Properties

Label 480.6.a.j
Level $480$
Weight $6$
Character orbit 480.a
Self dual yes
Analytic conductor $76.984$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [480,6,Mod(1,480)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("480.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(480, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 480 = 2^{5} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 480.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,-27,0,-75,0,108] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(76.9842335102\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 1320x + 6750 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 9 q^{3} - 25 q^{5} + (\beta_{2} + 36) q^{7} + 81 q^{9} + ( - \beta_{2} - \beta_1 - 89) q^{11} + ( - 2 \beta_{2} + \beta_1 - 165) q^{13} + 225 q^{15} + ( - 2 \beta_{2} + \beta_1 + 359) q^{17} + (\beta_{2} + 4 \beta_1 - 256) q^{19}+ \cdots + ( - 81 \beta_{2} - 81 \beta_1 - 7209) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 27 q^{3} - 75 q^{5} + 108 q^{7} + 243 q^{9} - 268 q^{11} - 494 q^{13} + 675 q^{15} + 1078 q^{17} - 764 q^{19} - 972 q^{21} + 2600 q^{23} + 1875 q^{25} - 2187 q^{27} + 1678 q^{29} + 6516 q^{31} + 2412 q^{33}+ \cdots - 21708 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 1320x + 6750 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -4\nu^{2} + 184\nu + 3465 ) / 15 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 4\nu^{2} + 56\nu - 3540 ) / 15 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + \beta _1 + 5 ) / 16 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 23\beta_{2} - 7\beta _1 + 7045 ) / 8 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
5.19965
−38.1910
33.9913
0 −9.00000 0 −25.0000 0 −173.378 0 81.0000 0
1.2 0 −9.00000 0 −25.0000 0 46.3675 0 81.0000 0
1.3 0 −9.00000 0 −25.0000 0 235.011 0 81.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 480.6.a.j 3
4.b odd 2 1 480.6.a.m yes 3
8.b even 2 1 960.6.a.bx 3
8.d odd 2 1 960.6.a.bs 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
480.6.a.j 3 1.a even 1 1 trivial
480.6.a.m yes 3 4.b odd 2 1
960.6.a.bs 3 8.d odd 2 1
960.6.a.bx 3 8.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{3} - 108T_{7}^{2} - 37888T_{7} + 1889280 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(480))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( (T + 9)^{3} \) Copy content Toggle raw display
$5$ \( (T + 25)^{3} \) Copy content Toggle raw display
$7$ \( T^{3} - 108 T^{2} + \cdots + 1889280 \) Copy content Toggle raw display
$11$ \( T^{3} + 268 T^{2} + \cdots - 55327680 \) Copy content Toggle raw display
$13$ \( T^{3} + 494 T^{2} + \cdots - 98115896 \) Copy content Toggle raw display
$17$ \( T^{3} - 1078 T^{2} + \cdots + 92349720 \) Copy content Toggle raw display
$19$ \( T^{3} + \cdots + 2454292224 \) Copy content Toggle raw display
$23$ \( T^{3} + \cdots + 3775440128 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots + 80648640600 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots + 71168716800 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots + 416870759304 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots + 3654974402424 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots + 801817978176 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots - 3535014528 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots + 13167420267192 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots - 12205496066880 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots - 26761916504 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots + 139433832000 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots + 12428641566720 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots + 72297984438040 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots + 2868776930048 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots - 11965381632576 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots - 570088545203880 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots - 10\!\cdots\!16 \) Copy content Toggle raw display
show more
show less