.07673i 0.174671 0.201581i −0.661663 0.749801i \(-0.730149\pi\)
0.836334 + 0.548220i \(0.184694\pi\)
\(410\) −39.5584 + 11.6154i −1.95365 + 0.573643i
\(411\) 3.64337 7.97788i 0.179714 0.393520i
\(412\) 0.133210 + 0.926499i 0.00656281 + 0.0456453i
\(413\) 1.47988 0.0728199
\(414\) 5.20254 3.51954i 0.255691 0.172976i
\(415\) −14.4756 −0.710581
\(416\) −0.599388 4.16884i −0.0293874 0.204394i
\(417\) −0.155745 + 0.341035i −0.00762688 + 0.0167005i
\(418\) −19.0404 + 5.59076i −0.931296 + 0.273453i
\(419\) −16.6696 + 19.2377i −0.814363 + 0.939825i −0.999076 0.0429670i \(-0.986319\pi\)
0.184713 + 0.982792i \(0.440864\pi\)
\(420\) −0.688786 0.202246i −0.0336093 0.00986858i
\(421\) 17.7987 11.4385i 0.867456 0.557480i −0.0295176 0.999564i \(-0.509397\pi\)
0.896974 + 0.442084i \(0.145761\pi\)
\(422\) −1.13957 2.49532i −0.0554736 0.121470i
\(423\) −3.64839 4.21047i −0.177391 0.204720i
\(424\) 25.9609 + 16.6841i 1.26077 + 0.810250i
\(425\) −0.579590 + 4.03114i −0.0281142 + 0.195539i
\(426\) −1.41937 + 9.87193i −0.0687687 + 0.478297i
\(427\) 2.81046 + 1.80618i 0.136008 + 0.0874069i
\(428\) −1.79828 2.07533i −0.0869231 0.100315i
\(429\) 3.61933 + 7.92523i 0.174743 + 0.382634i
\(430\) −26.3882 + 16.9587i −1.27255 + 0.817821i
\(431\) −29.9982 8.80828i −1.44496 0.424280i −0.537091 0.843524i \(-0.680477\pi\)
−0.907874 + 0.419244i \(0.862295\pi\)
\(432\) 2.19360 2.53155i 0.105540 0.121799i
\(433\) −1.87865 + 0.551623i −0.0902823 + 0.0265093i −0.326562 0.945176i \(-0.605890\pi\)
0.236279 + 0.971685i \(0.424072\pi\)
\(434\) 0.110307 0.241539i 0.00529492 0.0115942i
\(435\) −3.29194 22.8959i −0.157836 1.09778i
\(436\) −3.76763 −0.180437
\(437\) −21.9856 + 0.518590i −1.05171 + 0.0248075i
\(438\) 6.38635 0.305151
\(439\) −0.629598 4.37895i −0.0300491 0.208996i 0.969265 0.246017i \(-0.0791221\pi\)
−0.999314 + 0.0370216i \(0.988213\pi\)
\(440\) 10.3586 22.6821i 0.493825 1.08133i
\(441\) −0.959493 + 0.281733i −0.0456901 + 0.0134158i
\(442\) −6.76755 + 7.81017i −0.321900 + 0.371492i
\(443\) 18.3412 + 5.38546i 0.871416 + 0.255871i 0.686717 0.726924i \(-0.259051\pi\)
0.184698 + 0.982795i \(0.440869\pi\)
\(444\) −0.519529 + 0.333881i −0.0246558 + 0.0158453i
\(445\) −13.8223 30.2667i −0.655242 1.43478i
\(446\) 1.34373 + 1.55075i 0.0636276 + 0.0734302i
\(447\) 8.33342 + 5.35556i 0.394157 + 0.253309i
\(448\) −1.25115 + 8.70192i −0.0591111 + 0.411127i
\(449\) 2.03194 14.1324i 0.0958930 0.666951i −0.884009 0.467470i \(-0.845166\pi\)
0.979902 0.199480i \(-0.0639254\pi\)
\(450\) −1.49954 0.963696i −0.0706890 0.0454291i
\(451\) 27.0063 + 31.1669i 1.27168 + 1.46759i
\(452\) −1.19449 2.61557i −0.0561841 0.123026i
\(453\) 0.955818 0.614267i 0.0449082 0.0288608i
\(454\) 23.3036 + 6.84256i 1.09369 + 0.321137i
\(455\) −4.35508 + 5.02603i −0.204169 + 0.235624i
\(456\) −13.1653 + 3.86568i −0.616522 + 0.181027i
\(457\) 6.13016 13.4232i 0.286757 0.627910i −0.710356 0.703842i \(-0.751466\pi\)
0.997113 + 0.0759326i \(0.0241934\pi\)
\(458\) 4.20147 + 29.2219i 0.196322 + 1.36545i
\(459\) 2.99239 0.139673
\(460\) 2.19254 2.65430i 0.102228 0.123757i
\(461\) 31.1011 1.44852 0.724261 0.689526i \(-0.242181\pi\)
0.724261 + 0.689526i \(0.242181\pi\)
\(462\) −0.615871 4.28348i −0.0286529 0.199285i
\(463\) −10.4127 + 22.8006i −0.483919 + 1.05964i 0.497448 + 0.867494i \(0.334271\pi\)
−0.981367 + 0.192142i \(0.938457\pi\)
\(464\) −29.4775 + 8.65537i −1.36846 + 0.401815i
\(465\) −0.334853 + 0.386441i −0.0155284 + 0.0179208i
\(466\) −7.53427 2.21226i −0.349019 0.102481i
\(467\) −0.0524443 + 0.0337039i −0.00242683 + 0.00155963i −0.541854 0.840473i \(-0.682277\pi\)
0.539427 + 0.842032i \(0.318641\pi\)
\(468\) 0.311780 + 0.682702i 0.0144120 + 0.0315579i
\(469\) 7.30015 + 8.42482i 0.337090 + 0.389022i
\(470\) 15.4818 + 9.94952i 0.714120 + 0.458937i
\(471\) 0.690996 4.80598i 0.0318394 0.221448i
\(472\) −0.630188 + 4.38305i −0.0290068 + 0.201746i
\(473\) 26.3955 + 16.9634i 1.21367 + 0.779976i
\(474\) −14.5172 16.7537i −0.666797 0.769525i
\(475\) 2.59256 + 5.67692i 0.118955 + 0.260475i
\(476\) −0.716515 + 0.460476i −0.0328414 + 0.0211059i
\(477\) −9.89556 2.90560i −0.453086 0.133038i
\(478\) 1.05178 1.21382i 0.0481072 0.0555187i
\(479\) 15.1748 4.45571i 0.693352 0.203587i 0.0839760 0.996468i \(-0.473238\pi\)
0.609376 + 0.792881i \(0.291420\pi\)
\(480\) 1.67347 3.66438i 0.0763829 0.167255i
\(481\) 0.814214 + 5.66298i 0.0371250 + 0.258210i
\(482\) 5.81234 0.264745
\(483\) 0.570388 4.76179i 0.0259535 0.216669i
\(484\) 0.0234955 0.00106798
\(485\) 2.49931 + 17.3831i 0.113488 + 0.789327i
\(486\) −0.544078 + 1.19136i −0.0246799 + 0.0540414i
\(487\) 7.46889 2.19306i 0.338448 0.0993772i −0.108092 0.994141i \(-0.534474\pi\)
0.446540 + 0.894764i \(0.352656\pi\)
\(488\) −6.54628 + 7.55481i −0.296336 + 0.341990i
\(489\) 16.1009 + 4.72766i 0.728110 + 0.213792i
\(490\) 2.77887 1.78587i 0.125536 0.0806774i
\(491\) −4.49390 9.84026i −0.202807 0.444085i 0.780712 0.624891i \(-0.214857\pi\)
−0.983519 + 0.180806i \(0.942129\pi\)
\(492\) 2.32640 + 2.68481i 0.104882 + 0.121041i
\(493\) −23.0879 14.8377i −1.03983 0.668256i
\(494\) −2.25377 + 15.6753i −0.101402 + 0.705265i
\(495\) −1.18597 + 8.24859i −0.0533053 + 0.370746i
\(496\) 0.571320 + 0.367165i 0.0256530 + 0.0164862i
\(497\) 4.98672 + 5.75499i 0.223685 + 0.258146i
\(498\) −3.12274 6.83786i −0.139934 0.306412i
\(499\) −23.4986 + 15.1016i −1.05194 + 0.676043i −0.947912 0.318532i \(-0.896810\pi\)
−0.104031 + 0.994574i \(0.533174\pi\)
\(500\) 2.50650 + 0.735976i 0.112094 + 0.0329138i
\(501\) −14.4532 + 16.6798i −0.645720 + 0.745200i
\(502\) −36.1444 + 10.6130i −1.61320 + 0.473679i
\(503\) 5.26285 11.5240i 0.234659 0.513831i −0.755267 0.655417i \(-0.772493\pi\)
0.989926 + 0.141586i \(0.0452201\pi\)
\(504\) −0.425839 2.96177i −0.0189684 0.131928i
\(505\) −5.74703 −0.255739
\(506\) 20.0457 + 5.37589i 0.891142 + 0.238988i
\(507\) −6.04702 −0.268558
\(508\) −0.375725 2.61322i −0.0166701 0.115943i
\(509\) −18.0043 + 39.4239i −0.798026 + 1.74743i −0.145934 + 0.989294i \(0.546619\pi\)
−0.652092 + 0.758140i \(0.726108\pi\)
\(510\) −9.48421 + 2.78482i −0.419968 + 0.123314i
\(511\) 3.19317 3.68512i 0.141258 0.163020i
\(512\) −24.3679 7.15506i −1.07692 0.316212i
\(513\) 3.85764 2.47915i 0.170319 0.109457i
\(514\) 1.56229 + 3.42093i 0.0689095 + 0.150891i
\(515\) 5.43149 + 6.26827i 0.239340 + 0.276213i
\(516\) 2.27379 + 1.46127i 0.100098 + 0.0643290i
\(517\) 2.61977 18.2209i 0.115217 0.801355i
\(518\) 0.404419 2.81280i 0.0177692 0.123587i
\(519\) −4.52799 2.90996i −0.198757 0.127733i
\(520\) −13.0314 15.0390i −0.571465 0.659506i
\(521\) 4.15968 + 9.10843i 0.182239 + 0.399047i 0.978599 0.205775i \(-0.0659714\pi\)
−0.796361 + 0.604822i \(0.793244\pi\)
\(522\) 10.1052 6.49422i 0.442293 0.284244i
\(523\) 4.27279 + 1.25461i 0.186836 + 0.0548600i 0.373812 0.927504i \(-0.378050\pi\)
−0.186976 + 0.982364i \(0.559869\pi\)
\(524\) −3.73867 + 4.31465i −0.163324 + 0.188486i
\(525\) −1.30585 + 0.383433i −0.0569921 + 0.0167344i
\(526\) −17.0028 + 37.2309i −0.741357 + 1.62334i
\(527\) 0.0863399 + 0.600507i 0.00376102 + 0.0261585i
\(528\) 11.0680 0.481674
\(529\) 19.9136 + 11.5086i 0.865809 + 0.500375i
\(530\) 34.0674 1.47979
\(531\) −0.210608 1.46481i −0.00913962 0.0635674i
\(532\) −0.542197 + 1.18724i −0.0235072 + 0.0514736i
\(533\) 31.5779 9.27210i 1.36779 0.401619i
\(534\) 11.3153 13.0585i 0.489660 0.565098i
\(535\) −23.3470 6.85531i −1.00938 0.296381i
\(536\) −28.0611 + 18.0338i −1.21205 + 0.778940i
\(537\) −2.83636 6.21077i −0.122398 0.268014i
\(538\) 12.9863 + 14.9870i 0.559878 + 0.646133i
\(539\) −2.77963 1.78636i −0.119727 0.0769441i
\(540\) −0.102163 + 0.710557i −0.00439638 + 0.0305775i
\(541\) −5.70598 + 39.6860i −0.245319 + 1.70623i 0.379275 + 0.925284i \(0.376173\pi\)
−0.624594 + 0.780949i \(0.714736\pi\)
\(542\) −25.8190 16.5929i −1.10902 0.712725i
\(543\) −6.72939 7.76613i −0.288786 0.333276i
\(544\) −1.98551 4.34767i −0.0851282 0.186405i
\(545\) −28.0852 + 18.0493i −1.20304 + 0.773145i
\(546\) −3.31365 0.972974i −0.141811 0.0416395i
\(547\) 27.1099 31.2865i 1.15914 1.33772i 0.227735 0.973723i \(-0.426868\pi\)
0.931402 0.363993i \(-0.118587\pi\)
\(548\) 2.39521 0.703297i 0.102318 0.0300434i
\(549\) 1.38782 3.03890i 0.0592307 0.129697i
\(550\) −0.838189 5.82974i −0.0357405 0.248581i
\(551\) −42.0565 −1.79167
\(552\) 13.8604 + 3.71711i 0.589940 + 0.158211i
\(553\) −16.9260 −0.719768
\(554\) −0.850189 5.91319i −0.0361211 0.251228i
\(555\) −2.27325 + 4.97772i −0.0964941 + 0.211293i
\(556\) −0.102389 + 0.0300642i −0.00434227 + 0.00127501i
\(557\) 18.2912 21.1092i 0.775024 0.894425i −0.221716 0.975111i \(-0.571166\pi\)
0.996740 + 0.0806863i \(0.0257112\pi\)
\(558\) −0.254779 0.0748099i −0.0107857 0.00316695i
\(559\) 21.0647 13.5374i 0.890941 0.572573i
\(560\) 3.50957 + 7.68488i 0.148306 + 0.324746i
\(561\) 6.47482 + 7.47234i 0.273367 + 0.315483i
\(562\) 8.11024 + 5.21213i 0.342110 + 0.219861i
\(563\) 2.27463 15.8204i 0.0958642 0.666750i −0.884059 0.467375i \(-0.845200\pi\)
0.979923 0.199375i \(-0.0638912\pi\)
\(564\) 0.225675 1.56960i 0.00950262 0.0660922i
\(565\) −21.4343 13.7750i −0.901748 0.579518i
\(566\) 17.9882 + 20.7594i 0.756099 + 0.872585i
\(567\) 0.415415 + 0.909632i 0.0174458 + 0.0382010i
\(568\) −19.1685 + 12.3188i −0.804292 + 0.516887i
\(569\) 12.5407 + 3.68229i 0.525734 + 0.154370i 0.533821 0.845598i \(-0.320756\pi\)
−0.00808620 + 0.999967i \(0.502574\pi\)
\(570\) −9.91938 + 11.4476i −0.415477 + 0.479486i
\(571\) −9.89261 + 2.90473i −0.413993 + 0.121559i −0.482095 0.876119i \(-0.660124\pi\)
0.0681020 + 0.997678i \(0.478306\pi\)
\(572\) −1.03017 + 2.25576i −0.0430735 + 0.0943179i
\(573\) 3.61689 + 25.1560i 0.151098 + 1.05091i
\(574\) −16.3469 −0.682305
\(575\) 0.776288 6.48071i 0.0323734 0.270264i
\(576\) 8.79140 0.366308
\(577\) −3.17575 22.0878i −0.132208 0.919529i −0.942667 0.333733i \(-0.891691\pi\)
0.810459 0.585795i \(-0.199218\pi\)
\(578\) 4.37743 9.58524i 0.182077 0.398693i
\(579\) −20.1918 + 5.92883i −0.839141 + 0.246394i
\(580\) 4.31152 4.97576i 0.179026 0.206607i
\(581\) −5.50703 1.61701i −0.228470 0.0670848i
\(582\) −7.67210 + 4.93056i −0.318019 + 0.204378i
\(583\) −14.1560 30.9974i −0.586283 1.28378i
\(584\) 9.55470 + 11.0267i 0.395376 + 0.456289i
\(585\) 5.59467 + 3.59548i 0.231311 + 0.148655i
\(586\) −0.860861 + 5.98742i −0.0355618 + 0.247338i
\(587\) 4.01482 27.9237i 0.165709 1.15253i −0.721921 0.691976i \(-0.756740\pi\)
0.887630 0.460557i \(-0.152350\pi\)
\(588\) −0.239446 0.153882i −0.00987458 0.00634600i
\(589\) 0.608816 + 0.702611i 0.0250858 + 0.0289506i
\(590\) 2.03071 + 4.44664i 0.0836031 + 0.183065i
\(591\) −3.66346 + 2.35436i −0.150695 + 0.0968456i
\(592\) 6.97355 + 2.04762i 0.286611 + 0.0841566i
\(593\) 10.6300 12.2677i 0.436521 0.503772i −0.494278 0.869304i \(-0.664567\pi\)
0.930799 + 0.365532i \(0.119113\pi\)
\(594\) −4.15223 + 1.21920i −0.170368 + 0.0500246i
\(595\) −3.13518 + 6.86509i −0.128530 + 0.281441i
\(596\) 0.401261 + 2.79083i 0.0164363 + 0.114317i
\(597\) −3.48579 −0.142664
\(598\) 10.5480 12.7695i 0.431340 0.522182i
\(599\) −17.3022 −0.706950 −0.353475 0.935444i \(-0.615000\pi\)
−0.353475 + 0.935444i \(0.615000\pi\)
\(600\) −0.579559 4.03092i −0.0236604 0.164562i
\(601\) −1.28248 + 2.80824i −0.0523135 + 0.114551i −0.933984 0.357315i \(-0.883692\pi\)
0.881670 + 0.471866i \(0.156419\pi\)
\(602\) −11.9334 + 3.50395i −0.486368 + 0.142811i
\(603\) 7.30015 8.42482i 0.297285 0.343085i
\(604\) 0.310292 + 0.0911098i 0.0126256 + 0.00370721i
\(605\) 0.175143 0.112558i 0.00712059 0.00457612i
\(606\) −1.23977 2.71472i −0.0503623 0.110278i
\(607\) 28.8973 + 33.3493i 1.17291 + 1.35361i 0.922750 + 0.385400i \(0.125937\pi\)
0.250156 + 0.968205i \(0.419518\pi\)
\(608\) −6.16160 3.95982i −0.249886 0.160592i
\(609\) 1.30524 9.07812i 0.0528909 0.367864i
\(610\) −1.57052 + 10.9232i −0.0635883 + 0.442266i
\(611\) −12.3585 7.94231i −0.499970 0.321311i
\(612\) 0.557760 + 0.643689i 0.0225461 + 0.0260196i
\(613\) 1.57867 + 3.45681i 0.0637620 + 0.139619i 0.938830 0.344380i \(-0.111911\pi\)
−0.875068 + 0.483999i \(0.839184\pi\)
\(614\) 27.6894 17.7949i 1.11745 0.718143i
\(615\) 30.2037 + 8.86859i 1.21793 + 0.357616i
\(616\) 6.47447 7.47194i 0.260864 0.301053i
\(617\) 16.9638 4.98102i 0.682937 0.200528i 0.0781810 0.996939i \(-0.475089\pi\)
0.604756 + 0.796411i \(0.293271\pi\)
\(618\) −1.78924 + 3.91789i −0.0719739 + 0.157601i
\(619\) 2.07272 + 14.4161i 0.0833097 + 0.579431i 0.988128 + 0.153633i \(0.0490975\pi\)
−0.904818 + 0.425798i \(0.859993\pi\)
\(620\) −0.145541 −0.00584506
\(621\) −4.79450 + 0.113091i −0.192397 + 0.00453820i
\(622\) 22.4418 0.899836
\(623\) −1.87753 13.0585i −0.0752217 0.523179i
\(624\) 3.66925 8.03453i 0.146887 0.321639i
\(625\) 28.7393 8.43863i 1.14957 0.337545i
\(626\) −2.84243 + 3.28034i −0.113606 + 0.131109i
\(627\) 14.5377 + 4.26866i 0.580581 + 0.170474i
\(628\) 1.16261 0.747161i 0.0463930 0.0298150i
\(629\) 2.69714 + 5.90591i 0.107542 + 0.235484i
\(630\) −2.16317 2.49643i −0.0861826 0.0994600i
\(631\) −11.4500 7.35845i −0.455816 0.292935i 0.292514 0.956261i \(-0.405508\pi\)
−0.748331 + 0.663326i \(0.769144\pi\)
\(632\) 7.20775 50.1310i 0.286709 1.99410i
\(633\) −0.298079 + 2.07319i −0.0118476 + 0.0824018i
\(634\) −3.95096 2.53913i −0.156913 0.100842i
\(635\) −15.3197 17.6799i −0.607944 0.701605i
\(636\) −1.21944 2.67020i −0.0483540 0.105880i
\(637\) −2.21826 + 1.42559i −0.0878906 + 0.0564839i
\(638\) 38.0821 + 11.1819i 1.50768 + 0.442696i
\(639\) 4.98672 5.75499i 0.197272 0.227664i
\(640\) −20.1334 + 5.91169i −0.795841 + 0.233680i
\(641\) 7.58613 16.6113i 0.299634 0.656107i −0.698600 0.715512i \(-0.746193\pi\)
0.998234 + 0.0594056i \(0.0189205\pi\)
\(642\) −1.79828 12.5073i −0.0709724 0.493624i
\(643\) −46.0420 −1.81572 −0.907859 0.419275i \(-0.862284\pi\)
−0.907859 + 0.419275i \(0.862284\pi\)
\(644\) 1.13062 0.764868i 0.0445526 0.0301400i
\(645\) 23.9499 0.943028
\(646\) 2.55765 + 17.7889i 0.100630 + 0.699894i
\(647\) 17.5091 38.3397i 0.688355 1.50729i −0.165187 0.986262i \(-0.552823\pi\)
0.853542 0.521025i \(-0.174450\pi\)
\(648\) −2.87102 + 0.843008i −0.112784 + 0.0331165i
\(649\) 3.20210 3.69542i 0.125693 0.145058i
\(650\) −4.50981 1.32420i −0.176889 0.0519394i
\(651\) −0.170557 + 0.109610i −0.00668466 + 0.00429597i
\(652\) 1.98414 + 4.34466i 0.0777049 + 0.170150i
\(653\) −26.1701 30.2019i −1.02411 1.18189i −0.983163 0.182729i \(-0.941507\pi\)
−0.0409500 0.999161i \(-0.513038\pi\)
\(654\) −14.5846 9.37294i −0.570302 0.366511i
\(655\) −7.19946 + 50.0733i −0.281306 + 1.95653i
\(656\) 5.94998 41.3830i 0.232308 1.61573i
\(657\) −4.10205 2.63622i −0.160036 0.102849i
\(658\) 4.77838 + 5.51454i 0.186281 + 0.214979i
\(659\) 4.28633 + 9.38574i 0.166972 + 0.365617i 0.974559 0.224131i \(-0.0719544\pi\)
−0.807587 + 0.589748i \(0.799227\pi\)
\(660\) −1.99540 + 1.28237i −0.0776708 + 0.0499160i
\(661\) −8.52557 2.50333i −0.331606 0.0973684i 0.111691 0.993743i \(-0.464373\pi\)
−0.443297 + 0.896375i \(0.646191\pi\)
\(662\) −16.1213 + 18.6050i −0.626573 + 0.723103i
\(663\) 7.57087 2.22301i 0.294028 0.0863344i
\(664\) 7.13431 15.6220i 0.276865 0.606250i
\(665\) 1.64591 + 11.4476i 0.0638257 + 0.443918i
\(666\) −2.84172 −0.110115
\(667\) 37.5529 + 22.9008i 1.45405 + 0.886724i
\(668\) −6.28194 −0.243056
\(669\) −0.222964 1.55075i −0.00862030 0.0599555i
\(670\) −15.2970 + 33.4957i −0.590974 + 1.29405i
\(671\) 10.5914 3.10992i 0.408877 0.120057i
\(672\) 1.04598 1.20712i 0.0403494 0.0465657i
\(673\) 40.0901 + 11.7715i 1.54536 + 0.453759i 0.939710 0.341973i \(-0.111095\pi\)
0.605650 + 0.795731i \(0.292913\pi\)
\(674\) 32.6268 20.9679i 1.25674 0.807655i
\(675\) 0.565372 + 1.23799i 0.0217612 + 0.0476504i
\(676\) −1.12712 1.30077i −0.0433508 0.0500295i
\(677\) 3.48970 + 2.24269i 0.134120 + 0.0861937i 0.605980 0.795480i \(-0.292781\pi\)
−0.471860 + 0.881673i \(0.656417\pi\)
\(678\) 1.88300 13.0965i 0.0723160 0.502969i
\(679\) −0.990966 + 6.89232i −0.0380298 + 0.264503i
\(680\) −18.9977 12.2091i −0.728530 0.468198i
\(681\) −12.1437 14.0146i −0.465348 0.537040i
\(682\) −0.364472 0.798083i −0.0139564 0.0305602i
\(683\) 1.38359 0.889182i 0.0529418 0.0340236i −0.513902 0.857849i \(-0.671801\pi\)
0.566844 + 0.823825i \(0.308164\pi\)
\(684\) 1.25232 + 0.367715i 0.0478838 + 0.0140599i
\(685\) 14.4855 16.7171i 0.553461 0.638728i
\(686\) 1.25667 0.368991i 0.0479798 0.0140881i
\(687\) 9.36386 20.5040i 0.357253 0.782276i
\(688\) −4.52691 31.4854i −0.172587 1.20037i
\(689\) −27.1947 −1.03603
\(690\) 15.0906 4.82035i 0.574491 0.183508i
\(691\) −38.3026 −1.45710 −0.728550 0.684993i \(-0.759805\pi\)
−0.728550 + 0.684993i \(0.759805\pi\)
\(692\) −0.218026 1.51641i −0.00828812 0.0576451i
\(693\) −1.37260 + 3.00557i −0.0521406 + 0.114172i
\(694\) −18.3255 + 5.38085i −0.695626 + 0.204254i
\(695\) −0.619218 + 0.714616i −0.0234883 + 0.0271069i
\(696\) 26.3315 + 7.73163i 0.998093 + 0.293067i
\(697\) 31.4196 20.1922i 1.19010 0.764833i
\(698\) −2.57016 5.62786i −0.0972820 0.213018i
\(699\) 3.92617 + 4.53105i 0.148502 + 0.171380i
\(700\) −0.325881 0.209431i −0.0123172 0.00791576i
\(701\) −0.215004 + 1.49539i −0.00812060 + 0.0564800i −0.993479 0.114017i \(-0.963628\pi\)
0.985358 + 0.170497i \(0.0545373\pi\)
\(702\) −0.491490 + 3.41839i −0.0185501 + 0.129019i
\(703\) 8.36997 + 5.37906i 0.315680 + 0.202875i
\(704\) 19.0225 + 21.9531i 0.716938 + 0.827390i
\(705\) −5.83709 12.7815i −0.219838 0.481377i
\(706\) 9.03982 5.80954i 0.340218 0.218645i
\(707\) −2.18637 0.641975i −0.0822268 0.0241440i
\(708\) 0.275838 0.318334i 0.0103666 0.0119637i
\(709\) 6.39523 1.87781i 0.240178 0.0705226i −0.159428 0.987210i \(-0.550965\pi\)
0.399606 + 0.916687i \(0.369147\pi\)
\(710\) −10.4494 + 22.8809i −0.392157 + 0.858705i
\(711\) 2.40882 + 16.7537i 0.0903379 + 0.628314i
\(712\) 39.4759 1.47942
\(713\) −0.161031 0.958887i −0.00603067 0.0359106i
\(714\) −3.91920 −0.146672
\(715\) 3.12722 + 21.7503i 0.116951 + 0.813415i
\(716\) 0.807313 1.76777i 0.0301707 0.0660646i
\(717\) −1.17662 + 0.345488i −0.0439419 + 0.0129025i
\(718\) 8.59742 9.92195i 0.320853 0.370284i
\(719\) −47.6209 13.9828i −1.77596 0.521469i −0.781252 0.624216i \(-0.785418\pi\)
−0.994707 + 0.102748i \(0.967237\pi\)
\(720\) 7.10720 4.56752i 0.264870 0.170221i
\(721\) 1.36612 + 2.99139i 0.0508771 + 0.111405i
\(722\) 1.73900 + 2.00691i 0.0647189 + 0.0746896i
\(723\) −3.73335 2.39928i −0.138845 0.0892302i
\(724\) 0.416253 2.89510i 0.0154699 0.107596i
\(725\) 1.77640 12.3552i 0.0659740 0.458859i
\(726\) 0.0909516 + 0.0584510i 0.00337553 + 0.00216932i
\(727\) 21.6998 + 25.0429i 0.804802 + 0.928790i 0.998634 0.0522441i \(-0.0166374\pi\)
−0.193833 + 0.981035i \(0.562092\pi\)
\(728\) −3.27765 7.17705i −0.121478 0.265999i
\(729\) 0.841254 0.540641i 0.0311575 0.0200237i
\(730\) 15.4546 + 4.53787i 0.571999 + 0.167954i
\(731\) 18.6084 21.4753i 0.688258 0.794292i
\(732\) 0.912374 0.267897i 0.0337223 0.00990177i
\(733\) −20.1278 + 44.0738i −0.743438 + 1.62790i 0.0343783 + 0.999409i \(0.489055\pi\)
−0.777816 + 0.628492i \(0.783672\pi\)
\(734\) −2.24431 15.6095i −0.0828391 0.576159i
\(735\) −2.52210 −0.0930290
\(736\) 3.34556 + 6.89093i 0.123319 + 0.254003i
\(737\) 36.8335 1.35678
\(738\) 2.32640 + 16.1805i 0.0856360 + 0.595612i
\(739\) −14.0636 + 30.7950i −0.517339 + 1.13281i 0.453099 + 0.891460i \(0.350319\pi\)
−0.970437 + 0.241353i \(0.922409\pi\)
\(740\) −1.49447 + 0.438816i −0.0549378 + 0.0161312i
\(741\) 7.91824 9.13814i 0.290884 0.335698i
\(742\) 12.9604 + 3.80552i 0.475792 + 0.139705i
\(743\) −29.9633 + 19.2562i −1.09925 + 0.706443i −0.958924 0.283663i \(-0.908450\pi\)
−0.140323 + 0.990106i \(0.544814\pi\)
\(744\) −0.252011 0.551827i −0.00923918 0.0202310i
\(745\) 16.3609 + 18.8815i 0.599417 + 0.691764i
\(746\) 38.3231 + 24.6287i 1.40311 + 0.901722i
\(747\) −0.816818 + 5.68110i −0.0298858 + 0.207860i
\(748\) −0.400506 + 2.78558i −0.0146440 + 0.101851i
\(749\) −8.11624 5.21599i −0.296561 0.190588i
\(750\) 7.87180 + 9.08454i 0.287438 + 0.331721i
\(751\) 12.7324 + 27.8800i 0.464611 + 1.01736i 0.986412 + 0.164289i \(0.0525330\pi\)
−0.521801 + 0.853067i \(0.674740\pi\)
\(752\) −15.6996 + 10.0895i −0.572506 + 0.367927i
\(753\) 27.5970 + 8.10321i 1.00569 + 0.295297i
\(754\) 20.7421 23.9377i 0.755383 0.871758i
\(755\) 2.74949 0.807323i 0.100064 0.0293815i
\(756\) −0.118239 + 0.258908i −0.00430033 + 0.00941640i
\(757\) 1.14421 + 7.95819i 0.0415872 + 0.289245i 0.999993 + 0.00383507i \(0.00122074\pi\)
−0.958405 + 0.285410i \(0.907870\pi\)
\(758\) 7.51075 0.272803
\(759\) −10.6566 11.7277i −0.386809 0.425689i
\(760\) −34.6060 −1.25529
\(761\) 6.84705 + 47.6223i 0.248206 + 1.72631i 0.608574 + 0.793497i \(0.291742\pi\)
−0.360368 + 0.932810i \(0.617349\pi\)
\(762\) 5.04662 11.0506i 0.182820 0.400319i
\(763\) −12.7008 + 3.72928i −0.459799 + 0.135009i
\(764\) −4.73711 + 5.46692i −0.171383 + 0.197786i
\(765\) 7.24139 + 2.12627i 0.261813 + 0.0768753i
\(766\) 13.2823 8.53604i 0.479910 0.308419i
\(767\) −1.62104 3.54957i −0.0585322 0.128168i
\(768\) 4.37853 + 5.05309i 0.157996 + 0.182338i
\(769\) −17.3137 11.1269i −0.624349 0.401245i 0.189864 0.981810i \(-0.439195\pi\)
−0.814214 + 0.580565i \(0.802832\pi\)
\(770\) 1.55329 10.8034i 0.0559766 0.389326i
\(771\) 0.408648 2.84221i 0.0147171 0.102360i