Properties

Label 4805.2.a.y.1.6
Level $4805$
Weight $2$
Character 4805.1
Self dual yes
Analytic conductor $38.368$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4805,2,Mod(1,4805)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4805.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4805, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4805 = 5 \cdot 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4805.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,-1,4,15,-20,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.3681181712\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - x^{19} - 27 x^{18} + 29 x^{17} + 298 x^{16} - 343 x^{15} - 1729 x^{14} + 2127 x^{13} + 5634 x^{12} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 155)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(1.47391\) of defining polynomial
Character \(\chi\) \(=\) 4805.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.47391 q^{2} +2.90581 q^{3} +0.172406 q^{4} -1.00000 q^{5} -4.28290 q^{6} +3.45832 q^{7} +2.69371 q^{8} +5.44372 q^{9} +1.47391 q^{10} -2.66743 q^{11} +0.500978 q^{12} +1.40942 q^{13} -5.09725 q^{14} -2.90581 q^{15} -4.31509 q^{16} -2.66581 q^{17} -8.02355 q^{18} +4.61973 q^{19} -0.172406 q^{20} +10.0492 q^{21} +3.93154 q^{22} -7.95912 q^{23} +7.82740 q^{24} +1.00000 q^{25} -2.07735 q^{26} +7.10100 q^{27} +0.596234 q^{28} +9.41305 q^{29} +4.28290 q^{30} +0.972630 q^{32} -7.75103 q^{33} +3.92916 q^{34} -3.45832 q^{35} +0.938529 q^{36} +9.54129 q^{37} -6.80906 q^{38} +4.09550 q^{39} -2.69371 q^{40} -0.204208 q^{41} -14.8116 q^{42} +3.22072 q^{43} -0.459879 q^{44} -5.44372 q^{45} +11.7310 q^{46} -5.59812 q^{47} -12.5388 q^{48} +4.95998 q^{49} -1.47391 q^{50} -7.74633 q^{51} +0.242991 q^{52} +3.88528 q^{53} -10.4662 q^{54} +2.66743 q^{55} +9.31570 q^{56} +13.4240 q^{57} -13.8740 q^{58} -10.5015 q^{59} -0.500978 q^{60} +1.40790 q^{61} +18.8261 q^{63} +7.19661 q^{64} -1.40942 q^{65} +11.4243 q^{66} +4.69098 q^{67} -0.459600 q^{68} -23.1277 q^{69} +5.09725 q^{70} +9.52831 q^{71} +14.6638 q^{72} +1.53135 q^{73} -14.0630 q^{74} +2.90581 q^{75} +0.796467 q^{76} -9.22481 q^{77} -6.03639 q^{78} +9.89107 q^{79} +4.31509 q^{80} +4.30296 q^{81} +0.300984 q^{82} +6.98802 q^{83} +1.73254 q^{84} +2.66581 q^{85} -4.74704 q^{86} +27.3525 q^{87} -7.18526 q^{88} +13.1073 q^{89} +8.02355 q^{90} +4.87421 q^{91} -1.37220 q^{92} +8.25112 q^{94} -4.61973 q^{95} +2.82628 q^{96} +14.8804 q^{97} -7.31056 q^{98} -14.5207 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - q^{2} + 4 q^{3} + 15 q^{4} - 20 q^{5} + 4 q^{6} + q^{7} + 9 q^{8} + 8 q^{9} + q^{10} + 17 q^{11} - 13 q^{12} + 9 q^{13} + 6 q^{14} - 4 q^{15} + 9 q^{16} - 20 q^{17} - 28 q^{18} - 7 q^{19} - 15 q^{20}+ \cdots + 53 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.47391 −1.04221 −0.521105 0.853492i \(-0.674480\pi\)
−0.521105 + 0.853492i \(0.674480\pi\)
\(3\) 2.90581 1.67767 0.838835 0.544386i \(-0.183237\pi\)
0.838835 + 0.544386i \(0.183237\pi\)
\(4\) 0.172406 0.0862028
\(5\) −1.00000 −0.447214
\(6\) −4.28290 −1.74848
\(7\) 3.45832 1.30712 0.653561 0.756874i \(-0.273274\pi\)
0.653561 + 0.756874i \(0.273274\pi\)
\(8\) 2.69371 0.952369
\(9\) 5.44372 1.81457
\(10\) 1.47391 0.466091
\(11\) −2.66743 −0.804259 −0.402130 0.915583i \(-0.631730\pi\)
−0.402130 + 0.915583i \(0.631730\pi\)
\(12\) 0.500978 0.144620
\(13\) 1.40942 0.390902 0.195451 0.980713i \(-0.437383\pi\)
0.195451 + 0.980713i \(0.437383\pi\)
\(14\) −5.09725 −1.36230
\(15\) −2.90581 −0.750277
\(16\) −4.31509 −1.07877
\(17\) −2.66581 −0.646553 −0.323277 0.946305i \(-0.604784\pi\)
−0.323277 + 0.946305i \(0.604784\pi\)
\(18\) −8.02355 −1.89117
\(19\) 4.61973 1.05984 0.529919 0.848048i \(-0.322222\pi\)
0.529919 + 0.848048i \(0.322222\pi\)
\(20\) −0.172406 −0.0385511
\(21\) 10.0492 2.19292
\(22\) 3.93154 0.838207
\(23\) −7.95912 −1.65959 −0.829795 0.558068i \(-0.811543\pi\)
−0.829795 + 0.558068i \(0.811543\pi\)
\(24\) 7.82740 1.59776
\(25\) 1.00000 0.200000
\(26\) −2.07735 −0.407402
\(27\) 7.10100 1.36659
\(28\) 0.596234 0.112678
\(29\) 9.41305 1.74796 0.873979 0.485963i \(-0.161531\pi\)
0.873979 + 0.485963i \(0.161531\pi\)
\(30\) 4.28290 0.781946
\(31\) 0 0
\(32\) 0.972630 0.171938
\(33\) −7.75103 −1.34928
\(34\) 3.92916 0.673845
\(35\) −3.45832 −0.584563
\(36\) 0.938529 0.156421
\(37\) 9.54129 1.56858 0.784290 0.620395i \(-0.213028\pi\)
0.784290 + 0.620395i \(0.213028\pi\)
\(38\) −6.80906 −1.10457
\(39\) 4.09550 0.655804
\(40\) −2.69371 −0.425912
\(41\) −0.204208 −0.0318920 −0.0159460 0.999873i \(-0.505076\pi\)
−0.0159460 + 0.999873i \(0.505076\pi\)
\(42\) −14.8116 −2.28548
\(43\) 3.22072 0.491155 0.245578 0.969377i \(-0.421022\pi\)
0.245578 + 0.969377i \(0.421022\pi\)
\(44\) −0.459879 −0.0693294
\(45\) −5.44372 −0.811503
\(46\) 11.7310 1.72964
\(47\) −5.59812 −0.816570 −0.408285 0.912855i \(-0.633873\pi\)
−0.408285 + 0.912855i \(0.633873\pi\)
\(48\) −12.5388 −1.80982
\(49\) 4.95998 0.708569
\(50\) −1.47391 −0.208442
\(51\) −7.74633 −1.08470
\(52\) 0.242991 0.0336968
\(53\) 3.88528 0.533684 0.266842 0.963740i \(-0.414020\pi\)
0.266842 + 0.963740i \(0.414020\pi\)
\(54\) −10.4662 −1.42427
\(55\) 2.66743 0.359676
\(56\) 9.31570 1.24486
\(57\) 13.4240 1.77806
\(58\) −13.8740 −1.82174
\(59\) −10.5015 −1.36718 −0.683590 0.729866i \(-0.739583\pi\)
−0.683590 + 0.729866i \(0.739583\pi\)
\(60\) −0.500978 −0.0646760
\(61\) 1.40790 0.180264 0.0901318 0.995930i \(-0.471271\pi\)
0.0901318 + 0.995930i \(0.471271\pi\)
\(62\) 0 0
\(63\) 18.8261 2.37187
\(64\) 7.19661 0.899576
\(65\) −1.40942 −0.174817
\(66\) 11.4243 1.40623
\(67\) 4.69098 0.573094 0.286547 0.958066i \(-0.407493\pi\)
0.286547 + 0.958066i \(0.407493\pi\)
\(68\) −0.459600 −0.0557347
\(69\) −23.1277 −2.78424
\(70\) 5.09725 0.609238
\(71\) 9.52831 1.13080 0.565401 0.824816i \(-0.308721\pi\)
0.565401 + 0.824816i \(0.308721\pi\)
\(72\) 14.6638 1.72814
\(73\) 1.53135 0.179231 0.0896156 0.995976i \(-0.471436\pi\)
0.0896156 + 0.995976i \(0.471436\pi\)
\(74\) −14.0630 −1.63479
\(75\) 2.90581 0.335534
\(76\) 0.796467 0.0913611
\(77\) −9.22481 −1.05126
\(78\) −6.03639 −0.683486
\(79\) 9.89107 1.11283 0.556416 0.830904i \(-0.312176\pi\)
0.556416 + 0.830904i \(0.312176\pi\)
\(80\) 4.31509 0.482441
\(81\) 4.30296 0.478107
\(82\) 0.300984 0.0332381
\(83\) 6.98802 0.767035 0.383518 0.923534i \(-0.374713\pi\)
0.383518 + 0.923534i \(0.374713\pi\)
\(84\) 1.73254 0.189036
\(85\) 2.66581 0.289147
\(86\) −4.74704 −0.511887
\(87\) 27.3525 2.93250
\(88\) −7.18526 −0.765951
\(89\) 13.1073 1.38937 0.694686 0.719313i \(-0.255543\pi\)
0.694686 + 0.719313i \(0.255543\pi\)
\(90\) 8.02355 0.845757
\(91\) 4.87421 0.510957
\(92\) −1.37220 −0.143061
\(93\) 0 0
\(94\) 8.25112 0.851038
\(95\) −4.61973 −0.473974
\(96\) 2.82628 0.288456
\(97\) 14.8804 1.51087 0.755436 0.655223i \(-0.227425\pi\)
0.755436 + 0.655223i \(0.227425\pi\)
\(98\) −7.31056 −0.738478
\(99\) −14.5207 −1.45939
\(100\) 0.172406 0.0172406
\(101\) −9.00152 −0.895685 −0.447842 0.894113i \(-0.647807\pi\)
−0.447842 + 0.894113i \(0.647807\pi\)
\(102\) 11.4174 1.13049
\(103\) 2.14246 0.211103 0.105551 0.994414i \(-0.466339\pi\)
0.105551 + 0.994414i \(0.466339\pi\)
\(104\) 3.79656 0.372283
\(105\) −10.0492 −0.980703
\(106\) −5.72654 −0.556211
\(107\) 6.22162 0.601466 0.300733 0.953708i \(-0.402769\pi\)
0.300733 + 0.953708i \(0.402769\pi\)
\(108\) 1.22425 0.117804
\(109\) −14.5905 −1.39751 −0.698756 0.715360i \(-0.746263\pi\)
−0.698756 + 0.715360i \(0.746263\pi\)
\(110\) −3.93154 −0.374858
\(111\) 27.7252 2.63156
\(112\) −14.9230 −1.41009
\(113\) 11.3201 1.06491 0.532455 0.846458i \(-0.321270\pi\)
0.532455 + 0.846458i \(0.321270\pi\)
\(114\) −19.7858 −1.85311
\(115\) 7.95912 0.742191
\(116\) 1.62286 0.150679
\(117\) 7.67248 0.709321
\(118\) 15.4783 1.42489
\(119\) −9.21922 −0.845124
\(120\) −7.82740 −0.714540
\(121\) −3.88484 −0.353167
\(122\) −2.07512 −0.187873
\(123\) −0.593390 −0.0535042
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) −27.7480 −2.47199
\(127\) 6.54904 0.581134 0.290567 0.956855i \(-0.406156\pi\)
0.290567 + 0.956855i \(0.406156\pi\)
\(128\) −12.5524 −1.10949
\(129\) 9.35879 0.823996
\(130\) 2.07735 0.182196
\(131\) −1.29615 −0.113245 −0.0566226 0.998396i \(-0.518033\pi\)
−0.0566226 + 0.998396i \(0.518033\pi\)
\(132\) −1.33632 −0.116312
\(133\) 15.9765 1.38534
\(134\) −6.91407 −0.597285
\(135\) −7.10100 −0.611156
\(136\) −7.18090 −0.615757
\(137\) −1.02259 −0.0873661 −0.0436830 0.999045i \(-0.513909\pi\)
−0.0436830 + 0.999045i \(0.513909\pi\)
\(138\) 34.0881 2.90177
\(139\) −6.96021 −0.590358 −0.295179 0.955442i \(-0.595379\pi\)
−0.295179 + 0.955442i \(0.595379\pi\)
\(140\) −0.596234 −0.0503910
\(141\) −16.2671 −1.36993
\(142\) −14.0439 −1.17853
\(143\) −3.75951 −0.314386
\(144\) −23.4901 −1.95751
\(145\) −9.41305 −0.781711
\(146\) −2.25707 −0.186797
\(147\) 14.4128 1.18874
\(148\) 1.64497 0.135216
\(149\) −20.7884 −1.70305 −0.851527 0.524310i \(-0.824323\pi\)
−0.851527 + 0.524310i \(0.824323\pi\)
\(150\) −4.28290 −0.349697
\(151\) −0.146321 −0.0119074 −0.00595372 0.999982i \(-0.501895\pi\)
−0.00595372 + 0.999982i \(0.501895\pi\)
\(152\) 12.4442 1.00936
\(153\) −14.5119 −1.17322
\(154\) 13.5965 1.09564
\(155\) 0 0
\(156\) 0.706087 0.0565322
\(157\) 0.415184 0.0331353 0.0165676 0.999863i \(-0.494726\pi\)
0.0165676 + 0.999863i \(0.494726\pi\)
\(158\) −14.5785 −1.15981
\(159\) 11.2899 0.895345
\(160\) −0.972630 −0.0768932
\(161\) −27.5252 −2.16929
\(162\) −6.34218 −0.498288
\(163\) −10.5405 −0.825598 −0.412799 0.910822i \(-0.635449\pi\)
−0.412799 + 0.910822i \(0.635449\pi\)
\(164\) −0.0352067 −0.00274918
\(165\) 7.75103 0.603417
\(166\) −10.2997 −0.799412
\(167\) −14.6974 −1.13732 −0.568660 0.822573i \(-0.692538\pi\)
−0.568660 + 0.822573i \(0.692538\pi\)
\(168\) 27.0696 2.08847
\(169\) −11.0135 −0.847196
\(170\) −3.92916 −0.301352
\(171\) 25.1485 1.92316
\(172\) 0.555270 0.0423390
\(173\) 17.5003 1.33052 0.665262 0.746610i \(-0.268320\pi\)
0.665262 + 0.746610i \(0.268320\pi\)
\(174\) −40.3151 −3.05628
\(175\) 3.45832 0.261424
\(176\) 11.5102 0.867612
\(177\) −30.5154 −2.29368
\(178\) −19.3190 −1.44802
\(179\) 14.2118 1.06224 0.531121 0.847296i \(-0.321771\pi\)
0.531121 + 0.847296i \(0.321771\pi\)
\(180\) −0.938529 −0.0699538
\(181\) 21.2848 1.58209 0.791044 0.611759i \(-0.209538\pi\)
0.791044 + 0.611759i \(0.209538\pi\)
\(182\) −7.18415 −0.532524
\(183\) 4.09110 0.302423
\(184\) −21.4395 −1.58054
\(185\) −9.54129 −0.701490
\(186\) 0 0
\(187\) 7.11084 0.519996
\(188\) −0.965148 −0.0703906
\(189\) 24.5575 1.78630
\(190\) 6.80906 0.493981
\(191\) 13.7537 0.995180 0.497590 0.867412i \(-0.334218\pi\)
0.497590 + 0.867412i \(0.334218\pi\)
\(192\) 20.9120 1.50919
\(193\) −20.4043 −1.46873 −0.734366 0.678754i \(-0.762520\pi\)
−0.734366 + 0.678754i \(0.762520\pi\)
\(194\) −21.9323 −1.57465
\(195\) −4.09550 −0.293285
\(196\) 0.855129 0.0610806
\(197\) −15.3471 −1.09344 −0.546719 0.837316i \(-0.684123\pi\)
−0.546719 + 0.837316i \(0.684123\pi\)
\(198\) 21.4022 1.52099
\(199\) −14.8692 −1.05405 −0.527024 0.849850i \(-0.676692\pi\)
−0.527024 + 0.849850i \(0.676692\pi\)
\(200\) 2.69371 0.190474
\(201\) 13.6311 0.961462
\(202\) 13.2674 0.933492
\(203\) 32.5533 2.28480
\(204\) −1.33551 −0.0935044
\(205\) 0.204208 0.0142625
\(206\) −3.15779 −0.220014
\(207\) −43.3272 −3.01145
\(208\) −6.08176 −0.421694
\(209\) −12.3228 −0.852385
\(210\) 14.8116 1.02210
\(211\) 8.86815 0.610509 0.305254 0.952271i \(-0.401259\pi\)
0.305254 + 0.952271i \(0.401259\pi\)
\(212\) 0.669844 0.0460051
\(213\) 27.6875 1.89711
\(214\) −9.17009 −0.626855
\(215\) −3.22072 −0.219651
\(216\) 19.1280 1.30150
\(217\) 0 0
\(218\) 21.5050 1.45650
\(219\) 4.44982 0.300691
\(220\) 0.459879 0.0310051
\(221\) −3.75723 −0.252739
\(222\) −40.8644 −2.74264
\(223\) 21.6759 1.45152 0.725762 0.687946i \(-0.241487\pi\)
0.725762 + 0.687946i \(0.241487\pi\)
\(224\) 3.36367 0.224744
\(225\) 5.44372 0.362915
\(226\) −16.6849 −1.10986
\(227\) −3.19371 −0.211974 −0.105987 0.994368i \(-0.533800\pi\)
−0.105987 + 0.994368i \(0.533800\pi\)
\(228\) 2.31438 0.153274
\(229\) 8.63771 0.570796 0.285398 0.958409i \(-0.407874\pi\)
0.285398 + 0.958409i \(0.407874\pi\)
\(230\) −11.7310 −0.773520
\(231\) −26.8055 −1.76368
\(232\) 25.3560 1.66470
\(233\) 7.43891 0.487339 0.243669 0.969858i \(-0.421649\pi\)
0.243669 + 0.969858i \(0.421649\pi\)
\(234\) −11.3085 −0.739262
\(235\) 5.59812 0.365181
\(236\) −1.81052 −0.117855
\(237\) 28.7416 1.86697
\(238\) 13.5883 0.880797
\(239\) 24.5101 1.58543 0.792713 0.609595i \(-0.208668\pi\)
0.792713 + 0.609595i \(0.208668\pi\)
\(240\) 12.5388 0.809377
\(241\) 7.53725 0.485517 0.242759 0.970087i \(-0.421948\pi\)
0.242759 + 0.970087i \(0.421948\pi\)
\(242\) 5.72590 0.368075
\(243\) −8.79940 −0.564482
\(244\) 0.242731 0.0155392
\(245\) −4.95998 −0.316882
\(246\) 0.874603 0.0557626
\(247\) 6.51112 0.414293
\(248\) 0 0
\(249\) 20.3059 1.28683
\(250\) 1.47391 0.0932181
\(251\) −9.72288 −0.613703 −0.306851 0.951757i \(-0.599275\pi\)
−0.306851 + 0.951757i \(0.599275\pi\)
\(252\) 3.24573 0.204462
\(253\) 21.2303 1.33474
\(254\) −9.65269 −0.605664
\(255\) 7.74633 0.485094
\(256\) 4.10787 0.256742
\(257\) −2.58779 −0.161422 −0.0807110 0.996738i \(-0.525719\pi\)
−0.0807110 + 0.996738i \(0.525719\pi\)
\(258\) −13.7940 −0.858777
\(259\) 32.9969 2.05032
\(260\) −0.242991 −0.0150697
\(261\) 51.2420 3.17180
\(262\) 1.91041 0.118025
\(263\) 13.7013 0.844860 0.422430 0.906395i \(-0.361177\pi\)
0.422430 + 0.906395i \(0.361177\pi\)
\(264\) −20.8790 −1.28501
\(265\) −3.88528 −0.238671
\(266\) −23.5479 −1.44381
\(267\) 38.0873 2.33091
\(268\) 0.808751 0.0494023
\(269\) −20.3407 −1.24019 −0.620097 0.784525i \(-0.712907\pi\)
−0.620097 + 0.784525i \(0.712907\pi\)
\(270\) 10.4662 0.636954
\(271\) 27.7920 1.68824 0.844121 0.536152i \(-0.180123\pi\)
0.844121 + 0.536152i \(0.180123\pi\)
\(272\) 11.5032 0.697483
\(273\) 14.1635 0.857216
\(274\) 1.50721 0.0910538
\(275\) −2.66743 −0.160852
\(276\) −3.98734 −0.240010
\(277\) −5.10182 −0.306539 −0.153269 0.988184i \(-0.548980\pi\)
−0.153269 + 0.988184i \(0.548980\pi\)
\(278\) 10.2587 0.615277
\(279\) 0 0
\(280\) −9.31570 −0.556720
\(281\) −4.90667 −0.292708 −0.146354 0.989232i \(-0.546754\pi\)
−0.146354 + 0.989232i \(0.546754\pi\)
\(282\) 23.9762 1.42776
\(283\) −15.4008 −0.915482 −0.457741 0.889086i \(-0.651341\pi\)
−0.457741 + 0.889086i \(0.651341\pi\)
\(284\) 1.64273 0.0974784
\(285\) −13.4240 −0.795172
\(286\) 5.54118 0.327657
\(287\) −0.706217 −0.0416867
\(288\) 5.29473 0.311995
\(289\) −9.89347 −0.581969
\(290\) 13.8740 0.814707
\(291\) 43.2395 2.53474
\(292\) 0.264014 0.0154502
\(293\) −14.8543 −0.867799 −0.433899 0.900961i \(-0.642863\pi\)
−0.433899 + 0.900961i \(0.642863\pi\)
\(294\) −21.2431 −1.23892
\(295\) 10.5015 0.611422
\(296\) 25.7014 1.49387
\(297\) −18.9414 −1.09909
\(298\) 30.6402 1.77494
\(299\) −11.2177 −0.648737
\(300\) 0.500978 0.0289240
\(301\) 11.1383 0.642000
\(302\) 0.215664 0.0124101
\(303\) −26.1567 −1.50266
\(304\) −19.9345 −1.14332
\(305\) −1.40790 −0.0806163
\(306\) 21.3892 1.22274
\(307\) −22.5176 −1.28515 −0.642573 0.766224i \(-0.722133\pi\)
−0.642573 + 0.766224i \(0.722133\pi\)
\(308\) −1.59041 −0.0906220
\(309\) 6.22558 0.354161
\(310\) 0 0
\(311\) 9.55538 0.541836 0.270918 0.962602i \(-0.412673\pi\)
0.270918 + 0.962602i \(0.412673\pi\)
\(312\) 11.0321 0.624568
\(313\) −13.7285 −0.775979 −0.387989 0.921664i \(-0.626830\pi\)
−0.387989 + 0.921664i \(0.626830\pi\)
\(314\) −0.611943 −0.0345339
\(315\) −18.8261 −1.06073
\(316\) 1.70528 0.0959293
\(317\) 29.8871 1.67863 0.839314 0.543647i \(-0.182957\pi\)
0.839314 + 0.543647i \(0.182957\pi\)
\(318\) −16.6402 −0.933138
\(319\) −25.1086 −1.40581
\(320\) −7.19661 −0.402303
\(321\) 18.0788 1.00906
\(322\) 40.5696 2.26085
\(323\) −12.3153 −0.685242
\(324\) 0.741855 0.0412142
\(325\) 1.40942 0.0781804
\(326\) 15.5358 0.860447
\(327\) −42.3971 −2.34456
\(328\) −0.550077 −0.0303729
\(329\) −19.3601 −1.06736
\(330\) −11.4243 −0.628887
\(331\) 13.6978 0.752898 0.376449 0.926437i \(-0.377145\pi\)
0.376449 + 0.926437i \(0.377145\pi\)
\(332\) 1.20477 0.0661206
\(333\) 51.9402 2.84630
\(334\) 21.6626 1.18533
\(335\) −4.69098 −0.256295
\(336\) −43.3633 −2.36566
\(337\) 9.90110 0.539347 0.269674 0.962952i \(-0.413084\pi\)
0.269674 + 0.962952i \(0.413084\pi\)
\(338\) 16.2330 0.882956
\(339\) 32.8942 1.78657
\(340\) 0.459600 0.0249253
\(341\) 0 0
\(342\) −37.0666 −2.00433
\(343\) −7.05504 −0.380936
\(344\) 8.67567 0.467761
\(345\) 23.1277 1.24515
\(346\) −25.7938 −1.38669
\(347\) 22.0447 1.18342 0.591711 0.806150i \(-0.298453\pi\)
0.591711 + 0.806150i \(0.298453\pi\)
\(348\) 4.71573 0.252790
\(349\) −16.6541 −0.891473 −0.445737 0.895164i \(-0.647058\pi\)
−0.445737 + 0.895164i \(0.647058\pi\)
\(350\) −5.09725 −0.272459
\(351\) 10.0083 0.534202
\(352\) −2.59442 −0.138283
\(353\) 8.70819 0.463490 0.231745 0.972777i \(-0.425556\pi\)
0.231745 + 0.972777i \(0.425556\pi\)
\(354\) 44.9769 2.39050
\(355\) −9.52831 −0.505710
\(356\) 2.25977 0.119768
\(357\) −26.7893 −1.41784
\(358\) −20.9469 −1.10708
\(359\) −14.5051 −0.765550 −0.382775 0.923842i \(-0.625032\pi\)
−0.382775 + 0.923842i \(0.625032\pi\)
\(360\) −14.6638 −0.772850
\(361\) 2.34190 0.123258
\(362\) −31.3719 −1.64887
\(363\) −11.2886 −0.592498
\(364\) 0.840342 0.0440459
\(365\) −1.53135 −0.0801547
\(366\) −6.02991 −0.315188
\(367\) −14.3868 −0.750985 −0.375493 0.926825i \(-0.622526\pi\)
−0.375493 + 0.926825i \(0.622526\pi\)
\(368\) 34.3443 1.79032
\(369\) −1.11165 −0.0578704
\(370\) 14.0630 0.731100
\(371\) 13.4365 0.697590
\(372\) 0 0
\(373\) −18.6605 −0.966203 −0.483102 0.875564i \(-0.660490\pi\)
−0.483102 + 0.875564i \(0.660490\pi\)
\(374\) −10.4807 −0.541946
\(375\) −2.90581 −0.150055
\(376\) −15.0797 −0.777676
\(377\) 13.2669 0.683280
\(378\) −36.1955 −1.86170
\(379\) 12.8204 0.658541 0.329270 0.944236i \(-0.393197\pi\)
0.329270 + 0.944236i \(0.393197\pi\)
\(380\) −0.796467 −0.0408579
\(381\) 19.0303 0.974950
\(382\) −20.2716 −1.03719
\(383\) −27.9245 −1.42688 −0.713438 0.700718i \(-0.752863\pi\)
−0.713438 + 0.700718i \(0.752863\pi\)
\(384\) −36.4749 −1.86135
\(385\) 9.22481 0.470140
\(386\) 30.0740 1.53073
\(387\) 17.5327 0.891238
\(388\) 2.56546 0.130241
\(389\) −3.87595 −0.196518 −0.0982592 0.995161i \(-0.531327\pi\)
−0.0982592 + 0.995161i \(0.531327\pi\)
\(390\) 6.03639 0.305664
\(391\) 21.2175 1.07301
\(392\) 13.3607 0.674819
\(393\) −3.76637 −0.189988
\(394\) 22.6203 1.13959
\(395\) −9.89107 −0.497674
\(396\) −2.50346 −0.125803
\(397\) 27.5481 1.38260 0.691300 0.722568i \(-0.257038\pi\)
0.691300 + 0.722568i \(0.257038\pi\)
\(398\) 21.9158 1.09854
\(399\) 46.4247 2.32414
\(400\) −4.31509 −0.215754
\(401\) 11.1280 0.555704 0.277852 0.960624i \(-0.410378\pi\)
0.277852 + 0.960624i \(0.410378\pi\)
\(402\) −20.0910 −1.00205
\(403\) 0 0
\(404\) −1.55191 −0.0772105
\(405\) −4.30296 −0.213816
\(406\) −47.9806 −2.38124
\(407\) −25.4507 −1.26154
\(408\) −20.8663 −1.03304
\(409\) 2.53795 0.125494 0.0627468 0.998029i \(-0.480014\pi\)
0.0627468 + 0.998029i \(0.480014\pi\)
\(410\) −0.300984 −0.0148645
\(411\) −2.97146 −0.146571
\(412\) 0.369372 0.0181977
\(413\) −36.3176 −1.78707
\(414\) 63.8604 3.13857
\(415\) −6.98802 −0.343028
\(416\) 1.37084 0.0672110
\(417\) −20.2251 −0.990425
\(418\) 18.1627 0.888364
\(419\) 18.0607 0.882321 0.441160 0.897428i \(-0.354567\pi\)
0.441160 + 0.897428i \(0.354567\pi\)
\(420\) −1.73254 −0.0845394
\(421\) −1.76859 −0.0861958 −0.0430979 0.999071i \(-0.513723\pi\)
−0.0430979 + 0.999071i \(0.513723\pi\)
\(422\) −13.0708 −0.636279
\(423\) −30.4746 −1.48173
\(424\) 10.4658 0.508264
\(425\) −2.66581 −0.129311
\(426\) −40.8088 −1.97719
\(427\) 4.86898 0.235627
\(428\) 1.07264 0.0518481
\(429\) −10.9244 −0.527436
\(430\) 4.74704 0.228923
\(431\) 0.292706 0.0140991 0.00704957 0.999975i \(-0.497756\pi\)
0.00704957 + 0.999975i \(0.497756\pi\)
\(432\) −30.6414 −1.47424
\(433\) −4.00282 −0.192363 −0.0961816 0.995364i \(-0.530663\pi\)
−0.0961816 + 0.995364i \(0.530663\pi\)
\(434\) 0 0
\(435\) −27.3525 −1.31145
\(436\) −2.51548 −0.120470
\(437\) −36.7690 −1.75890
\(438\) −6.55862 −0.313383
\(439\) −4.06612 −0.194065 −0.0970325 0.995281i \(-0.530935\pi\)
−0.0970325 + 0.995281i \(0.530935\pi\)
\(440\) 7.18526 0.342544
\(441\) 27.0008 1.28575
\(442\) 5.53782 0.263407
\(443\) 9.09675 0.432200 0.216100 0.976371i \(-0.430666\pi\)
0.216100 + 0.976371i \(0.430666\pi\)
\(444\) 4.77998 0.226848
\(445\) −13.1073 −0.621346
\(446\) −31.9483 −1.51279
\(447\) −60.4072 −2.85716
\(448\) 24.8882 1.17586
\(449\) 5.31542 0.250850 0.125425 0.992103i \(-0.459971\pi\)
0.125425 + 0.992103i \(0.459971\pi\)
\(450\) −8.02355 −0.378234
\(451\) 0.544710 0.0256494
\(452\) 1.95166 0.0917982
\(453\) −0.425181 −0.0199767
\(454\) 4.70724 0.220922
\(455\) −4.87421 −0.228507
\(456\) 36.1604 1.69337
\(457\) 6.23934 0.291864 0.145932 0.989295i \(-0.453382\pi\)
0.145932 + 0.989295i \(0.453382\pi\)
\(458\) −12.7312 −0.594890
\(459\) −18.9299 −0.883572
\(460\) 1.37220 0.0639790
\(461\) −26.9998 −1.25750 −0.628752 0.777606i \(-0.716434\pi\)
−0.628752 + 0.777606i \(0.716434\pi\)
\(462\) 39.5089 1.83812
\(463\) 14.7117 0.683710 0.341855 0.939753i \(-0.388945\pi\)
0.341855 + 0.939753i \(0.388945\pi\)
\(464\) −40.6181 −1.88565
\(465\) 0 0
\(466\) −10.9643 −0.507910
\(467\) 28.3349 1.31118 0.655591 0.755116i \(-0.272419\pi\)
0.655591 + 0.755116i \(0.272419\pi\)
\(468\) 1.32278 0.0611455
\(469\) 16.2229 0.749104
\(470\) −8.25112 −0.380596
\(471\) 1.20644 0.0555900
\(472\) −28.2880 −1.30206
\(473\) −8.59103 −0.395016
\(474\) −42.3624 −1.94577
\(475\) 4.61973 0.211968
\(476\) −1.58944 −0.0728521
\(477\) 21.1504 0.968409
\(478\) −36.1256 −1.65235
\(479\) −6.09919 −0.278679 −0.139340 0.990245i \(-0.544498\pi\)
−0.139340 + 0.990245i \(0.544498\pi\)
\(480\) −2.82628 −0.129001
\(481\) 13.4477 0.613161
\(482\) −11.1092 −0.506011
\(483\) −79.9829 −3.63935
\(484\) −0.669769 −0.0304440
\(485\) −14.8804 −0.675682
\(486\) 12.9695 0.588309
\(487\) 21.6339 0.980326 0.490163 0.871631i \(-0.336937\pi\)
0.490163 + 0.871631i \(0.336937\pi\)
\(488\) 3.79248 0.171678
\(489\) −30.6288 −1.38508
\(490\) 7.31056 0.330257
\(491\) 0.677158 0.0305597 0.0152798 0.999883i \(-0.495136\pi\)
0.0152798 + 0.999883i \(0.495136\pi\)
\(492\) −0.102304 −0.00461221
\(493\) −25.0934 −1.13015
\(494\) −9.59680 −0.431780
\(495\) 14.5207 0.652658
\(496\) 0 0
\(497\) 32.9520 1.47810
\(498\) −29.9290 −1.34115
\(499\) −30.7228 −1.37534 −0.687671 0.726022i \(-0.741367\pi\)
−0.687671 + 0.726022i \(0.741367\pi\)
\(500\) −0.172406 −0.00771021
\(501\) −42.7079 −1.90805
\(502\) 14.3306 0.639607
\(503\) 14.7318 0.656858 0.328429 0.944529i \(-0.393481\pi\)
0.328429 + 0.944529i \(0.393481\pi\)
\(504\) 50.7121 2.25890
\(505\) 9.00152 0.400562
\(506\) −31.2916 −1.39108
\(507\) −32.0033 −1.42131
\(508\) 1.12909 0.0500954
\(509\) −28.0832 −1.24477 −0.622383 0.782713i \(-0.713835\pi\)
−0.622383 + 0.782713i \(0.713835\pi\)
\(510\) −11.4174 −0.505570
\(511\) 5.29591 0.234277
\(512\) 19.0502 0.841907
\(513\) 32.8047 1.44836
\(514\) 3.81417 0.168236
\(515\) −2.14246 −0.0944081
\(516\) 1.61351 0.0710308
\(517\) 14.9326 0.656734
\(518\) −48.6343 −2.13687
\(519\) 50.8525 2.23218
\(520\) −3.79656 −0.166490
\(521\) 1.31642 0.0576733 0.0288366 0.999584i \(-0.490820\pi\)
0.0288366 + 0.999584i \(0.490820\pi\)
\(522\) −75.5261 −3.30569
\(523\) 20.6601 0.903402 0.451701 0.892169i \(-0.350817\pi\)
0.451701 + 0.892169i \(0.350817\pi\)
\(524\) −0.223464 −0.00976206
\(525\) 10.0492 0.438584
\(526\) −20.1945 −0.880522
\(527\) 0 0
\(528\) 33.4464 1.45557
\(529\) 40.3475 1.75424
\(530\) 5.72654 0.248745
\(531\) −57.1674 −2.48085
\(532\) 2.75444 0.119420
\(533\) −0.287815 −0.0124666
\(534\) −56.1372 −2.42929
\(535\) −6.22162 −0.268984
\(536\) 12.6361 0.545797
\(537\) 41.2968 1.78209
\(538\) 29.9803 1.29254
\(539\) −13.2304 −0.569873
\(540\) −1.22425 −0.0526834
\(541\) 45.1612 1.94163 0.970815 0.239829i \(-0.0770914\pi\)
0.970815 + 0.239829i \(0.0770914\pi\)
\(542\) −40.9628 −1.75950
\(543\) 61.8496 2.65422
\(544\) −2.59285 −0.111167
\(545\) 14.5905 0.624987
\(546\) −20.8758 −0.893400
\(547\) −39.8573 −1.70418 −0.852088 0.523399i \(-0.824664\pi\)
−0.852088 + 0.523399i \(0.824664\pi\)
\(548\) −0.176301 −0.00753120
\(549\) 7.66424 0.327102
\(550\) 3.93154 0.167641
\(551\) 43.4857 1.85255
\(552\) −62.2992 −2.65163
\(553\) 34.2065 1.45461
\(554\) 7.51962 0.319478
\(555\) −27.7252 −1.17687
\(556\) −1.19998 −0.0508905
\(557\) 19.9182 0.843963 0.421982 0.906604i \(-0.361335\pi\)
0.421982 + 0.906604i \(0.361335\pi\)
\(558\) 0 0
\(559\) 4.53934 0.191993
\(560\) 14.9230 0.630610
\(561\) 20.6627 0.872382
\(562\) 7.23199 0.305063
\(563\) 32.5583 1.37217 0.686085 0.727521i \(-0.259328\pi\)
0.686085 + 0.727521i \(0.259328\pi\)
\(564\) −2.80453 −0.118092
\(565\) −11.3201 −0.476242
\(566\) 22.6994 0.954125
\(567\) 14.8810 0.624945
\(568\) 25.6665 1.07694
\(569\) −3.25103 −0.136290 −0.0681452 0.997675i \(-0.521708\pi\)
−0.0681452 + 0.997675i \(0.521708\pi\)
\(570\) 19.7858 0.828737
\(571\) −8.04060 −0.336488 −0.168244 0.985745i \(-0.553810\pi\)
−0.168244 + 0.985745i \(0.553810\pi\)
\(572\) −0.648161 −0.0271010
\(573\) 39.9655 1.66958
\(574\) 1.04090 0.0434463
\(575\) −7.95912 −0.331918
\(576\) 39.1763 1.63235
\(577\) −25.7938 −1.07381 −0.536904 0.843643i \(-0.680406\pi\)
−0.536904 + 0.843643i \(0.680406\pi\)
\(578\) 14.5821 0.606534
\(579\) −59.2909 −2.46405
\(580\) −1.62286 −0.0673857
\(581\) 24.1668 1.00261
\(582\) −63.7310 −2.64174
\(583\) −10.3637 −0.429220
\(584\) 4.12501 0.170694
\(585\) −7.67248 −0.317218
\(586\) 21.8939 0.904429
\(587\) −1.91959 −0.0792299 −0.0396149 0.999215i \(-0.512613\pi\)
−0.0396149 + 0.999215i \(0.512613\pi\)
\(588\) 2.48484 0.102473
\(589\) 0 0
\(590\) −15.4783 −0.637230
\(591\) −44.5958 −1.83443
\(592\) −41.1715 −1.69214
\(593\) −12.2707 −0.503898 −0.251949 0.967741i \(-0.581071\pi\)
−0.251949 + 0.967741i \(0.581071\pi\)
\(594\) 27.9179 1.14548
\(595\) 9.21922 0.377951
\(596\) −3.58404 −0.146808
\(597\) −43.2070 −1.76835
\(598\) 16.5339 0.676121
\(599\) −1.76287 −0.0720288 −0.0360144 0.999351i \(-0.511466\pi\)
−0.0360144 + 0.999351i \(0.511466\pi\)
\(600\) 7.82740 0.319552
\(601\) 7.78880 0.317712 0.158856 0.987302i \(-0.449219\pi\)
0.158856 + 0.987302i \(0.449219\pi\)
\(602\) −16.4168 −0.669099
\(603\) 25.5364 1.03992
\(604\) −0.0252266 −0.00102645
\(605\) 3.88484 0.157941
\(606\) 38.5526 1.56609
\(607\) 1.71885 0.0697659 0.0348829 0.999391i \(-0.488894\pi\)
0.0348829 + 0.999391i \(0.488894\pi\)
\(608\) 4.49329 0.182227
\(609\) 94.5937 3.83313
\(610\) 2.07512 0.0840192
\(611\) −7.89008 −0.319199
\(612\) −2.50194 −0.101135
\(613\) −21.3044 −0.860477 −0.430239 0.902715i \(-0.641571\pi\)
−0.430239 + 0.902715i \(0.641571\pi\)
\(614\) 33.1888 1.33939
\(615\) 0.593390 0.0239278
\(616\) −24.8489 −1.00119
\(617\) 14.3276 0.576808 0.288404 0.957509i \(-0.406875\pi\)
0.288404 + 0.957509i \(0.406875\pi\)
\(618\) −9.17594 −0.369110
\(619\) 9.19099 0.369417 0.184709 0.982793i \(-0.440866\pi\)
0.184709 + 0.982793i \(0.440866\pi\)
\(620\) 0 0
\(621\) −56.5177 −2.26798
\(622\) −14.0837 −0.564707
\(623\) 45.3293 1.81608
\(624\) −17.6724 −0.707463
\(625\) 1.00000 0.0400000
\(626\) 20.2345 0.808733
\(627\) −35.8077 −1.43002
\(628\) 0.0715800 0.00285635
\(629\) −25.4353 −1.01417
\(630\) 27.7480 1.10551
\(631\) 17.0178 0.677469 0.338734 0.940882i \(-0.390001\pi\)
0.338734 + 0.940882i \(0.390001\pi\)
\(632\) 26.6437 1.05983
\(633\) 25.7691 1.02423
\(634\) −44.0509 −1.74948
\(635\) −6.54904 −0.259891
\(636\) 1.94644 0.0771813
\(637\) 6.99068 0.276981
\(638\) 37.0078 1.46515
\(639\) 51.8695 2.05193
\(640\) 12.5524 0.496177
\(641\) −3.87955 −0.153233 −0.0766164 0.997061i \(-0.524412\pi\)
−0.0766164 + 0.997061i \(0.524412\pi\)
\(642\) −26.6465 −1.05165
\(643\) −22.1064 −0.871791 −0.435896 0.899997i \(-0.643568\pi\)
−0.435896 + 0.899997i \(0.643568\pi\)
\(644\) −4.74550 −0.186999
\(645\) −9.35879 −0.368502
\(646\) 18.1516 0.714167
\(647\) −37.9030 −1.49012 −0.745059 0.666998i \(-0.767579\pi\)
−0.745059 + 0.666998i \(0.767579\pi\)
\(648\) 11.5909 0.455334
\(649\) 28.0120 1.09957
\(650\) −2.07735 −0.0814804
\(651\) 0 0
\(652\) −1.81725 −0.0711689
\(653\) 6.41241 0.250937 0.125469 0.992098i \(-0.459957\pi\)
0.125469 + 0.992098i \(0.459957\pi\)
\(654\) 62.4894 2.44353
\(655\) 1.29615 0.0506448
\(656\) 0.881176 0.0344042
\(657\) 8.33626 0.325229
\(658\) 28.5350 1.11241
\(659\) 11.9679 0.466205 0.233103 0.972452i \(-0.425112\pi\)
0.233103 + 0.972452i \(0.425112\pi\)
\(660\) 1.33632 0.0520162
\(661\) 9.87244 0.383994 0.191997 0.981396i \(-0.438504\pi\)
0.191997 + 0.981396i \(0.438504\pi\)
\(662\) −20.1893 −0.784679
\(663\) −10.9178 −0.424012
\(664\) 18.8237 0.730500
\(665\) −15.9765 −0.619542
\(666\) −76.5551 −2.96645
\(667\) −74.9195 −2.90090
\(668\) −2.53392 −0.0980402
\(669\) 62.9860 2.43518
\(670\) 6.91407 0.267114
\(671\) −3.75548 −0.144979
\(672\) 9.77417 0.377047
\(673\) 10.1976 0.393090 0.196545 0.980495i \(-0.437028\pi\)
0.196545 + 0.980495i \(0.437028\pi\)
\(674\) −14.5933 −0.562113
\(675\) 7.10100 0.273317
\(676\) −1.89880 −0.0730307
\(677\) −24.8036 −0.953281 −0.476641 0.879098i \(-0.658146\pi\)
−0.476641 + 0.879098i \(0.658146\pi\)
\(678\) −48.4830 −1.86198
\(679\) 51.4610 1.97489
\(680\) 7.18090 0.275375
\(681\) −9.28031 −0.355622
\(682\) 0 0
\(683\) −27.4082 −1.04875 −0.524373 0.851489i \(-0.675700\pi\)
−0.524373 + 0.851489i \(0.675700\pi\)
\(684\) 4.33575 0.165782
\(685\) 1.02259 0.0390713
\(686\) 10.3985 0.397016
\(687\) 25.0995 0.957607
\(688\) −13.8977 −0.529844
\(689\) 5.47597 0.208618
\(690\) −34.0881 −1.29771
\(691\) 14.9810 0.569902 0.284951 0.958542i \(-0.408023\pi\)
0.284951 + 0.958542i \(0.408023\pi\)
\(692\) 3.01715 0.114695
\(693\) −50.2173 −1.90760
\(694\) −32.4919 −1.23338
\(695\) 6.96021 0.264016
\(696\) 73.6796 2.79282
\(697\) 0.544380 0.0206199
\(698\) 24.5466 0.929103
\(699\) 21.6160 0.817594
\(700\) 0.596234 0.0225355
\(701\) −40.5555 −1.53176 −0.765880 0.642984i \(-0.777696\pi\)
−0.765880 + 0.642984i \(0.777696\pi\)
\(702\) −14.7513 −0.556751
\(703\) 44.0782 1.66244
\(704\) −19.1964 −0.723492
\(705\) 16.2671 0.612653
\(706\) −12.8351 −0.483054
\(707\) −31.1301 −1.17077
\(708\) −5.26103 −0.197721
\(709\) −40.8323 −1.53349 −0.766745 0.641952i \(-0.778125\pi\)
−0.766745 + 0.641952i \(0.778125\pi\)
\(710\) 14.0439 0.527057
\(711\) 53.8443 2.01932
\(712\) 35.3072 1.32319
\(713\) 0 0
\(714\) 39.4849 1.47769
\(715\) 3.75951 0.140598
\(716\) 2.45020 0.0915682
\(717\) 71.2217 2.65982
\(718\) 21.3792 0.797865
\(719\) −6.30206 −0.235027 −0.117514 0.993071i \(-0.537492\pi\)
−0.117514 + 0.993071i \(0.537492\pi\)
\(720\) 23.4901 0.875426
\(721\) 7.40932 0.275937
\(722\) −3.45174 −0.128461
\(723\) 21.9018 0.814537
\(724\) 3.66962 0.136380
\(725\) 9.41305 0.349592
\(726\) 16.6384 0.617508
\(727\) −32.3549 −1.19998 −0.599988 0.800009i \(-0.704828\pi\)
−0.599988 + 0.800009i \(0.704828\pi\)
\(728\) 13.1297 0.486619
\(729\) −38.4783 −1.42512
\(730\) 2.25707 0.0835380
\(731\) −8.58582 −0.317558
\(732\) 0.705329 0.0260697
\(733\) 20.5902 0.760516 0.380258 0.924881i \(-0.375835\pi\)
0.380258 + 0.924881i \(0.375835\pi\)
\(734\) 21.2048 0.782685
\(735\) −14.4128 −0.531622
\(736\) −7.74128 −0.285347
\(737\) −12.5128 −0.460916
\(738\) 1.63848 0.0603131
\(739\) 37.3538 1.37408 0.687041 0.726618i \(-0.258909\pi\)
0.687041 + 0.726618i \(0.258909\pi\)
\(740\) −1.64497 −0.0604704
\(741\) 18.9201 0.695047
\(742\) −19.8042 −0.727036
\(743\) −6.28553 −0.230594 −0.115297 0.993331i \(-0.536782\pi\)
−0.115297 + 0.993331i \(0.536782\pi\)
\(744\) 0 0
\(745\) 20.7884 0.761629
\(746\) 27.5038 1.00699
\(747\) 38.0409 1.39184
\(748\) 1.22595 0.0448251
\(749\) 21.5163 0.786190
\(750\) 4.28290 0.156389
\(751\) 4.39903 0.160523 0.0802614 0.996774i \(-0.474424\pi\)
0.0802614 + 0.996774i \(0.474424\pi\)
\(752\) 24.1564 0.880892
\(753\) −28.2528 −1.02959
\(754\) −19.5542 −0.712122
\(755\) 0.146321 0.00532517
\(756\) 4.23386 0.153984
\(757\) 1.82986 0.0665075 0.0332537 0.999447i \(-0.489413\pi\)
0.0332537 + 0.999447i \(0.489413\pi\)
\(758\) −18.8961 −0.686338
\(759\) 61.6913 2.23925
\(760\) −12.4442 −0.451398
\(761\) 17.9862 0.651998 0.325999 0.945370i \(-0.394299\pi\)
0.325999 + 0.945370i \(0.394299\pi\)
\(762\) −28.0489 −1.01610
\(763\) −50.4585 −1.82672
\(764\) 2.37121 0.0857873
\(765\) 14.5119 0.524680
\(766\) 41.1582 1.48710
\(767\) −14.8010 −0.534434
\(768\) 11.9367 0.430728
\(769\) −18.9297 −0.682623 −0.341311 0.939950i \(-0.610871\pi\)
−0.341311 + 0.939950i \(0.610871\pi\)
\(770\) −13.5965 −0.489985
\(771\) −7.51963 −0.270813
\(772\) −3.51781 −0.126609
\(773\) 21.0091 0.755643 0.377822 0.925878i \(-0.376673\pi\)
0.377822 + 0.925878i \(0.376673\pi\)
\(774\) −25.8416 −0.928857
\(775\) 0 0
\(776\) 40.0833 1.43891
\(777\) 95.8825 3.43977
\(778\) 5.71279 0.204813
\(779\) −0.943387 −0.0338003
\(780\) −0.706087 −0.0252820
\(781\) −25.4161 −0.909458
\(782\) −31.2726 −1.11831
\(783\) 66.8420 2.38874
\(784\) −21.4027 −0.764384
\(785\) −0.415184 −0.0148185
\(786\) 5.55128 0.198008
\(787\) 23.5993 0.841223 0.420612 0.907241i \(-0.361816\pi\)
0.420612 + 0.907241i \(0.361816\pi\)
\(788\) −2.64593 −0.0942574
\(789\) 39.8135 1.41740
\(790\) 14.5785 0.518681
\(791\) 39.1487 1.39197
\(792\) −39.1146 −1.38988
\(793\) 1.98432 0.0704654
\(794\) −40.6034 −1.44096
\(795\) −11.2899 −0.400410
\(796\) −2.56353 −0.0908620
\(797\) −24.6740 −0.873996 −0.436998 0.899462i \(-0.643958\pi\)
−0.436998 + 0.899462i \(0.643958\pi\)
\(798\) −68.4257 −2.42224
\(799\) 14.9235 0.527956
\(800\) 0.972630 0.0343877
\(801\) 71.3526 2.52112
\(802\) −16.4016 −0.579160
\(803\) −4.08477 −0.144148
\(804\) 2.35008 0.0828808
\(805\) 27.5252 0.970135
\(806\) 0 0
\(807\) −59.1061 −2.08063
\(808\) −24.2474 −0.853022
\(809\) 12.3918 0.435671 0.217835 0.975986i \(-0.430100\pi\)
0.217835 + 0.975986i \(0.430100\pi\)
\(810\) 6.34218 0.222841
\(811\) −54.3793 −1.90952 −0.954758 0.297384i \(-0.903886\pi\)
−0.954758 + 0.297384i \(0.903886\pi\)
\(812\) 5.61238 0.196956
\(813\) 80.7582 2.83231
\(814\) 37.5120 1.31479
\(815\) 10.5405 0.369219
\(816\) 33.4261 1.17015
\(817\) 14.8789 0.520545
\(818\) −3.74070 −0.130791
\(819\) 26.5339 0.927169
\(820\) 0.0352067 0.00122947
\(821\) −24.6258 −0.859446 −0.429723 0.902961i \(-0.641389\pi\)
−0.429723 + 0.902961i \(0.641389\pi\)
\(822\) 4.37966 0.152758
\(823\) −9.56851 −0.333537 −0.166769 0.985996i \(-0.553333\pi\)
−0.166769 + 0.985996i \(0.553333\pi\)
\(824\) 5.77116 0.201048
\(825\) −7.75103 −0.269856
\(826\) 53.5288 1.86251
\(827\) 39.7057 1.38070 0.690352 0.723474i \(-0.257456\pi\)
0.690352 + 0.723474i \(0.257456\pi\)
\(828\) −7.46986 −0.259596
\(829\) −44.3247 −1.53946 −0.769730 0.638369i \(-0.779609\pi\)
−0.769730 + 0.638369i \(0.779609\pi\)
\(830\) 10.2997 0.357508
\(831\) −14.8249 −0.514271
\(832\) 10.1430 0.351646
\(833\) −13.2224 −0.458127
\(834\) 29.8099 1.03223
\(835\) 14.6974 0.508625
\(836\) −2.12452 −0.0734780
\(837\) 0 0
\(838\) −26.6197 −0.919564
\(839\) −49.7663 −1.71812 −0.859061 0.511873i \(-0.828952\pi\)
−0.859061 + 0.511873i \(0.828952\pi\)
\(840\) −27.0696 −0.933991
\(841\) 59.6054 2.05536
\(842\) 2.60674 0.0898341
\(843\) −14.2579 −0.491067
\(844\) 1.52892 0.0526276
\(845\) 11.0135 0.378877
\(846\) 44.9168 1.54427
\(847\) −13.4350 −0.461633
\(848\) −16.7653 −0.575723
\(849\) −44.7517 −1.53588
\(850\) 3.92916 0.134769
\(851\) −75.9403 −2.60320
\(852\) 4.77347 0.163537
\(853\) −23.4872 −0.804188 −0.402094 0.915598i \(-0.631718\pi\)
−0.402094 + 0.915598i \(0.631718\pi\)
\(854\) −7.17643 −0.245573
\(855\) −25.1485 −0.860062
\(856\) 16.7592 0.572818
\(857\) −25.9974 −0.888055 −0.444028 0.896013i \(-0.646451\pi\)
−0.444028 + 0.896013i \(0.646451\pi\)
\(858\) 16.1016 0.549700
\(859\) −14.2764 −0.487105 −0.243553 0.969888i \(-0.578313\pi\)
−0.243553 + 0.969888i \(0.578313\pi\)
\(860\) −0.555270 −0.0189346
\(861\) −2.05213 −0.0699365
\(862\) −0.431421 −0.0146943
\(863\) −39.8738 −1.35732 −0.678659 0.734453i \(-0.737439\pi\)
−0.678659 + 0.734453i \(0.737439\pi\)
\(864\) 6.90665 0.234969
\(865\) −17.5003 −0.595028
\(866\) 5.89979 0.200483
\(867\) −28.7485 −0.976351
\(868\) 0 0
\(869\) −26.3837 −0.895006
\(870\) 40.3151 1.36681
\(871\) 6.61154 0.224024
\(872\) −39.3024 −1.33095
\(873\) 81.0046 2.74159
\(874\) 54.1941 1.83314
\(875\) −3.45832 −0.116913
\(876\) 0.767174 0.0259204
\(877\) 14.0150 0.473252 0.236626 0.971601i \(-0.423958\pi\)
0.236626 + 0.971601i \(0.423958\pi\)
\(878\) 5.99308 0.202257
\(879\) −43.1638 −1.45588
\(880\) −11.5102 −0.388008
\(881\) −50.4724 −1.70046 −0.850229 0.526413i \(-0.823537\pi\)
−0.850229 + 0.526413i \(0.823537\pi\)
\(882\) −39.7967 −1.34002
\(883\) −16.1577 −0.543750 −0.271875 0.962333i \(-0.587644\pi\)
−0.271875 + 0.962333i \(0.587644\pi\)
\(884\) −0.647768 −0.0217868
\(885\) 30.5154 1.02576
\(886\) −13.4078 −0.450443
\(887\) 3.19982 0.107439 0.0537197 0.998556i \(-0.482892\pi\)
0.0537197 + 0.998556i \(0.482892\pi\)
\(888\) 74.6835 2.50621
\(889\) 22.6487 0.759613
\(890\) 19.3190 0.647573
\(891\) −11.4778 −0.384522
\(892\) 3.73704 0.125126
\(893\) −25.8618 −0.865432
\(894\) 89.0347 2.97776
\(895\) −14.2118 −0.475049
\(896\) −43.4102 −1.45023
\(897\) −32.5965 −1.08837
\(898\) −7.83444 −0.261439
\(899\) 0 0
\(900\) 0.938529 0.0312843
\(901\) −10.3574 −0.345055
\(902\) −0.802853 −0.0267321
\(903\) 32.3657 1.07706
\(904\) 30.4931 1.01419
\(905\) −21.2848 −0.707531
\(906\) 0.626678 0.0208200
\(907\) −33.9047 −1.12579 −0.562894 0.826529i \(-0.690312\pi\)
−0.562894 + 0.826529i \(0.690312\pi\)
\(908\) −0.550614 −0.0182728
\(909\) −49.0018 −1.62529
\(910\) 7.18415 0.238152
\(911\) −13.9927 −0.463598 −0.231799 0.972764i \(-0.574461\pi\)
−0.231799 + 0.972764i \(0.574461\pi\)
\(912\) −57.9259 −1.91812
\(913\) −18.6400 −0.616895
\(914\) −9.19621 −0.304184
\(915\) −4.09110 −0.135248
\(916\) 1.48919 0.0492042
\(917\) −4.48251 −0.148025
\(918\) 27.9009 0.920868
\(919\) 39.4083 1.29996 0.649980 0.759951i \(-0.274777\pi\)
0.649980 + 0.759951i \(0.274777\pi\)
\(920\) 21.4395 0.706840
\(921\) −65.4318 −2.15605
\(922\) 39.7952 1.31058
\(923\) 13.4294 0.442033
\(924\) −4.62143 −0.152034
\(925\) 9.54129 0.313716
\(926\) −21.6837 −0.712570
\(927\) 11.6630 0.383062
\(928\) 9.15541 0.300541
\(929\) 12.8728 0.422342 0.211171 0.977449i \(-0.432272\pi\)
0.211171 + 0.977449i \(0.432272\pi\)
\(930\) 0 0
\(931\) 22.9138 0.750968
\(932\) 1.28251 0.0420100
\(933\) 27.7661 0.909021
\(934\) −41.7630 −1.36653
\(935\) −7.11084 −0.232549
\(936\) 20.6674 0.675535
\(937\) −28.6284 −0.935250 −0.467625 0.883927i \(-0.654890\pi\)
−0.467625 + 0.883927i \(0.654890\pi\)
\(938\) −23.9111 −0.780724
\(939\) −39.8923 −1.30184
\(940\) 0.965148 0.0314796
\(941\) 20.3133 0.662196 0.331098 0.943596i \(-0.392581\pi\)
0.331098 + 0.943596i \(0.392581\pi\)
\(942\) −1.77819 −0.0579365
\(943\) 1.62532 0.0529276
\(944\) 45.3150 1.47488
\(945\) −24.5575 −0.798856
\(946\) 12.6624 0.411690
\(947\) 47.7334 1.55113 0.775563 0.631270i \(-0.217466\pi\)
0.775563 + 0.631270i \(0.217466\pi\)
\(948\) 4.95521 0.160938
\(949\) 2.15831 0.0700618
\(950\) −6.80906 −0.220915
\(951\) 86.8463 2.81618
\(952\) −24.8339 −0.804870
\(953\) 9.76064 0.316178 0.158089 0.987425i \(-0.449467\pi\)
0.158089 + 0.987425i \(0.449467\pi\)
\(954\) −31.1737 −1.00929
\(955\) −13.7537 −0.445058
\(956\) 4.22568 0.136668
\(957\) −72.9608 −2.35849
\(958\) 8.98965 0.290442
\(959\) −3.53646 −0.114198
\(960\) −20.9120 −0.674931
\(961\) 0 0
\(962\) −19.8206 −0.639042
\(963\) 33.8688 1.09141
\(964\) 1.29946 0.0418529
\(965\) 20.4043 0.656837
\(966\) 117.887 3.79297
\(967\) −42.9460 −1.38105 −0.690525 0.723308i \(-0.742620\pi\)
−0.690525 + 0.723308i \(0.742620\pi\)
\(968\) −10.4646 −0.336346
\(969\) −35.7859 −1.14961
\(970\) 21.9323 0.704203
\(971\) 19.5012 0.625822 0.312911 0.949782i \(-0.398696\pi\)
0.312911 + 0.949782i \(0.398696\pi\)
\(972\) −1.51707 −0.0486599
\(973\) −24.0707 −0.771670
\(974\) −31.8864 −1.02171
\(975\) 4.09550 0.131161
\(976\) −6.07523 −0.194463
\(977\) −11.0256 −0.352739 −0.176370 0.984324i \(-0.556435\pi\)
−0.176370 + 0.984324i \(0.556435\pi\)
\(978\) 45.1440 1.44355
\(979\) −34.9628 −1.11741
\(980\) −0.855129 −0.0273161
\(981\) −79.4264 −2.53589
\(982\) −0.998068 −0.0318496
\(983\) 41.3053 1.31743 0.658717 0.752391i \(-0.271100\pi\)
0.658717 + 0.752391i \(0.271100\pi\)
\(984\) −1.59842 −0.0509557
\(985\) 15.3471 0.489000
\(986\) 36.9853 1.17785
\(987\) −56.2567 −1.79067
\(988\) 1.12255 0.0357132
\(989\) −25.6341 −0.815116
\(990\) −21.4022 −0.680207
\(991\) 19.5359 0.620579 0.310290 0.950642i \(-0.399574\pi\)
0.310290 + 0.950642i \(0.399574\pi\)
\(992\) 0 0
\(993\) 39.8031 1.26311
\(994\) −48.5682 −1.54049
\(995\) 14.8692 0.471385
\(996\) 3.50084 0.110928
\(997\) 5.26675 0.166800 0.0833998 0.996516i \(-0.473422\pi\)
0.0833998 + 0.996516i \(0.473422\pi\)
\(998\) 45.2826 1.43340
\(999\) 67.7527 2.14360
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4805.2.a.y.1.6 20
31.22 odd 30 155.2.q.a.81.4 40
31.24 odd 30 155.2.q.a.111.4 yes 40
31.30 odd 2 4805.2.a.x.1.6 20
155.22 even 60 775.2.ck.c.174.3 80
155.24 odd 30 775.2.bl.c.576.2 40
155.53 even 60 775.2.ck.c.174.8 80
155.84 odd 30 775.2.bl.c.701.2 40
155.117 even 60 775.2.ck.c.49.8 80
155.148 even 60 775.2.ck.c.49.3 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
155.2.q.a.81.4 40 31.22 odd 30
155.2.q.a.111.4 yes 40 31.24 odd 30
775.2.bl.c.576.2 40 155.24 odd 30
775.2.bl.c.701.2 40 155.84 odd 30
775.2.ck.c.49.3 80 155.148 even 60
775.2.ck.c.49.8 80 155.117 even 60
775.2.ck.c.174.3 80 155.22 even 60
775.2.ck.c.174.8 80 155.53 even 60
4805.2.a.x.1.6 20 31.30 odd 2
4805.2.a.y.1.6 20 1.1 even 1 trivial