Newspace parameters
Level: | \( N \) | \(=\) | \( 480 = 2^{5} \cdot 3 \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 480.h (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(76.9842335102\) |
Analytic rank: | \(0\) |
Dimension: | \(40\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
191.1 | 0 | −15.3326 | − | 2.81282i | 0 | 25.0000i | 0 | 144.063i | 0 | 227.176 | + | 86.2555i | 0 | ||||||||||||||
191.2 | 0 | −15.3326 | + | 2.81282i | 0 | − | 25.0000i | 0 | − | 144.063i | 0 | 227.176 | − | 86.2555i | 0 | ||||||||||||
191.3 | 0 | −15.1062 | − | 3.84742i | 0 | − | 25.0000i | 0 | 95.3389i | 0 | 213.395 | + | 116.240i | 0 | |||||||||||||
191.4 | 0 | −15.1062 | + | 3.84742i | 0 | 25.0000i | 0 | − | 95.3389i | 0 | 213.395 | − | 116.240i | 0 | |||||||||||||
191.5 | 0 | −15.0458 | − | 4.07722i | 0 | 25.0000i | 0 | − | 232.663i | 0 | 209.753 | + | 122.690i | 0 | |||||||||||||
191.6 | 0 | −15.0458 | + | 4.07722i | 0 | − | 25.0000i | 0 | 232.663i | 0 | 209.753 | − | 122.690i | 0 | |||||||||||||
191.7 | 0 | −12.9206 | − | 8.72109i | 0 | 25.0000i | 0 | 163.490i | 0 | 90.8850 | + | 225.364i | 0 | ||||||||||||||
191.8 | 0 | −12.9206 | + | 8.72109i | 0 | − | 25.0000i | 0 | − | 163.490i | 0 | 90.8850 | − | 225.364i | 0 | ||||||||||||
191.9 | 0 | −12.3372 | − | 9.52858i | 0 | − | 25.0000i | 0 | − | 103.877i | 0 | 61.4124 | + | 235.112i | 0 | ||||||||||||
191.10 | 0 | −12.3372 | + | 9.52858i | 0 | 25.0000i | 0 | 103.877i | 0 | 61.4124 | − | 235.112i | 0 | ||||||||||||||
191.11 | 0 | −11.2333 | − | 10.8080i | 0 | − | 25.0000i | 0 | 74.7782i | 0 | 9.37266 | + | 242.819i | 0 | |||||||||||||
191.12 | 0 | −11.2333 | + | 10.8080i | 0 | 25.0000i | 0 | − | 74.7782i | 0 | 9.37266 | − | 242.819i | 0 | |||||||||||||
191.13 | 0 | −9.65614 | − | 12.2376i | 0 | 25.0000i | 0 | 56.9854i | 0 | −56.5180 | + | 236.336i | 0 | ||||||||||||||
191.14 | 0 | −9.65614 | + | 12.2376i | 0 | − | 25.0000i | 0 | − | 56.9854i | 0 | −56.5180 | − | 236.336i | 0 | ||||||||||||
191.15 | 0 | −6.27490 | − | 14.2697i | 0 | 25.0000i | 0 | − | 128.112i | 0 | −164.251 | + | 179.083i | 0 | |||||||||||||
191.16 | 0 | −6.27490 | + | 14.2697i | 0 | − | 25.0000i | 0 | 128.112i | 0 | −164.251 | − | 179.083i | 0 | |||||||||||||
191.17 | 0 | −0.00614934 | − | 15.5885i | 0 | − | 25.0000i | 0 | − | 197.208i | 0 | −243.000 | + | 0.191717i | 0 | ||||||||||||
191.18 | 0 | −0.00614934 | + | 15.5885i | 0 | 25.0000i | 0 | 197.208i | 0 | −243.000 | − | 0.191717i | 0 | ||||||||||||||
191.19 | 0 | 0.797118 | − | 15.5681i | 0 | − | 25.0000i | 0 | 26.5383i | 0 | −241.729 | − | 24.8192i | 0 | |||||||||||||
191.20 | 0 | 0.797118 | + | 15.5681i | 0 | 25.0000i | 0 | − | 26.5383i | 0 | −241.729 | + | 24.8192i | 0 | |||||||||||||
See all 40 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
12.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 480.6.h.b | yes | 40 |
3.b | odd | 2 | 1 | 480.6.h.a | ✓ | 40 | |
4.b | odd | 2 | 1 | 480.6.h.a | ✓ | 40 | |
12.b | even | 2 | 1 | inner | 480.6.h.b | yes | 40 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
480.6.h.a | ✓ | 40 | 3.b | odd | 2 | 1 | |
480.6.h.a | ✓ | 40 | 4.b | odd | 2 | 1 | |
480.6.h.b | yes | 40 | 1.a | even | 1 | 1 | trivial |
480.6.h.b | yes | 40 | 12.b | even | 2 | 1 | inner |