Properties

Label 480.6.a.b
Level $480$
Weight $6$
Character orbit 480.a
Self dual yes
Analytic conductor $76.984$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [480,6,Mod(1,480)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("480.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(480, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 480 = 2^{5} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 480.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-18,0,-50,0,108] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(76.9842335102\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{1721}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 430 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{1721}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 9 q^{3} - 25 q^{5} + ( - \beta + 54) q^{7} + 81 q^{9} + ( - 4 \beta - 108) q^{11} + ( - 9 \beta - 104) q^{13} + 225 q^{15} + ( - 9 \beta + 292) q^{17} + (3 \beta - 522) q^{19} + (9 \beta - 486) q^{21}+ \cdots + ( - 324 \beta - 8748) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 18 q^{3} - 50 q^{5} + 108 q^{7} + 162 q^{9} - 216 q^{11} - 208 q^{13} + 450 q^{15} + 584 q^{17} - 1044 q^{19} - 972 q^{21} + 396 q^{23} + 1250 q^{25} - 1458 q^{27} - 3516 q^{29} - 1116 q^{31} + 1944 q^{33}+ \cdots - 17496 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
21.2425
−20.2425
0 −9.00000 0 −25.0000 0 −28.9699 0 81.0000 0
1.2 0 −9.00000 0 −25.0000 0 136.970 0 81.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 480.6.a.b 2
4.b odd 2 1 480.6.a.e yes 2
8.b even 2 1 960.6.a.bp 2
8.d odd 2 1 960.6.a.bg 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
480.6.a.b 2 1.a even 1 1 trivial
480.6.a.e yes 2 4.b odd 2 1
960.6.a.bg 2 8.d odd 2 1
960.6.a.bp 2 8.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{2} - 108T_{7} - 3968 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(480))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T + 9)^{2} \) Copy content Toggle raw display
$5$ \( (T + 25)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 108T - 3968 \) Copy content Toggle raw display
$11$ \( T^{2} + 216T - 98480 \) Copy content Toggle raw display
$13$ \( T^{2} + 208T - 546788 \) Copy content Toggle raw display
$17$ \( T^{2} - 584T - 472340 \) Copy content Toggle raw display
$19$ \( T^{2} + 1044 T + 210528 \) Copy content Toggle raw display
$23$ \( T^{2} - 396 T - 1950272 \) Copy content Toggle raw display
$29$ \( T^{2} + 3516 T - 5831100 \) Copy content Toggle raw display
$31$ \( T^{2} + 1116 T + 139264 \) Copy content Toggle raw display
$37$ \( T^{2} + 7712 T - 52601348 \) Copy content Toggle raw display
$41$ \( T^{2} + 6580 T + 8593684 \) Copy content Toggle raw display
$43$ \( T^{2} + 9432 T - 200800944 \) Copy content Toggle raw display
$47$ \( T^{2} - 18612 T - 326610464 \) Copy content Toggle raw display
$53$ \( T^{2} + 21396 T + 112216788 \) Copy content Toggle raw display
$59$ \( T^{2} - 33624 T - 100767920 \) Copy content Toggle raw display
$61$ \( T^{2} + 59692 T + 388940116 \) Copy content Toggle raw display
$67$ \( T^{2} - 34632 T - 458938160 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots + 2031192064 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 1766911500 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 1868083744 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 1393079024 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 3093753940 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 1561847044 \) Copy content Toggle raw display
show more
show less