Properties

Label 4805.2.a.bb.1.18
Level $4805$
Weight $2$
Character 4805.1
Self dual yes
Analytic conductor $38.368$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4805,2,Mod(1,4805)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4805.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4805, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4805 = 5 \cdot 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4805.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,32,-24,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.3681181712\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.18
Character \(\chi\) \(=\) 4805.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.43563 q^{2} +1.06814 q^{3} +0.0610318 q^{4} -1.00000 q^{5} +1.53345 q^{6} -3.78195 q^{7} -2.78364 q^{8} -1.85907 q^{9} -1.43563 q^{10} +0.820218 q^{11} +0.0651906 q^{12} +5.36168 q^{13} -5.42947 q^{14} -1.06814 q^{15} -4.11834 q^{16} +2.50630 q^{17} -2.66894 q^{18} -1.94218 q^{19} -0.0610318 q^{20} -4.03965 q^{21} +1.17753 q^{22} +2.37775 q^{23} -2.97332 q^{24} +1.00000 q^{25} +7.69739 q^{26} -5.19018 q^{27} -0.230819 q^{28} -2.61532 q^{29} -1.53345 q^{30} -0.345129 q^{32} +0.876109 q^{33} +3.59811 q^{34} +3.78195 q^{35} -0.113463 q^{36} +9.89738 q^{37} -2.78825 q^{38} +5.72703 q^{39} +2.78364 q^{40} -5.50338 q^{41} -5.79944 q^{42} +6.41683 q^{43} +0.0500594 q^{44} +1.85907 q^{45} +3.41357 q^{46} -9.22762 q^{47} -4.39897 q^{48} +7.30311 q^{49} +1.43563 q^{50} +2.67708 q^{51} +0.327233 q^{52} +13.4992 q^{53} -7.45117 q^{54} -0.820218 q^{55} +10.5276 q^{56} -2.07452 q^{57} -3.75463 q^{58} +13.1993 q^{59} -0.0651906 q^{60} -8.13940 q^{61} +7.03092 q^{63} +7.74120 q^{64} -5.36168 q^{65} +1.25777 q^{66} +6.13051 q^{67} +0.152964 q^{68} +2.53978 q^{69} +5.42947 q^{70} -8.59800 q^{71} +5.17499 q^{72} -0.169452 q^{73} +14.2090 q^{74} +1.06814 q^{75} -0.118535 q^{76} -3.10202 q^{77} +8.22190 q^{78} +9.07408 q^{79} +4.11834 q^{80} +0.0333819 q^{81} -7.90082 q^{82} +9.90962 q^{83} -0.246547 q^{84} -2.50630 q^{85} +9.21219 q^{86} -2.79353 q^{87} -2.28319 q^{88} -6.37980 q^{89} +2.66894 q^{90} -20.2776 q^{91} +0.145119 q^{92} -13.2474 q^{94} +1.94218 q^{95} -0.368646 q^{96} +13.9270 q^{97} +10.4846 q^{98} -1.52485 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 32 q^{4} - 24 q^{5} + 8 q^{7} + 40 q^{9} + 8 q^{14} + 88 q^{16} - 64 q^{18} + 40 q^{19} - 32 q^{20} + 24 q^{25} + 72 q^{28} + 56 q^{33} - 8 q^{35} + 88 q^{36} - 72 q^{38} + 64 q^{39} - 56 q^{41}+ \cdots - 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.43563 1.01514 0.507572 0.861610i \(-0.330543\pi\)
0.507572 + 0.861610i \(0.330543\pi\)
\(3\) 1.06814 0.616692 0.308346 0.951274i \(-0.400225\pi\)
0.308346 + 0.951274i \(0.400225\pi\)
\(4\) 0.0610318 0.0305159
\(5\) −1.00000 −0.447214
\(6\) 1.53345 0.626030
\(7\) −3.78195 −1.42944 −0.714721 0.699410i \(-0.753446\pi\)
−0.714721 + 0.699410i \(0.753446\pi\)
\(8\) −2.78364 −0.984165
\(9\) −1.85907 −0.619692
\(10\) −1.43563 −0.453986
\(11\) 0.820218 0.247305 0.123653 0.992326i \(-0.460539\pi\)
0.123653 + 0.992326i \(0.460539\pi\)
\(12\) 0.0651906 0.0188189
\(13\) 5.36168 1.48706 0.743531 0.668701i \(-0.233149\pi\)
0.743531 + 0.668701i \(0.233149\pi\)
\(14\) −5.42947 −1.45109
\(15\) −1.06814 −0.275793
\(16\) −4.11834 −1.02958
\(17\) 2.50630 0.607866 0.303933 0.952693i \(-0.401700\pi\)
0.303933 + 0.952693i \(0.401700\pi\)
\(18\) −2.66894 −0.629076
\(19\) −1.94218 −0.445567 −0.222784 0.974868i \(-0.571514\pi\)
−0.222784 + 0.974868i \(0.571514\pi\)
\(20\) −0.0610318 −0.0136471
\(21\) −4.03965 −0.881524
\(22\) 1.17753 0.251050
\(23\) 2.37775 0.495796 0.247898 0.968786i \(-0.420260\pi\)
0.247898 + 0.968786i \(0.420260\pi\)
\(24\) −2.97332 −0.606926
\(25\) 1.00000 0.200000
\(26\) 7.69739 1.50958
\(27\) −5.19018 −0.998850
\(28\) −0.230819 −0.0436207
\(29\) −2.61532 −0.485652 −0.242826 0.970070i \(-0.578074\pi\)
−0.242826 + 0.970070i \(0.578074\pi\)
\(30\) −1.53345 −0.279969
\(31\) 0 0
\(32\) −0.345129 −0.0610107
\(33\) 0.876109 0.152511
\(34\) 3.59811 0.617071
\(35\) 3.78195 0.639265
\(36\) −0.113463 −0.0189105
\(37\) 9.89738 1.62712 0.813559 0.581482i \(-0.197527\pi\)
0.813559 + 0.581482i \(0.197527\pi\)
\(38\) −2.78825 −0.452315
\(39\) 5.72703 0.917059
\(40\) 2.78364 0.440132
\(41\) −5.50338 −0.859484 −0.429742 0.902952i \(-0.641396\pi\)
−0.429742 + 0.902952i \(0.641396\pi\)
\(42\) −5.79944 −0.894873
\(43\) 6.41683 0.978557 0.489279 0.872128i \(-0.337260\pi\)
0.489279 + 0.872128i \(0.337260\pi\)
\(44\) 0.0500594 0.00754674
\(45\) 1.85907 0.277134
\(46\) 3.41357 0.503304
\(47\) −9.22762 −1.34599 −0.672994 0.739648i \(-0.734992\pi\)
−0.672994 + 0.739648i \(0.734992\pi\)
\(48\) −4.39897 −0.634936
\(49\) 7.30311 1.04330
\(50\) 1.43563 0.203029
\(51\) 2.67708 0.374866
\(52\) 0.327233 0.0453791
\(53\) 13.4992 1.85425 0.927126 0.374749i \(-0.122271\pi\)
0.927126 + 0.374749i \(0.122271\pi\)
\(54\) −7.45117 −1.01398
\(55\) −0.820218 −0.110598
\(56\) 10.5276 1.40681
\(57\) −2.07452 −0.274778
\(58\) −3.75463 −0.493007
\(59\) 13.1993 1.71840 0.859198 0.511643i \(-0.170963\pi\)
0.859198 + 0.511643i \(0.170963\pi\)
\(60\) −0.0651906 −0.00841607
\(61\) −8.13940 −1.04214 −0.521072 0.853513i \(-0.674468\pi\)
−0.521072 + 0.853513i \(0.674468\pi\)
\(62\) 0 0
\(63\) 7.03092 0.885813
\(64\) 7.74120 0.967650
\(65\) −5.36168 −0.665035
\(66\) 1.25777 0.154820
\(67\) 6.13051 0.748961 0.374480 0.927235i \(-0.377821\pi\)
0.374480 + 0.927235i \(0.377821\pi\)
\(68\) 0.152964 0.0185496
\(69\) 2.53978 0.305753
\(70\) 5.42947 0.648946
\(71\) −8.59800 −1.02039 −0.510197 0.860057i \(-0.670428\pi\)
−0.510197 + 0.860057i \(0.670428\pi\)
\(72\) 5.17499 0.609879
\(73\) −0.169452 −0.0198328 −0.00991642 0.999951i \(-0.503157\pi\)
−0.00991642 + 0.999951i \(0.503157\pi\)
\(74\) 14.2090 1.65176
\(75\) 1.06814 0.123338
\(76\) −0.118535 −0.0135969
\(77\) −3.10202 −0.353508
\(78\) 8.22190 0.930946
\(79\) 9.07408 1.02091 0.510457 0.859903i \(-0.329476\pi\)
0.510457 + 0.859903i \(0.329476\pi\)
\(80\) 4.11834 0.460444
\(81\) 0.0333819 0.00370910
\(82\) −7.90082 −0.872500
\(83\) 9.90962 1.08772 0.543861 0.839175i \(-0.316962\pi\)
0.543861 + 0.839175i \(0.316962\pi\)
\(84\) −0.246547 −0.0269005
\(85\) −2.50630 −0.271846
\(86\) 9.21219 0.993376
\(87\) −2.79353 −0.299498
\(88\) −2.28319 −0.243389
\(89\) −6.37980 −0.676258 −0.338129 0.941100i \(-0.609794\pi\)
−0.338129 + 0.941100i \(0.609794\pi\)
\(90\) 2.66894 0.281331
\(91\) −20.2776 −2.12567
\(92\) 0.145119 0.0151297
\(93\) 0 0
\(94\) −13.2474 −1.36637
\(95\) 1.94218 0.199264
\(96\) −0.368646 −0.0376248
\(97\) 13.9270 1.41407 0.707035 0.707179i \(-0.250032\pi\)
0.707035 + 0.707179i \(0.250032\pi\)
\(98\) 10.4846 1.05910
\(99\) −1.52485 −0.153253
\(100\) 0.0610318 0.00610318
\(101\) 2.41226 0.240029 0.120014 0.992772i \(-0.461706\pi\)
0.120014 + 0.992772i \(0.461706\pi\)
\(102\) 3.84329 0.380542
\(103\) 8.60350 0.847728 0.423864 0.905726i \(-0.360673\pi\)
0.423864 + 0.905726i \(0.360673\pi\)
\(104\) −14.9250 −1.46352
\(105\) 4.03965 0.394230
\(106\) 19.3798 1.88233
\(107\) 8.78208 0.848995 0.424498 0.905429i \(-0.360451\pi\)
0.424498 + 0.905429i \(0.360451\pi\)
\(108\) −0.316766 −0.0304808
\(109\) 4.01557 0.384622 0.192311 0.981334i \(-0.438402\pi\)
0.192311 + 0.981334i \(0.438402\pi\)
\(110\) −1.17753 −0.112273
\(111\) 10.5718 1.00343
\(112\) 15.5753 1.47173
\(113\) 17.6814 1.66333 0.831665 0.555278i \(-0.187388\pi\)
0.831665 + 0.555278i \(0.187388\pi\)
\(114\) −2.97825 −0.278939
\(115\) −2.37775 −0.221727
\(116\) −0.159618 −0.0148201
\(117\) −9.96776 −0.921520
\(118\) 18.9492 1.74442
\(119\) −9.47867 −0.868908
\(120\) 2.97332 0.271426
\(121\) −10.3272 −0.938840
\(122\) −11.6852 −1.05793
\(123\) −5.87839 −0.530037
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 10.0938 0.899227
\(127\) 18.4032 1.63302 0.816509 0.577333i \(-0.195907\pi\)
0.816509 + 0.577333i \(0.195907\pi\)
\(128\) 11.8038 1.04331
\(129\) 6.85408 0.603468
\(130\) −7.69739 −0.675105
\(131\) −19.8446 −1.73383 −0.866914 0.498458i \(-0.833900\pi\)
−0.866914 + 0.498458i \(0.833900\pi\)
\(132\) 0.0534705 0.00465401
\(133\) 7.34523 0.636912
\(134\) 8.80114 0.760302
\(135\) 5.19018 0.446699
\(136\) −6.97662 −0.598240
\(137\) −12.0925 −1.03313 −0.516567 0.856247i \(-0.672790\pi\)
−0.516567 + 0.856247i \(0.672790\pi\)
\(138\) 3.64618 0.310383
\(139\) 8.38192 0.710945 0.355473 0.934687i \(-0.384320\pi\)
0.355473 + 0.934687i \(0.384320\pi\)
\(140\) 0.230819 0.0195078
\(141\) −9.85641 −0.830059
\(142\) −12.3435 −1.03585
\(143\) 4.39775 0.367758
\(144\) 7.65630 0.638025
\(145\) 2.61532 0.217190
\(146\) −0.243270 −0.0201332
\(147\) 7.80076 0.643395
\(148\) 0.604055 0.0496530
\(149\) −1.11588 −0.0914168 −0.0457084 0.998955i \(-0.514555\pi\)
−0.0457084 + 0.998955i \(0.514555\pi\)
\(150\) 1.53345 0.125206
\(151\) 13.1547 1.07051 0.535257 0.844689i \(-0.320215\pi\)
0.535257 + 0.844689i \(0.320215\pi\)
\(152\) 5.40634 0.438512
\(153\) −4.65939 −0.376689
\(154\) −4.45335 −0.358861
\(155\) 0 0
\(156\) 0.349531 0.0279849
\(157\) −24.3348 −1.94213 −0.971065 0.238817i \(-0.923241\pi\)
−0.971065 + 0.238817i \(0.923241\pi\)
\(158\) 13.0270 1.03637
\(159\) 14.4190 1.14350
\(160\) 0.345129 0.0272848
\(161\) −8.99253 −0.708711
\(162\) 0.0479240 0.00376527
\(163\) −10.8405 −0.849091 −0.424545 0.905407i \(-0.639566\pi\)
−0.424545 + 0.905407i \(0.639566\pi\)
\(164\) −0.335882 −0.0262280
\(165\) −0.876109 −0.0682050
\(166\) 14.2265 1.10419
\(167\) 16.6980 1.29213 0.646067 0.763281i \(-0.276413\pi\)
0.646067 + 0.763281i \(0.276413\pi\)
\(168\) 11.2449 0.867566
\(169\) 15.7476 1.21136
\(170\) −3.59811 −0.275963
\(171\) 3.61066 0.276114
\(172\) 0.391631 0.0298616
\(173\) −8.92663 −0.678679 −0.339340 0.940664i \(-0.610204\pi\)
−0.339340 + 0.940664i \(0.610204\pi\)
\(174\) −4.01047 −0.304033
\(175\) −3.78195 −0.285888
\(176\) −3.37794 −0.254622
\(177\) 14.0987 1.05972
\(178\) −9.15903 −0.686498
\(179\) −0.108542 −0.00811285 −0.00405642 0.999992i \(-0.501291\pi\)
−0.00405642 + 0.999992i \(0.501291\pi\)
\(180\) 0.113463 0.00845701
\(181\) 15.5247 1.15394 0.576970 0.816766i \(-0.304235\pi\)
0.576970 + 0.816766i \(0.304235\pi\)
\(182\) −29.1111 −2.15786
\(183\) −8.69403 −0.642681
\(184\) −6.61881 −0.487945
\(185\) −9.89738 −0.727670
\(186\) 0 0
\(187\) 2.05571 0.150328
\(188\) −0.563179 −0.0410740
\(189\) 19.6290 1.42780
\(190\) 2.78825 0.202281
\(191\) 7.38103 0.534073 0.267036 0.963686i \(-0.413956\pi\)
0.267036 + 0.963686i \(0.413956\pi\)
\(192\) 8.26869 0.596742
\(193\) −20.4545 −1.47234 −0.736172 0.676795i \(-0.763369\pi\)
−0.736172 + 0.676795i \(0.763369\pi\)
\(194\) 19.9940 1.43548
\(195\) −5.72703 −0.410121
\(196\) 0.445722 0.0318373
\(197\) 10.7832 0.768271 0.384135 0.923277i \(-0.374500\pi\)
0.384135 + 0.923277i \(0.374500\pi\)
\(198\) −2.18911 −0.155574
\(199\) 11.1747 0.792157 0.396078 0.918217i \(-0.370371\pi\)
0.396078 + 0.918217i \(0.370371\pi\)
\(200\) −2.78364 −0.196833
\(201\) 6.54825 0.461878
\(202\) 3.46311 0.243664
\(203\) 9.89099 0.694211
\(204\) 0.163387 0.0114394
\(205\) 5.50338 0.384373
\(206\) 12.3514 0.860566
\(207\) −4.42042 −0.307240
\(208\) −22.0812 −1.53106
\(209\) −1.59301 −0.110191
\(210\) 5.79944 0.400200
\(211\) 13.2764 0.913986 0.456993 0.889470i \(-0.348926\pi\)
0.456993 + 0.889470i \(0.348926\pi\)
\(212\) 0.823879 0.0565842
\(213\) −9.18388 −0.629269
\(214\) 12.6078 0.861852
\(215\) −6.41683 −0.437624
\(216\) 14.4476 0.983034
\(217\) 0 0
\(218\) 5.76487 0.390446
\(219\) −0.180998 −0.0122307
\(220\) −0.0500594 −0.00337501
\(221\) 13.4380 0.903935
\(222\) 15.1772 1.01863
\(223\) 0.335583 0.0224723 0.0112362 0.999937i \(-0.496423\pi\)
0.0112362 + 0.999937i \(0.496423\pi\)
\(224\) 1.30526 0.0872113
\(225\) −1.85907 −0.123938
\(226\) 25.3840 1.68852
\(227\) 9.97977 0.662381 0.331190 0.943564i \(-0.392550\pi\)
0.331190 + 0.943564i \(0.392550\pi\)
\(228\) −0.126612 −0.00838509
\(229\) −11.0510 −0.730269 −0.365135 0.930955i \(-0.618977\pi\)
−0.365135 + 0.930955i \(0.618977\pi\)
\(230\) −3.41357 −0.225084
\(231\) −3.31340 −0.218005
\(232\) 7.28010 0.477962
\(233\) −5.55089 −0.363651 −0.181825 0.983331i \(-0.558201\pi\)
−0.181825 + 0.983331i \(0.558201\pi\)
\(234\) −14.3100 −0.935475
\(235\) 9.22762 0.601944
\(236\) 0.805575 0.0524385
\(237\) 9.69240 0.629589
\(238\) −13.6079 −0.882067
\(239\) −14.1087 −0.912617 −0.456309 0.889822i \(-0.650829\pi\)
−0.456309 + 0.889822i \(0.650829\pi\)
\(240\) 4.39897 0.283952
\(241\) 2.28476 0.147174 0.0735872 0.997289i \(-0.476555\pi\)
0.0735872 + 0.997289i \(0.476555\pi\)
\(242\) −14.8261 −0.953057
\(243\) 15.6062 1.00114
\(244\) −0.496763 −0.0318020
\(245\) −7.30311 −0.466579
\(246\) −8.43919 −0.538063
\(247\) −10.4134 −0.662586
\(248\) 0 0
\(249\) 10.5849 0.670789
\(250\) −1.43563 −0.0907972
\(251\) −12.5526 −0.792310 −0.396155 0.918184i \(-0.629656\pi\)
−0.396155 + 0.918184i \(0.629656\pi\)
\(252\) 0.429110 0.0270314
\(253\) 1.95028 0.122613
\(254\) 26.4201 1.65775
\(255\) −2.67708 −0.167645
\(256\) 1.46341 0.0914634
\(257\) −17.2138 −1.07377 −0.536884 0.843656i \(-0.680399\pi\)
−0.536884 + 0.843656i \(0.680399\pi\)
\(258\) 9.83992 0.612606
\(259\) −37.4313 −2.32587
\(260\) −0.327233 −0.0202941
\(261\) 4.86207 0.300955
\(262\) −28.4894 −1.76008
\(263\) 12.6266 0.778589 0.389294 0.921113i \(-0.372719\pi\)
0.389294 + 0.921113i \(0.372719\pi\)
\(264\) −2.43877 −0.150096
\(265\) −13.4992 −0.829247
\(266\) 10.5450 0.646557
\(267\) −6.81453 −0.417042
\(268\) 0.374156 0.0228552
\(269\) 15.3716 0.937225 0.468612 0.883404i \(-0.344754\pi\)
0.468612 + 0.883404i \(0.344754\pi\)
\(270\) 7.45117 0.453464
\(271\) −12.7303 −0.773309 −0.386654 0.922225i \(-0.626369\pi\)
−0.386654 + 0.922225i \(0.626369\pi\)
\(272\) −10.3218 −0.625849
\(273\) −21.6593 −1.31088
\(274\) −17.3604 −1.04878
\(275\) 0.820218 0.0494610
\(276\) 0.155007 0.00933034
\(277\) −10.8740 −0.653358 −0.326679 0.945135i \(-0.605930\pi\)
−0.326679 + 0.945135i \(0.605930\pi\)
\(278\) 12.0333 0.721711
\(279\) 0 0
\(280\) −10.5276 −0.629143
\(281\) 17.7639 1.05971 0.529853 0.848089i \(-0.322247\pi\)
0.529853 + 0.848089i \(0.322247\pi\)
\(282\) −14.1501 −0.842629
\(283\) −14.8889 −0.885052 −0.442526 0.896756i \(-0.645918\pi\)
−0.442526 + 0.896756i \(0.645918\pi\)
\(284\) −0.524752 −0.0311383
\(285\) 2.07452 0.122884
\(286\) 6.31354 0.373327
\(287\) 20.8135 1.22858
\(288\) 0.641620 0.0378078
\(289\) −10.7185 −0.630499
\(290\) 3.75463 0.220479
\(291\) 14.8760 0.872045
\(292\) −0.0103420 −0.000605217 0
\(293\) −8.63771 −0.504621 −0.252310 0.967646i \(-0.581190\pi\)
−0.252310 + 0.967646i \(0.581190\pi\)
\(294\) 11.1990 0.653139
\(295\) −13.1993 −0.768490
\(296\) −27.5507 −1.60135
\(297\) −4.25708 −0.247021
\(298\) −1.60200 −0.0928012
\(299\) 12.7487 0.737279
\(300\) 0.0651906 0.00376378
\(301\) −24.2681 −1.39879
\(302\) 18.8853 1.08673
\(303\) 2.57663 0.148024
\(304\) 7.99856 0.458749
\(305\) 8.13940 0.466061
\(306\) −6.68916 −0.382394
\(307\) 28.9790 1.65392 0.826961 0.562260i \(-0.190068\pi\)
0.826961 + 0.562260i \(0.190068\pi\)
\(308\) −0.189322 −0.0107876
\(309\) 9.18976 0.522787
\(310\) 0 0
\(311\) −22.3890 −1.26956 −0.634781 0.772692i \(-0.718910\pi\)
−0.634781 + 0.772692i \(0.718910\pi\)
\(312\) −15.9420 −0.902538
\(313\) 17.7118 1.00113 0.500565 0.865699i \(-0.333126\pi\)
0.500565 + 0.865699i \(0.333126\pi\)
\(314\) −34.9358 −1.97154
\(315\) −7.03092 −0.396147
\(316\) 0.553808 0.0311541
\(317\) −3.63158 −0.203970 −0.101985 0.994786i \(-0.532519\pi\)
−0.101985 + 0.994786i \(0.532519\pi\)
\(318\) 20.7004 1.16082
\(319\) −2.14513 −0.120104
\(320\) −7.74120 −0.432746
\(321\) 9.38050 0.523568
\(322\) −12.9099 −0.719443
\(323\) −4.86768 −0.270845
\(324\) 0.00203736 0.000113187 0
\(325\) 5.36168 0.297413
\(326\) −15.5629 −0.861949
\(327\) 4.28920 0.237193
\(328\) 15.3194 0.845875
\(329\) 34.8984 1.92401
\(330\) −1.25777 −0.0692378
\(331\) 25.1631 1.38309 0.691543 0.722335i \(-0.256931\pi\)
0.691543 + 0.722335i \(0.256931\pi\)
\(332\) 0.604803 0.0331929
\(333\) −18.4000 −1.00831
\(334\) 23.9722 1.31170
\(335\) −6.13051 −0.334945
\(336\) 16.6367 0.907604
\(337\) −33.2513 −1.81131 −0.905657 0.424012i \(-0.860622\pi\)
−0.905657 + 0.424012i \(0.860622\pi\)
\(338\) 22.6078 1.22970
\(339\) 18.8863 1.02576
\(340\) −0.152964 −0.00829563
\(341\) 0 0
\(342\) 5.18357 0.280295
\(343\) −1.14636 −0.0618975
\(344\) −17.8621 −0.963062
\(345\) −2.53978 −0.136737
\(346\) −12.8153 −0.688957
\(347\) −23.6403 −1.26908 −0.634540 0.772890i \(-0.718810\pi\)
−0.634540 + 0.772890i \(0.718810\pi\)
\(348\) −0.170494 −0.00913945
\(349\) −36.4213 −1.94959 −0.974793 0.223111i \(-0.928379\pi\)
−0.974793 + 0.223111i \(0.928379\pi\)
\(350\) −5.42947 −0.290218
\(351\) −27.8281 −1.48535
\(352\) −0.283081 −0.0150883
\(353\) −6.59235 −0.350875 −0.175438 0.984491i \(-0.556134\pi\)
−0.175438 + 0.984491i \(0.556134\pi\)
\(354\) 20.2405 1.07577
\(355\) 8.59800 0.456334
\(356\) −0.389371 −0.0206366
\(357\) −10.1246 −0.535848
\(358\) −0.155827 −0.00823570
\(359\) 13.6504 0.720439 0.360220 0.932868i \(-0.382702\pi\)
0.360220 + 0.932868i \(0.382702\pi\)
\(360\) −5.17499 −0.272746
\(361\) −15.2279 −0.801470
\(362\) 22.2877 1.17141
\(363\) −11.0310 −0.578975
\(364\) −1.23758 −0.0648667
\(365\) 0.169452 0.00886951
\(366\) −12.4814 −0.652414
\(367\) −23.0600 −1.20372 −0.601862 0.798600i \(-0.705574\pi\)
−0.601862 + 0.798600i \(0.705574\pi\)
\(368\) −9.79239 −0.510464
\(369\) 10.2312 0.532615
\(370\) −14.2090 −0.738689
\(371\) −51.0531 −2.65054
\(372\) 0 0
\(373\) −3.83488 −0.198562 −0.0992812 0.995059i \(-0.531654\pi\)
−0.0992812 + 0.995059i \(0.531654\pi\)
\(374\) 2.95124 0.152605
\(375\) −1.06814 −0.0551586
\(376\) 25.6864 1.32467
\(377\) −14.0225 −0.722195
\(378\) 28.1799 1.44942
\(379\) 23.7430 1.21960 0.609798 0.792557i \(-0.291251\pi\)
0.609798 + 0.792557i \(0.291251\pi\)
\(380\) 0.118535 0.00608072
\(381\) 19.6572 1.00707
\(382\) 10.5964 0.542160
\(383\) −15.2682 −0.780170 −0.390085 0.920779i \(-0.627554\pi\)
−0.390085 + 0.920779i \(0.627554\pi\)
\(384\) 12.6081 0.643403
\(385\) 3.10202 0.158094
\(386\) −29.3650 −1.49464
\(387\) −11.9294 −0.606404
\(388\) 0.849989 0.0431516
\(389\) −34.0822 −1.72804 −0.864018 0.503460i \(-0.832060\pi\)
−0.864018 + 0.503460i \(0.832060\pi\)
\(390\) −8.22190 −0.416332
\(391\) 5.95935 0.301377
\(392\) −20.3292 −1.02678
\(393\) −21.1968 −1.06924
\(394\) 15.4807 0.779905
\(395\) −9.07408 −0.456566
\(396\) −0.0930642 −0.00467665
\(397\) −19.2729 −0.967280 −0.483640 0.875267i \(-0.660686\pi\)
−0.483640 + 0.875267i \(0.660686\pi\)
\(398\) 16.0428 0.804153
\(399\) 7.84574 0.392778
\(400\) −4.11834 −0.205917
\(401\) 30.3512 1.51566 0.757832 0.652450i \(-0.226259\pi\)
0.757832 + 0.652450i \(0.226259\pi\)
\(402\) 9.40085 0.468872
\(403\) 0 0
\(404\) 0.147225 0.00732470
\(405\) −0.0333819 −0.00165876
\(406\) 14.1998 0.704724
\(407\) 8.11801 0.402395
\(408\) −7.45202 −0.368930
\(409\) −3.66946 −0.181443 −0.0907215 0.995876i \(-0.528917\pi\)
−0.0907215 + 0.995876i \(0.528917\pi\)
\(410\) 7.90082 0.390194
\(411\) −12.9165 −0.637125
\(412\) 0.525088 0.0258692
\(413\) −49.9189 −2.45635
\(414\) −6.34608 −0.311893
\(415\) −9.90962 −0.486444
\(416\) −1.85047 −0.0907268
\(417\) 8.95307 0.438434
\(418\) −2.28698 −0.111860
\(419\) 15.7437 0.769130 0.384565 0.923098i \(-0.374351\pi\)
0.384565 + 0.923098i \(0.374351\pi\)
\(420\) 0.246547 0.0120303
\(421\) −36.7926 −1.79316 −0.896581 0.442879i \(-0.853957\pi\)
−0.896581 + 0.442879i \(0.853957\pi\)
\(422\) 19.0600 0.927827
\(423\) 17.1548 0.834097
\(424\) −37.5768 −1.82489
\(425\) 2.50630 0.121573
\(426\) −13.1846 −0.638798
\(427\) 30.7828 1.48968
\(428\) 0.535986 0.0259079
\(429\) 4.69742 0.226793
\(430\) −9.21219 −0.444251
\(431\) −5.38386 −0.259331 −0.129666 0.991558i \(-0.541390\pi\)
−0.129666 + 0.991558i \(0.541390\pi\)
\(432\) 21.3749 1.02840
\(433\) 11.4151 0.548574 0.274287 0.961648i \(-0.411558\pi\)
0.274287 + 0.961648i \(0.411558\pi\)
\(434\) 0 0
\(435\) 2.79353 0.133939
\(436\) 0.245078 0.0117371
\(437\) −4.61803 −0.220910
\(438\) −0.259847 −0.0124160
\(439\) −2.45916 −0.117369 −0.0586847 0.998277i \(-0.518691\pi\)
−0.0586847 + 0.998277i \(0.518691\pi\)
\(440\) 2.28319 0.108847
\(441\) −13.5770 −0.646525
\(442\) 19.2919 0.917623
\(443\) −0.738016 −0.0350642 −0.0175321 0.999846i \(-0.505581\pi\)
−0.0175321 + 0.999846i \(0.505581\pi\)
\(444\) 0.645216 0.0306206
\(445\) 6.37980 0.302432
\(446\) 0.481773 0.0228126
\(447\) −1.19192 −0.0563760
\(448\) −29.2768 −1.38320
\(449\) 16.1798 0.763570 0.381785 0.924251i \(-0.375309\pi\)
0.381785 + 0.924251i \(0.375309\pi\)
\(450\) −2.66894 −0.125815
\(451\) −4.51398 −0.212555
\(452\) 1.07913 0.0507580
\(453\) 14.0511 0.660177
\(454\) 14.3273 0.672411
\(455\) 20.2776 0.950628
\(456\) 5.77473 0.270426
\(457\) 10.9858 0.513896 0.256948 0.966425i \(-0.417283\pi\)
0.256948 + 0.966425i \(0.417283\pi\)
\(458\) −15.8651 −0.741328
\(459\) −13.0081 −0.607167
\(460\) −0.145119 −0.00676619
\(461\) 31.5081 1.46748 0.733739 0.679431i \(-0.237773\pi\)
0.733739 + 0.679431i \(0.237773\pi\)
\(462\) −4.75681 −0.221307
\(463\) 13.5310 0.628840 0.314420 0.949284i \(-0.398190\pi\)
0.314420 + 0.949284i \(0.398190\pi\)
\(464\) 10.7708 0.500020
\(465\) 0 0
\(466\) −7.96902 −0.369158
\(467\) −28.5922 −1.32309 −0.661544 0.749907i \(-0.730098\pi\)
−0.661544 + 0.749907i \(0.730098\pi\)
\(468\) −0.608351 −0.0281210
\(469\) −23.1852 −1.07060
\(470\) 13.2474 0.611059
\(471\) −25.9930 −1.19769
\(472\) −36.7420 −1.69119
\(473\) 5.26320 0.242002
\(474\) 13.9147 0.639123
\(475\) −1.94218 −0.0891134
\(476\) −0.578501 −0.0265155
\(477\) −25.0959 −1.14906
\(478\) −20.2549 −0.926437
\(479\) 12.6025 0.575823 0.287911 0.957657i \(-0.407039\pi\)
0.287911 + 0.957657i \(0.407039\pi\)
\(480\) 0.368646 0.0168263
\(481\) 53.0666 2.41963
\(482\) 3.28007 0.149403
\(483\) −9.60529 −0.437056
\(484\) −0.630291 −0.0286496
\(485\) −13.9270 −0.632391
\(486\) 22.4047 1.01630
\(487\) 27.2541 1.23500 0.617501 0.786570i \(-0.288145\pi\)
0.617501 + 0.786570i \(0.288145\pi\)
\(488\) 22.6572 1.02564
\(489\) −11.5791 −0.523627
\(490\) −10.4846 −0.473644
\(491\) −3.99429 −0.180260 −0.0901298 0.995930i \(-0.528728\pi\)
−0.0901298 + 0.995930i \(0.528728\pi\)
\(492\) −0.358769 −0.0161746
\(493\) −6.55476 −0.295211
\(494\) −14.9497 −0.672620
\(495\) 1.52485 0.0685368
\(496\) 0 0
\(497\) 32.5172 1.45859
\(498\) 15.1960 0.680947
\(499\) 16.0297 0.717588 0.358794 0.933417i \(-0.383188\pi\)
0.358794 + 0.933417i \(0.383188\pi\)
\(500\) −0.0610318 −0.00272943
\(501\) 17.8359 0.796848
\(502\) −18.0208 −0.804309
\(503\) 4.16642 0.185771 0.0928857 0.995677i \(-0.470391\pi\)
0.0928857 + 0.995677i \(0.470391\pi\)
\(504\) −19.5715 −0.871786
\(505\) −2.41226 −0.107344
\(506\) 2.79987 0.124470
\(507\) 16.8207 0.747033
\(508\) 1.12318 0.0498330
\(509\) 10.0885 0.447164 0.223582 0.974685i \(-0.428225\pi\)
0.223582 + 0.974685i \(0.428225\pi\)
\(510\) −3.84329 −0.170184
\(511\) 0.640858 0.0283499
\(512\) −21.5066 −0.950466
\(513\) 10.0803 0.445055
\(514\) −24.7127 −1.09003
\(515\) −8.60350 −0.379116
\(516\) 0.418317 0.0184154
\(517\) −7.56867 −0.332870
\(518\) −53.7375 −2.36109
\(519\) −9.53491 −0.418536
\(520\) 14.9250 0.654504
\(521\) −13.4020 −0.587150 −0.293575 0.955936i \(-0.594845\pi\)
−0.293575 + 0.955936i \(0.594845\pi\)
\(522\) 6.98013 0.305512
\(523\) 19.3755 0.847230 0.423615 0.905842i \(-0.360761\pi\)
0.423615 + 0.905842i \(0.360761\pi\)
\(524\) −1.21115 −0.0529094
\(525\) −4.03965 −0.176305
\(526\) 18.1271 0.790379
\(527\) 0 0
\(528\) −3.60811 −0.157023
\(529\) −17.3463 −0.754187
\(530\) −19.3798 −0.841804
\(531\) −24.5384 −1.06488
\(532\) 0.448293 0.0194360
\(533\) −29.5074 −1.27811
\(534\) −9.78314 −0.423358
\(535\) −8.78208 −0.379682
\(536\) −17.0651 −0.737101
\(537\) −0.115939 −0.00500312
\(538\) 22.0680 0.951418
\(539\) 5.99015 0.258014
\(540\) 0.316766 0.0136314
\(541\) 25.3043 1.08792 0.543959 0.839112i \(-0.316925\pi\)
0.543959 + 0.839112i \(0.316925\pi\)
\(542\) −18.2760 −0.785019
\(543\) 16.5825 0.711625
\(544\) −0.864995 −0.0370864
\(545\) −4.01557 −0.172008
\(546\) −31.0948 −1.33073
\(547\) 39.8870 1.70545 0.852723 0.522364i \(-0.174950\pi\)
0.852723 + 0.522364i \(0.174950\pi\)
\(548\) −0.738029 −0.0315270
\(549\) 15.1318 0.645808
\(550\) 1.17753 0.0502100
\(551\) 5.07942 0.216391
\(552\) −7.06982 −0.300911
\(553\) −34.3177 −1.45934
\(554\) −15.6111 −0.663252
\(555\) −10.5718 −0.448748
\(556\) 0.511564 0.0216952
\(557\) 18.1799 0.770307 0.385153 0.922853i \(-0.374149\pi\)
0.385153 + 0.922853i \(0.374149\pi\)
\(558\) 0 0
\(559\) 34.4050 1.45518
\(560\) −15.5753 −0.658178
\(561\) 2.19579 0.0927062
\(562\) 25.5024 1.07575
\(563\) 10.4562 0.440674 0.220337 0.975424i \(-0.429284\pi\)
0.220337 + 0.975424i \(0.429284\pi\)
\(564\) −0.601555 −0.0253300
\(565\) −17.6814 −0.743864
\(566\) −21.3749 −0.898454
\(567\) −0.126249 −0.00530194
\(568\) 23.9337 1.00424
\(569\) 1.46280 0.0613236 0.0306618 0.999530i \(-0.490239\pi\)
0.0306618 + 0.999530i \(0.490239\pi\)
\(570\) 2.97825 0.124745
\(571\) −17.9873 −0.752747 −0.376374 0.926468i \(-0.622829\pi\)
−0.376374 + 0.926468i \(0.622829\pi\)
\(572\) 0.268403 0.0112225
\(573\) 7.88399 0.329358
\(574\) 29.8805 1.24719
\(575\) 2.37775 0.0991591
\(576\) −14.3915 −0.599645
\(577\) 43.9743 1.83067 0.915336 0.402690i \(-0.131925\pi\)
0.915336 + 0.402690i \(0.131925\pi\)
\(578\) −15.3878 −0.640047
\(579\) −21.8482 −0.907982
\(580\) 0.159618 0.00662776
\(581\) −37.4777 −1.55484
\(582\) 21.3564 0.885250
\(583\) 11.0723 0.458566
\(584\) 0.471693 0.0195188
\(585\) 9.96776 0.412116
\(586\) −12.4006 −0.512262
\(587\) 35.1511 1.45084 0.725420 0.688307i \(-0.241646\pi\)
0.725420 + 0.688307i \(0.241646\pi\)
\(588\) 0.476095 0.0196338
\(589\) 0 0
\(590\) −18.9492 −0.780128
\(591\) 11.5180 0.473786
\(592\) −40.7608 −1.67526
\(593\) −8.33526 −0.342288 −0.171144 0.985246i \(-0.554746\pi\)
−0.171144 + 0.985246i \(0.554746\pi\)
\(594\) −6.11159 −0.250761
\(595\) 9.47867 0.388588
\(596\) −0.0681045 −0.00278967
\(597\) 11.9362 0.488516
\(598\) 18.3025 0.748444
\(599\) 16.7036 0.682490 0.341245 0.939974i \(-0.389151\pi\)
0.341245 + 0.939974i \(0.389151\pi\)
\(600\) −2.97332 −0.121385
\(601\) 27.4085 1.11801 0.559007 0.829163i \(-0.311182\pi\)
0.559007 + 0.829163i \(0.311182\pi\)
\(602\) −34.8400 −1.41997
\(603\) −11.3971 −0.464125
\(604\) 0.802856 0.0326677
\(605\) 10.3272 0.419862
\(606\) 3.69909 0.150265
\(607\) 12.4835 0.506691 0.253346 0.967376i \(-0.418469\pi\)
0.253346 + 0.967376i \(0.418469\pi\)
\(608\) 0.670303 0.0271844
\(609\) 10.5650 0.428114
\(610\) 11.6852 0.473119
\(611\) −49.4756 −2.00157
\(612\) −0.284371 −0.0114950
\(613\) 18.2344 0.736480 0.368240 0.929731i \(-0.379960\pi\)
0.368240 + 0.929731i \(0.379960\pi\)
\(614\) 41.6032 1.67897
\(615\) 5.87839 0.237040
\(616\) 8.63491 0.347910
\(617\) 7.49052 0.301557 0.150779 0.988568i \(-0.451822\pi\)
0.150779 + 0.988568i \(0.451822\pi\)
\(618\) 13.1931 0.530704
\(619\) 27.4044 1.10148 0.550739 0.834678i \(-0.314346\pi\)
0.550739 + 0.834678i \(0.314346\pi\)
\(620\) 0 0
\(621\) −12.3410 −0.495226
\(622\) −32.1423 −1.28879
\(623\) 24.1281 0.966671
\(624\) −23.5859 −0.944190
\(625\) 1.00000 0.0400000
\(626\) 25.4276 1.01629
\(627\) −1.70156 −0.0679539
\(628\) −1.48520 −0.0592659
\(629\) 24.8058 0.989070
\(630\) −10.0938 −0.402146
\(631\) 11.9115 0.474188 0.237094 0.971487i \(-0.423805\pi\)
0.237094 + 0.971487i \(0.423805\pi\)
\(632\) −25.2590 −1.00475
\(633\) 14.1811 0.563648
\(634\) −5.21361 −0.207059
\(635\) −18.4032 −0.730308
\(636\) 0.880019 0.0348950
\(637\) 39.1570 1.55146
\(638\) −3.07961 −0.121923
\(639\) 15.9843 0.632330
\(640\) −11.8038 −0.466584
\(641\) 28.4409 1.12335 0.561674 0.827359i \(-0.310157\pi\)
0.561674 + 0.827359i \(0.310157\pi\)
\(642\) 13.4669 0.531497
\(643\) 14.7022 0.579800 0.289900 0.957057i \(-0.406378\pi\)
0.289900 + 0.957057i \(0.406378\pi\)
\(644\) −0.548831 −0.0216270
\(645\) −6.85408 −0.269879
\(646\) −6.98819 −0.274947
\(647\) 17.5279 0.689095 0.344547 0.938769i \(-0.388032\pi\)
0.344547 + 0.938769i \(0.388032\pi\)
\(648\) −0.0929232 −0.00365037
\(649\) 10.8263 0.424968
\(650\) 7.69739 0.301916
\(651\) 0 0
\(652\) −0.661614 −0.0259108
\(653\) 29.0373 1.13632 0.568159 0.822919i \(-0.307656\pi\)
0.568159 + 0.822919i \(0.307656\pi\)
\(654\) 6.15769 0.240785
\(655\) 19.8446 0.775391
\(656\) 22.6648 0.884912
\(657\) 0.315024 0.0122902
\(658\) 50.1011 1.95315
\(659\) 34.6269 1.34887 0.674436 0.738334i \(-0.264387\pi\)
0.674436 + 0.738334i \(0.264387\pi\)
\(660\) −0.0534705 −0.00208134
\(661\) −10.5264 −0.409431 −0.204715 0.978822i \(-0.565627\pi\)
−0.204715 + 0.978822i \(0.565627\pi\)
\(662\) 36.1248 1.40403
\(663\) 14.3536 0.557449
\(664\) −27.5848 −1.07050
\(665\) −7.34523 −0.284836
\(666\) −26.4155 −1.02358
\(667\) −6.21858 −0.240784
\(668\) 1.01911 0.0394307
\(669\) 0.358450 0.0138585
\(670\) −8.80114 −0.340018
\(671\) −6.67609 −0.257727
\(672\) 1.39420 0.0537825
\(673\) 32.4815 1.25207 0.626034 0.779795i \(-0.284677\pi\)
0.626034 + 0.779795i \(0.284677\pi\)
\(674\) −47.7365 −1.83874
\(675\) −5.19018 −0.199770
\(676\) 0.961107 0.0369656
\(677\) −27.0788 −1.04072 −0.520362 0.853946i \(-0.674203\pi\)
−0.520362 + 0.853946i \(0.674203\pi\)
\(678\) 27.1137 1.04129
\(679\) −52.6710 −2.02133
\(680\) 6.97662 0.267541
\(681\) 10.6598 0.408485
\(682\) 0 0
\(683\) −6.58687 −0.252040 −0.126020 0.992028i \(-0.540220\pi\)
−0.126020 + 0.992028i \(0.540220\pi\)
\(684\) 0.220365 0.00842588
\(685\) 12.0925 0.462031
\(686\) −1.64574 −0.0628348
\(687\) −11.8040 −0.450351
\(688\) −26.4267 −1.00751
\(689\) 72.3782 2.75739
\(690\) −3.64618 −0.138808
\(691\) −28.0920 −1.06867 −0.534335 0.845273i \(-0.679438\pi\)
−0.534335 + 0.845273i \(0.679438\pi\)
\(692\) −0.544809 −0.0207105
\(693\) 5.76689 0.219066
\(694\) −33.9388 −1.28830
\(695\) −8.38192 −0.317944
\(696\) 7.77618 0.294755
\(697\) −13.7931 −0.522451
\(698\) −52.2875 −1.97911
\(699\) −5.92913 −0.224260
\(700\) −0.230819 −0.00872414
\(701\) −17.2242 −0.650548 −0.325274 0.945620i \(-0.605457\pi\)
−0.325274 + 0.945620i \(0.605457\pi\)
\(702\) −39.9508 −1.50785
\(703\) −19.2225 −0.724991
\(704\) 6.34947 0.239305
\(705\) 9.85641 0.371214
\(706\) −9.46417 −0.356189
\(707\) −9.12304 −0.343107
\(708\) 0.860468 0.0323384
\(709\) 41.9460 1.57532 0.787658 0.616113i \(-0.211293\pi\)
0.787658 + 0.616113i \(0.211293\pi\)
\(710\) 12.3435 0.463245
\(711\) −16.8694 −0.632651
\(712\) 17.7591 0.665549
\(713\) 0 0
\(714\) −14.5351 −0.543963
\(715\) −4.39775 −0.164466
\(716\) −0.00662455 −0.000247571 0
\(717\) −15.0701 −0.562803
\(718\) 19.5969 0.731349
\(719\) −5.66219 −0.211164 −0.105582 0.994411i \(-0.533671\pi\)
−0.105582 + 0.994411i \(0.533671\pi\)
\(720\) −7.65630 −0.285333
\(721\) −32.5380 −1.21178
\(722\) −21.8617 −0.813607
\(723\) 2.44045 0.0907612
\(724\) 0.947499 0.0352135
\(725\) −2.61532 −0.0971304
\(726\) −15.8364 −0.587742
\(727\) 5.21279 0.193332 0.0966659 0.995317i \(-0.469182\pi\)
0.0966659 + 0.995317i \(0.469182\pi\)
\(728\) 56.4455 2.09201
\(729\) 16.5695 0.613684
\(730\) 0.243270 0.00900383
\(731\) 16.0825 0.594831
\(732\) −0.530613 −0.0196120
\(733\) 19.1226 0.706308 0.353154 0.935565i \(-0.385109\pi\)
0.353154 + 0.935565i \(0.385109\pi\)
\(734\) −33.1056 −1.22195
\(735\) −7.80076 −0.287735
\(736\) −0.820631 −0.0302489
\(737\) 5.02835 0.185222
\(738\) 14.6882 0.540681
\(739\) −41.7015 −1.53401 −0.767007 0.641639i \(-0.778255\pi\)
−0.767007 + 0.641639i \(0.778255\pi\)
\(740\) −0.604055 −0.0222055
\(741\) −11.1229 −0.408611
\(742\) −73.2933 −2.69068
\(743\) −31.6205 −1.16004 −0.580022 0.814601i \(-0.696956\pi\)
−0.580022 + 0.814601i \(0.696956\pi\)
\(744\) 0 0
\(745\) 1.11588 0.0408829
\(746\) −5.50546 −0.201569
\(747\) −18.4227 −0.674052
\(748\) 0.125464 0.00458741
\(749\) −33.2133 −1.21359
\(750\) −1.53345 −0.0559939
\(751\) 33.6927 1.22946 0.614732 0.788736i \(-0.289264\pi\)
0.614732 + 0.788736i \(0.289264\pi\)
\(752\) 38.0025 1.38581
\(753\) −13.4079 −0.488611
\(754\) −20.1311 −0.733132
\(755\) −13.1547 −0.478748
\(756\) 1.19799 0.0435706
\(757\) −19.3895 −0.704723 −0.352362 0.935864i \(-0.614621\pi\)
−0.352362 + 0.935864i \(0.614621\pi\)
\(758\) 34.0861 1.23806
\(759\) 2.08317 0.0756143
\(760\) −5.40634 −0.196108
\(761\) 6.06617 0.219899 0.109949 0.993937i \(-0.464931\pi\)
0.109949 + 0.993937i \(0.464931\pi\)
\(762\) 28.2204 1.02232
\(763\) −15.1867 −0.549794
\(764\) 0.450478 0.0162977
\(765\) 4.65939 0.168461
\(766\) −21.9195 −0.791984
\(767\) 70.7702 2.55536
\(768\) 1.56313 0.0564047
\(769\) −5.93757 −0.214114 −0.107057 0.994253i \(-0.534143\pi\)
−0.107057 + 0.994253i \(0.534143\pi\)
\(770\) 4.45335 0.160488
\(771\) −18.3868 −0.662184
\(772\) −1.24837 −0.0449299
\(773\) 47.3416 1.70276 0.851379 0.524551i \(-0.175767\pi\)
0.851379 + 0.524551i \(0.175767\pi\)
\(774\) −17.1261 −0.615586
\(775\) 0 0
\(776\) −38.7677 −1.39168
\(777\) −39.9820 −1.43434
\(778\) −48.9294 −1.75421
\(779\) 10.6886 0.382958
\(780\) −0.349531 −0.0125152
\(781\) −7.05223 −0.252349
\(782\) 8.55542 0.305941
\(783\) 13.5740 0.485094
\(784\) −30.0767 −1.07417
\(785\) 24.3348 0.868547
\(786\) −30.4307 −1.08543
\(787\) 23.8753 0.851063 0.425531 0.904944i \(-0.360087\pi\)
0.425531 + 0.904944i \(0.360087\pi\)
\(788\) 0.658118 0.0234445
\(789\) 13.4870 0.480149
\(790\) −13.0270 −0.463480
\(791\) −66.8702 −2.37763
\(792\) 4.24462 0.150826
\(793\) −43.6409 −1.54973
\(794\) −27.6688 −0.981928
\(795\) −14.4190 −0.511390
\(796\) 0.682015 0.0241734
\(797\) −5.53857 −0.196186 −0.0980931 0.995177i \(-0.531274\pi\)
−0.0980931 + 0.995177i \(0.531274\pi\)
\(798\) 11.2636 0.398726
\(799\) −23.1272 −0.818180
\(800\) −0.345129 −0.0122021
\(801\) 11.8605 0.419071
\(802\) 43.5730 1.53862
\(803\) −0.138987 −0.00490476
\(804\) 0.399652 0.0140946
\(805\) 8.99253 0.316945
\(806\) 0 0
\(807\) 16.4191 0.577979
\(808\) −6.71486 −0.236228
\(809\) 18.1427 0.637863 0.318932 0.947778i \(-0.396676\pi\)
0.318932 + 0.947778i \(0.396676\pi\)
\(810\) −0.0479240 −0.00168388
\(811\) 34.4710 1.21044 0.605220 0.796059i \(-0.293085\pi\)
0.605220 + 0.796059i \(0.293085\pi\)
\(812\) 0.603665 0.0211845
\(813\) −13.5977 −0.476893
\(814\) 11.6545 0.408488
\(815\) 10.8405 0.379725
\(816\) −11.0251 −0.385956
\(817\) −12.4626 −0.436013
\(818\) −5.26798 −0.184191
\(819\) 37.6975 1.31726
\(820\) 0.335882 0.0117295
\(821\) −20.2220 −0.705754 −0.352877 0.935670i \(-0.614797\pi\)
−0.352877 + 0.935670i \(0.614797\pi\)
\(822\) −18.5433 −0.646773
\(823\) −23.3044 −0.812341 −0.406171 0.913797i \(-0.633136\pi\)
−0.406171 + 0.913797i \(0.633136\pi\)
\(824\) −23.9491 −0.834305
\(825\) 0.876109 0.0305022
\(826\) −71.6650 −2.49354
\(827\) 29.3940 1.02213 0.511065 0.859542i \(-0.329251\pi\)
0.511065 + 0.859542i \(0.329251\pi\)
\(828\) −0.269786 −0.00937572
\(829\) −31.5550 −1.09595 −0.547974 0.836495i \(-0.684601\pi\)
−0.547974 + 0.836495i \(0.684601\pi\)
\(830\) −14.2265 −0.493811
\(831\) −11.6150 −0.402920
\(832\) 41.5058 1.43896
\(833\) 18.3038 0.634188
\(834\) 12.8533 0.445073
\(835\) −16.6980 −0.577860
\(836\) −0.0972245 −0.00336258
\(837\) 0 0
\(838\) 22.6021 0.780777
\(839\) 49.6508 1.71414 0.857068 0.515203i \(-0.172283\pi\)
0.857068 + 0.515203i \(0.172283\pi\)
\(840\) −11.2449 −0.387987
\(841\) −22.1601 −0.764142
\(842\) −52.8206 −1.82032
\(843\) 18.9744 0.653512
\(844\) 0.810284 0.0278911
\(845\) −15.7476 −0.541735
\(846\) 24.6280 0.846728
\(847\) 39.0571 1.34202
\(848\) −55.5941 −1.90911
\(849\) −15.9034 −0.545804
\(850\) 3.59811 0.123414
\(851\) 23.5335 0.806719
\(852\) −0.560509 −0.0192027
\(853\) 48.9477 1.67594 0.837969 0.545718i \(-0.183743\pi\)
0.837969 + 0.545718i \(0.183743\pi\)
\(854\) 44.1927 1.51224
\(855\) −3.61066 −0.123482
\(856\) −24.4461 −0.835552
\(857\) −17.8176 −0.608637 −0.304319 0.952570i \(-0.598429\pi\)
−0.304319 + 0.952570i \(0.598429\pi\)
\(858\) 6.74375 0.230228
\(859\) −25.5785 −0.872727 −0.436363 0.899771i \(-0.643734\pi\)
−0.436363 + 0.899771i \(0.643734\pi\)
\(860\) −0.391631 −0.0133545
\(861\) 22.2318 0.757656
\(862\) −7.72923 −0.263259
\(863\) −38.4877 −1.31014 −0.655069 0.755569i \(-0.727360\pi\)
−0.655069 + 0.755569i \(0.727360\pi\)
\(864\) 1.79128 0.0609406
\(865\) 8.92663 0.303515
\(866\) 16.3878 0.556882
\(867\) −11.4489 −0.388823
\(868\) 0 0
\(869\) 7.44272 0.252477
\(870\) 4.01047 0.135968
\(871\) 32.8698 1.11375
\(872\) −11.1779 −0.378531
\(873\) −25.8913 −0.876287
\(874\) −6.62978 −0.224256
\(875\) 3.78195 0.127853
\(876\) −0.0110467 −0.000373232 0
\(877\) −55.6185 −1.87810 −0.939052 0.343775i \(-0.888294\pi\)
−0.939052 + 0.343775i \(0.888294\pi\)
\(878\) −3.53045 −0.119147
\(879\) −9.22630 −0.311195
\(880\) 3.37794 0.113870
\(881\) 4.62449 0.155803 0.0779016 0.996961i \(-0.475178\pi\)
0.0779016 + 0.996961i \(0.475178\pi\)
\(882\) −19.4916 −0.656316
\(883\) −30.9588 −1.04185 −0.520923 0.853603i \(-0.674412\pi\)
−0.520923 + 0.853603i \(0.674412\pi\)
\(884\) 0.820143 0.0275844
\(885\) −14.0987 −0.473922
\(886\) −1.05952 −0.0355952
\(887\) −19.6048 −0.658265 −0.329132 0.944284i \(-0.606756\pi\)
−0.329132 + 0.944284i \(0.606756\pi\)
\(888\) −29.4281 −0.987541
\(889\) −69.5998 −2.33430
\(890\) 9.15903 0.307011
\(891\) 0.0273804 0.000917279 0
\(892\) 0.0204813 0.000685763 0
\(893\) 17.9217 0.599728
\(894\) −1.71116 −0.0572297
\(895\) 0.108542 0.00362818
\(896\) −44.6412 −1.49136
\(897\) 13.6175 0.454674
\(898\) 23.2281 0.775133
\(899\) 0 0
\(900\) −0.113463 −0.00378209
\(901\) 33.8329 1.12714
\(902\) −6.48040 −0.215774
\(903\) −25.9217 −0.862622
\(904\) −49.2187 −1.63699
\(905\) −15.5247 −0.516057
\(906\) 20.1721 0.670174
\(907\) −7.63790 −0.253612 −0.126806 0.991928i \(-0.540473\pi\)
−0.126806 + 0.991928i \(0.540473\pi\)
\(908\) 0.609084 0.0202132
\(909\) −4.48457 −0.148744
\(910\) 29.1111 0.965024
\(911\) 13.1589 0.435975 0.217987 0.975952i \(-0.430051\pi\)
0.217987 + 0.975952i \(0.430051\pi\)
\(912\) 8.54360 0.282907
\(913\) 8.12805 0.268999
\(914\) 15.7716 0.521678
\(915\) 8.69403 0.287416
\(916\) −0.674462 −0.0222848
\(917\) 75.0511 2.47840
\(918\) −18.6748 −0.616361
\(919\) 17.6712 0.582919 0.291459 0.956583i \(-0.405859\pi\)
0.291459 + 0.956583i \(0.405859\pi\)
\(920\) 6.61881 0.218216
\(921\) 30.9537 1.01996
\(922\) 45.2340 1.48970
\(923\) −46.0997 −1.51739
\(924\) −0.202223 −0.00665264
\(925\) 9.89738 0.325424
\(926\) 19.4255 0.638362
\(927\) −15.9946 −0.525330
\(928\) 0.902622 0.0296300
\(929\) 27.6157 0.906041 0.453021 0.891500i \(-0.350346\pi\)
0.453021 + 0.891500i \(0.350346\pi\)
\(930\) 0 0
\(931\) −14.1840 −0.464861
\(932\) −0.338781 −0.0110971
\(933\) −23.9146 −0.782929
\(934\) −41.0477 −1.34312
\(935\) −2.05571 −0.0672289
\(936\) 27.7467 0.906928
\(937\) −25.8143 −0.843315 −0.421657 0.906755i \(-0.638552\pi\)
−0.421657 + 0.906755i \(0.638552\pi\)
\(938\) −33.2854 −1.08681
\(939\) 18.9187 0.617388
\(940\) 0.563179 0.0183689
\(941\) −3.18030 −0.103675 −0.0518375 0.998656i \(-0.516508\pi\)
−0.0518375 + 0.998656i \(0.516508\pi\)
\(942\) −37.3163 −1.21583
\(943\) −13.0857 −0.426129
\(944\) −54.3590 −1.76924
\(945\) −19.6290 −0.638530
\(946\) 7.55600 0.245667
\(947\) 37.3585 1.21399 0.606993 0.794707i \(-0.292375\pi\)
0.606993 + 0.794707i \(0.292375\pi\)
\(948\) 0.591545 0.0192125
\(949\) −0.908547 −0.0294927
\(950\) −2.78825 −0.0904629
\(951\) −3.87904 −0.125787
\(952\) 26.3852 0.855150
\(953\) −24.2246 −0.784712 −0.392356 0.919814i \(-0.628340\pi\)
−0.392356 + 0.919814i \(0.628340\pi\)
\(954\) −36.0285 −1.16647
\(955\) −7.38103 −0.238845
\(956\) −0.861081 −0.0278494
\(957\) −2.29130 −0.0740673
\(958\) 18.0925 0.584543
\(959\) 45.7332 1.47680
\(960\) −8.26869 −0.266871
\(961\) 0 0
\(962\) 76.1840 2.45627
\(963\) −16.3265 −0.526115
\(964\) 0.139443 0.00449116
\(965\) 20.4545 0.658452
\(966\) −13.7896 −0.443674
\(967\) −5.50389 −0.176993 −0.0884965 0.996076i \(-0.528206\pi\)
−0.0884965 + 0.996076i \(0.528206\pi\)
\(968\) 28.7473 0.923974
\(969\) −5.19937 −0.167028
\(970\) −19.9940 −0.641967
\(971\) −24.0575 −0.772043 −0.386022 0.922490i \(-0.626151\pi\)
−0.386022 + 0.922490i \(0.626151\pi\)
\(972\) 0.952475 0.0305506
\(973\) −31.7000 −1.01625
\(974\) 39.1268 1.25370
\(975\) 5.72703 0.183412
\(976\) 33.5208 1.07298
\(977\) 1.26599 0.0405026 0.0202513 0.999795i \(-0.493553\pi\)
0.0202513 + 0.999795i \(0.493553\pi\)
\(978\) −16.6234 −0.531556
\(979\) −5.23283 −0.167242
\(980\) −0.445722 −0.0142381
\(981\) −7.46524 −0.238347
\(982\) −5.73431 −0.182989
\(983\) 60.1842 1.91958 0.959789 0.280722i \(-0.0905738\pi\)
0.959789 + 0.280722i \(0.0905738\pi\)
\(984\) 16.3633 0.521644
\(985\) −10.7832 −0.343581
\(986\) −9.41020 −0.299682
\(987\) 37.2764 1.18652
\(988\) −0.635547 −0.0202194
\(989\) 15.2576 0.485164
\(990\) 2.18911 0.0695746
\(991\) −10.8943 −0.346070 −0.173035 0.984916i \(-0.555357\pi\)
−0.173035 + 0.984916i \(0.555357\pi\)
\(992\) 0 0
\(993\) 26.8777 0.852938
\(994\) 46.6826 1.48068
\(995\) −11.1747 −0.354263
\(996\) 0.646014 0.0204698
\(997\) 43.8749 1.38953 0.694765 0.719236i \(-0.255508\pi\)
0.694765 + 0.719236i \(0.255508\pi\)
\(998\) 23.0127 0.728455
\(999\) −51.3691 −1.62525
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4805.2.a.bb.1.18 yes 24
31.30 odd 2 inner 4805.2.a.bb.1.17 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4805.2.a.bb.1.17 24 31.30 odd 2 inner
4805.2.a.bb.1.18 yes 24 1.1 even 1 trivial