Properties

Label 480.6.a.f
Level $480$
Weight $6$
Character orbit 480.a
Self dual yes
Analytic conductor $76.984$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [480,6,Mod(1,480)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(480, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("480.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 480 = 2^{5} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 480.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,18,0,-50,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(76.9842335102\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{145}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 36 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{145}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 9 q^{3} - 25 q^{5} + ( - 5 \beta - 2) q^{7} + 81 q^{9} + (8 \beta + 140) q^{11} + (17 \beta + 100) q^{13} - 225 q^{15} + ( - 47 \beta - 560) q^{17} + (55 \beta - 1410) q^{19} + ( - 45 \beta - 18) q^{21}+ \cdots + (648 \beta + 11340) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 18 q^{3} - 50 q^{5} - 4 q^{7} + 162 q^{9} + 280 q^{11} + 200 q^{13} - 450 q^{15} - 1120 q^{17} - 2820 q^{19} - 36 q^{21} - 1268 q^{23} + 1250 q^{25} + 1458 q^{27} + 2628 q^{29} + 3060 q^{31} + 2520 q^{33}+ \cdots + 22680 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
6.52080
−5.52080
0 9.00000 0 −25.0000 0 −122.416 0 81.0000 0
1.2 0 9.00000 0 −25.0000 0 118.416 0 81.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 480.6.a.f yes 2
4.b odd 2 1 480.6.a.a 2
8.b even 2 1 960.6.a.bh 2
8.d odd 2 1 960.6.a.bo 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
480.6.a.a 2 4.b odd 2 1
480.6.a.f yes 2 1.a even 1 1 trivial
960.6.a.bh 2 8.b even 2 1
960.6.a.bo 2 8.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{2} + 4T_{7} - 14496 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(480))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T - 9)^{2} \) Copy content Toggle raw display
$5$ \( (T + 25)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 4T - 14496 \) Copy content Toggle raw display
$11$ \( T^{2} - 280T - 17520 \) Copy content Toggle raw display
$13$ \( T^{2} - 200T - 157620 \) Copy content Toggle raw display
$17$ \( T^{2} + 1120 T - 967620 \) Copy content Toggle raw display
$19$ \( T^{2} + 2820 T + 233600 \) Copy content Toggle raw display
$23$ \( T^{2} + 1268 T - 3788544 \) Copy content Toggle raw display
$29$ \( T^{2} - 2628 T - 26345404 \) Copy content Toggle raw display
$31$ \( T^{2} - 3060 T - 23481280 \) Copy content Toggle raw display
$37$ \( T^{2} - 11640 T + 16513580 \) Copy content Toggle raw display
$41$ \( T^{2} + 10980 T - 145309900 \) Copy content Toggle raw display
$43$ \( T^{2} + 31592 T + 230721616 \) Copy content Toggle raw display
$47$ \( T^{2} + 1356 T - 26350816 \) Copy content Toggle raw display
$53$ \( T^{2} + 260 T - 391879820 \) Copy content Toggle raw display
$59$ \( T^{2} + 27800 T - 982900080 \) Copy content Toggle raw display
$61$ \( T^{2} + 57180 T + 572338100 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 1304625456 \) Copy content Toggle raw display
$71$ \( T^{2} + 10400 T - 366766080 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 1345592020 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 1127381280 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 3091015664 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 6970961076 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 10513691780 \) Copy content Toggle raw display
show more
show less