Properties

Label 480.2.h.b.191.1
Level $480$
Weight $2$
Character 480.191
Analytic conductor $3.833$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [480,2,Mod(191,480)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("480.191"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(480, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 480 = 2^{5} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 480.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-4,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.83281929702\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 191.1
Root \(-0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 480.191
Dual form 480.2.h.b.191.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.70711 - 0.292893i) q^{3} +1.00000i q^{5} -0.585786i q^{7} +(2.82843 + 1.00000i) q^{9} -2.82843 q^{11} -2.00000 q^{13} +(0.292893 - 1.70711i) q^{15} +3.65685i q^{17} +2.82843i q^{19} +(-0.171573 + 1.00000i) q^{21} -4.58579 q^{23} -1.00000 q^{25} +(-4.53553 - 2.53553i) q^{27} +8.00000i q^{29} +5.65685i q^{31} +(4.82843 + 0.828427i) q^{33} +0.585786 q^{35} -11.6569 q^{37} +(3.41421 + 0.585786i) q^{39} -2.00000i q^{41} +11.8995i q^{43} +(-1.00000 + 2.82843i) q^{45} -2.24264 q^{47} +6.65685 q^{49} +(1.07107 - 6.24264i) q^{51} -7.65685i q^{53} -2.82843i q^{55} +(0.828427 - 4.82843i) q^{57} +9.65685 q^{59} -5.65685 q^{61} +(0.585786 - 1.65685i) q^{63} -2.00000i q^{65} -13.0711i q^{67} +(7.82843 + 1.34315i) q^{69} -6.82843 q^{71} +4.34315 q^{73} +(1.70711 + 0.292893i) q^{75} +1.65685i q^{77} +12.4853i q^{79} +(7.00000 + 5.65685i) q^{81} +9.07107 q^{83} -3.65685 q^{85} +(2.34315 - 13.6569i) q^{87} -15.3137i q^{89} +1.17157i q^{91} +(1.65685 - 9.65685i) q^{93} -2.82843 q^{95} -14.9706 q^{97} +(-8.00000 - 2.82843i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} - 8 q^{13} + 4 q^{15} - 12 q^{21} - 24 q^{23} - 4 q^{25} - 4 q^{27} + 8 q^{33} + 8 q^{35} - 24 q^{37} + 8 q^{39} - 4 q^{45} + 8 q^{47} + 4 q^{49} - 24 q^{51} - 8 q^{57} + 16 q^{59} + 8 q^{63}+ \cdots - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/480\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(161\) \(421\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.70711 0.292893i −0.985599 0.169102i
\(4\) 0 0
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 0.585786i 0.221406i −0.993854 0.110703i \(-0.964690\pi\)
0.993854 0.110703i \(-0.0353103\pi\)
\(8\) 0 0
\(9\) 2.82843 + 1.00000i 0.942809 + 0.333333i
\(10\) 0 0
\(11\) −2.82843 −0.852803 −0.426401 0.904534i \(-0.640219\pi\)
−0.426401 + 0.904534i \(0.640219\pi\)
\(12\) 0 0
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) 0 0
\(15\) 0.292893 1.70711i 0.0756247 0.440773i
\(16\) 0 0
\(17\) 3.65685i 0.886917i 0.896295 + 0.443459i \(0.146249\pi\)
−0.896295 + 0.443459i \(0.853751\pi\)
\(18\) 0 0
\(19\) 2.82843i 0.648886i 0.945905 + 0.324443i \(0.105177\pi\)
−0.945905 + 0.324443i \(0.894823\pi\)
\(20\) 0 0
\(21\) −0.171573 + 1.00000i −0.0374403 + 0.218218i
\(22\) 0 0
\(23\) −4.58579 −0.956203 −0.478101 0.878305i \(-0.658675\pi\)
−0.478101 + 0.878305i \(0.658675\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) −4.53553 2.53553i −0.872864 0.487964i
\(28\) 0 0
\(29\) 8.00000i 1.48556i 0.669534 + 0.742781i \(0.266494\pi\)
−0.669534 + 0.742781i \(0.733506\pi\)
\(30\) 0 0
\(31\) 5.65685i 1.01600i 0.861357 + 0.508001i \(0.169615\pi\)
−0.861357 + 0.508001i \(0.830385\pi\)
\(32\) 0 0
\(33\) 4.82843 + 0.828427i 0.840521 + 0.144211i
\(34\) 0 0
\(35\) 0.585786 0.0990160
\(36\) 0 0
\(37\) −11.6569 −1.91638 −0.958188 0.286141i \(-0.907627\pi\)
−0.958188 + 0.286141i \(0.907627\pi\)
\(38\) 0 0
\(39\) 3.41421 + 0.585786i 0.546712 + 0.0938009i
\(40\) 0 0
\(41\) 2.00000i 0.312348i −0.987730 0.156174i \(-0.950084\pi\)
0.987730 0.156174i \(-0.0499160\pi\)
\(42\) 0 0
\(43\) 11.8995i 1.81466i 0.420424 + 0.907328i \(0.361882\pi\)
−0.420424 + 0.907328i \(0.638118\pi\)
\(44\) 0 0
\(45\) −1.00000 + 2.82843i −0.149071 + 0.421637i
\(46\) 0 0
\(47\) −2.24264 −0.327123 −0.163561 0.986533i \(-0.552298\pi\)
−0.163561 + 0.986533i \(0.552298\pi\)
\(48\) 0 0
\(49\) 6.65685 0.950979
\(50\) 0 0
\(51\) 1.07107 6.24264i 0.149979 0.874145i
\(52\) 0 0
\(53\) 7.65685i 1.05175i −0.850562 0.525875i \(-0.823738\pi\)
0.850562 0.525875i \(-0.176262\pi\)
\(54\) 0 0
\(55\) 2.82843i 0.381385i
\(56\) 0 0
\(57\) 0.828427 4.82843i 0.109728 0.639541i
\(58\) 0 0
\(59\) 9.65685 1.25722 0.628608 0.777723i \(-0.283625\pi\)
0.628608 + 0.777723i \(0.283625\pi\)
\(60\) 0 0
\(61\) −5.65685 −0.724286 −0.362143 0.932123i \(-0.617955\pi\)
−0.362143 + 0.932123i \(0.617955\pi\)
\(62\) 0 0
\(63\) 0.585786 1.65685i 0.0738022 0.208744i
\(64\) 0 0
\(65\) 2.00000i 0.248069i
\(66\) 0 0
\(67\) 13.0711i 1.59689i −0.602071 0.798443i \(-0.705658\pi\)
0.602071 0.798443i \(-0.294342\pi\)
\(68\) 0 0
\(69\) 7.82843 + 1.34315i 0.942432 + 0.161696i
\(70\) 0 0
\(71\) −6.82843 −0.810385 −0.405193 0.914231i \(-0.632796\pi\)
−0.405193 + 0.914231i \(0.632796\pi\)
\(72\) 0 0
\(73\) 4.34315 0.508327 0.254163 0.967161i \(-0.418200\pi\)
0.254163 + 0.967161i \(0.418200\pi\)
\(74\) 0 0
\(75\) 1.70711 + 0.292893i 0.197120 + 0.0338204i
\(76\) 0 0
\(77\) 1.65685i 0.188816i
\(78\) 0 0
\(79\) 12.4853i 1.40470i 0.711830 + 0.702352i \(0.247867\pi\)
−0.711830 + 0.702352i \(0.752133\pi\)
\(80\) 0 0
\(81\) 7.00000 + 5.65685i 0.777778 + 0.628539i
\(82\) 0 0
\(83\) 9.07107 0.995679 0.497840 0.867269i \(-0.334127\pi\)
0.497840 + 0.867269i \(0.334127\pi\)
\(84\) 0 0
\(85\) −3.65685 −0.396642
\(86\) 0 0
\(87\) 2.34315 13.6569i 0.251212 1.46417i
\(88\) 0 0
\(89\) 15.3137i 1.62325i −0.584179 0.811625i \(-0.698583\pi\)
0.584179 0.811625i \(-0.301417\pi\)
\(90\) 0 0
\(91\) 1.17157i 0.122814i
\(92\) 0 0
\(93\) 1.65685 9.65685i 0.171808 1.00137i
\(94\) 0 0
\(95\) −2.82843 −0.290191
\(96\) 0 0
\(97\) −14.9706 −1.52003 −0.760015 0.649905i \(-0.774809\pi\)
−0.760015 + 0.649905i \(0.774809\pi\)
\(98\) 0 0
\(99\) −8.00000 2.82843i −0.804030 0.284268i
\(100\) 0 0
\(101\) 15.3137i 1.52377i −0.647712 0.761885i \(-0.724274\pi\)
0.647712 0.761885i \(-0.275726\pi\)
\(102\) 0 0
\(103\) 6.24264i 0.615106i −0.951531 0.307553i \(-0.900490\pi\)
0.951531 0.307553i \(-0.0995101\pi\)
\(104\) 0 0
\(105\) −1.00000 0.171573i −0.0975900 0.0167438i
\(106\) 0 0
\(107\) 12.5858 1.21671 0.608357 0.793664i \(-0.291829\pi\)
0.608357 + 0.793664i \(0.291829\pi\)
\(108\) 0 0
\(109\) 6.34315 0.607563 0.303782 0.952742i \(-0.401751\pi\)
0.303782 + 0.952742i \(0.401751\pi\)
\(110\) 0 0
\(111\) 19.8995 + 3.41421i 1.88878 + 0.324063i
\(112\) 0 0
\(113\) 10.0000i 0.940721i 0.882474 + 0.470360i \(0.155876\pi\)
−0.882474 + 0.470360i \(0.844124\pi\)
\(114\) 0 0
\(115\) 4.58579i 0.427627i
\(116\) 0 0
\(117\) −5.65685 2.00000i −0.522976 0.184900i
\(118\) 0 0
\(119\) 2.14214 0.196369
\(120\) 0 0
\(121\) −3.00000 −0.272727
\(122\) 0 0
\(123\) −0.585786 + 3.41421i −0.0528186 + 0.307849i
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 2.92893i 0.259901i 0.991521 + 0.129950i \(0.0414818\pi\)
−0.991521 + 0.129950i \(0.958518\pi\)
\(128\) 0 0
\(129\) 3.48528 20.3137i 0.306862 1.78852i
\(130\) 0 0
\(131\) 5.17157 0.451842 0.225921 0.974146i \(-0.427461\pi\)
0.225921 + 0.974146i \(0.427461\pi\)
\(132\) 0 0
\(133\) 1.65685 0.143667
\(134\) 0 0
\(135\) 2.53553 4.53553i 0.218224 0.390357i
\(136\) 0 0
\(137\) 5.31371i 0.453981i 0.973897 + 0.226990i \(0.0728886\pi\)
−0.973897 + 0.226990i \(0.927111\pi\)
\(138\) 0 0
\(139\) 18.8284i 1.59701i 0.601991 + 0.798503i \(0.294374\pi\)
−0.601991 + 0.798503i \(0.705626\pi\)
\(140\) 0 0
\(141\) 3.82843 + 0.656854i 0.322412 + 0.0553171i
\(142\) 0 0
\(143\) 5.65685 0.473050
\(144\) 0 0
\(145\) −8.00000 −0.664364
\(146\) 0 0
\(147\) −11.3640 1.94975i −0.937284 0.160812i
\(148\) 0 0
\(149\) 9.31371i 0.763009i 0.924367 + 0.381504i \(0.124594\pi\)
−0.924367 + 0.381504i \(0.875406\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) −3.65685 + 10.3431i −0.295639 + 0.836194i
\(154\) 0 0
\(155\) −5.65685 −0.454369
\(156\) 0 0
\(157\) 3.65685 0.291849 0.145924 0.989296i \(-0.453384\pi\)
0.145924 + 0.989296i \(0.453384\pi\)
\(158\) 0 0
\(159\) −2.24264 + 13.0711i −0.177853 + 1.03660i
\(160\) 0 0
\(161\) 2.68629i 0.211709i
\(162\) 0 0
\(163\) 1.75736i 0.137647i 0.997629 + 0.0688235i \(0.0219245\pi\)
−0.997629 + 0.0688235i \(0.978075\pi\)
\(164\) 0 0
\(165\) −0.828427 + 4.82843i −0.0644930 + 0.375893i
\(166\) 0 0
\(167\) 6.72792 0.520622 0.260311 0.965525i \(-0.416175\pi\)
0.260311 + 0.965525i \(0.416175\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) −2.82843 + 8.00000i −0.216295 + 0.611775i
\(172\) 0 0
\(173\) 2.00000i 0.152057i −0.997106 0.0760286i \(-0.975776\pi\)
0.997106 0.0760286i \(-0.0242240\pi\)
\(174\) 0 0
\(175\) 0.585786i 0.0442813i
\(176\) 0 0
\(177\) −16.4853 2.82843i −1.23911 0.212598i
\(178\) 0 0
\(179\) −6.34315 −0.474109 −0.237054 0.971496i \(-0.576182\pi\)
−0.237054 + 0.971496i \(0.576182\pi\)
\(180\) 0 0
\(181\) 13.3137 0.989600 0.494800 0.869007i \(-0.335241\pi\)
0.494800 + 0.869007i \(0.335241\pi\)
\(182\) 0 0
\(183\) 9.65685 + 1.65685i 0.713855 + 0.122478i
\(184\) 0 0
\(185\) 11.6569i 0.857029i
\(186\) 0 0
\(187\) 10.3431i 0.756366i
\(188\) 0 0
\(189\) −1.48528 + 2.65685i −0.108038 + 0.193258i
\(190\) 0 0
\(191\) −10.1421 −0.733859 −0.366930 0.930249i \(-0.619591\pi\)
−0.366930 + 0.930249i \(0.619591\pi\)
\(192\) 0 0
\(193\) 3.65685 0.263226 0.131613 0.991301i \(-0.457984\pi\)
0.131613 + 0.991301i \(0.457984\pi\)
\(194\) 0 0
\(195\) −0.585786 + 3.41421i −0.0419490 + 0.244497i
\(196\) 0 0
\(197\) 10.9706i 0.781620i 0.920471 + 0.390810i \(0.127805\pi\)
−0.920471 + 0.390810i \(0.872195\pi\)
\(198\) 0 0
\(199\) 17.1716i 1.21726i −0.793454 0.608630i \(-0.791719\pi\)
0.793454 0.608630i \(-0.208281\pi\)
\(200\) 0 0
\(201\) −3.82843 + 22.3137i −0.270036 + 1.57389i
\(202\) 0 0
\(203\) 4.68629 0.328913
\(204\) 0 0
\(205\) 2.00000 0.139686
\(206\) 0 0
\(207\) −12.9706 4.58579i −0.901516 0.318734i
\(208\) 0 0
\(209\) 8.00000i 0.553372i
\(210\) 0 0
\(211\) 12.0000i 0.826114i −0.910705 0.413057i \(-0.864461\pi\)
0.910705 0.413057i \(-0.135539\pi\)
\(212\) 0 0
\(213\) 11.6569 + 2.00000i 0.798714 + 0.137038i
\(214\) 0 0
\(215\) −11.8995 −0.811539
\(216\) 0 0
\(217\) 3.31371 0.224949
\(218\) 0 0
\(219\) −7.41421 1.27208i −0.501006 0.0859591i
\(220\) 0 0
\(221\) 7.31371i 0.491973i
\(222\) 0 0
\(223\) 11.8995i 0.796849i 0.917201 + 0.398425i \(0.130443\pi\)
−0.917201 + 0.398425i \(0.869557\pi\)
\(224\) 0 0
\(225\) −2.82843 1.00000i −0.188562 0.0666667i
\(226\) 0 0
\(227\) −4.58579 −0.304369 −0.152185 0.988352i \(-0.548631\pi\)
−0.152185 + 0.988352i \(0.548631\pi\)
\(228\) 0 0
\(229\) 25.3137 1.67278 0.836388 0.548137i \(-0.184663\pi\)
0.836388 + 0.548137i \(0.184663\pi\)
\(230\) 0 0
\(231\) 0.485281 2.82843i 0.0319292 0.186097i
\(232\) 0 0
\(233\) 26.9706i 1.76690i 0.468525 + 0.883450i \(0.344786\pi\)
−0.468525 + 0.883450i \(0.655214\pi\)
\(234\) 0 0
\(235\) 2.24264i 0.146294i
\(236\) 0 0
\(237\) 3.65685 21.3137i 0.237538 1.38447i
\(238\) 0 0
\(239\) −13.6569 −0.883388 −0.441694 0.897166i \(-0.645622\pi\)
−0.441694 + 0.897166i \(0.645622\pi\)
\(240\) 0 0
\(241\) −1.65685 −0.106727 −0.0533637 0.998575i \(-0.516994\pi\)
−0.0533637 + 0.998575i \(0.516994\pi\)
\(242\) 0 0
\(243\) −10.2929 11.7071i −0.660289 0.751011i
\(244\) 0 0
\(245\) 6.65685i 0.425291i
\(246\) 0 0
\(247\) 5.65685i 0.359937i
\(248\) 0 0
\(249\) −15.4853 2.65685i −0.981340 0.168371i
\(250\) 0 0
\(251\) −16.4853 −1.04054 −0.520271 0.854001i \(-0.674169\pi\)
−0.520271 + 0.854001i \(0.674169\pi\)
\(252\) 0 0
\(253\) 12.9706 0.815452
\(254\) 0 0
\(255\) 6.24264 + 1.07107i 0.390929 + 0.0670729i
\(256\) 0 0
\(257\) 22.0000i 1.37232i 0.727450 + 0.686161i \(0.240706\pi\)
−0.727450 + 0.686161i \(0.759294\pi\)
\(258\) 0 0
\(259\) 6.82843i 0.424298i
\(260\) 0 0
\(261\) −8.00000 + 22.6274i −0.495188 + 1.40060i
\(262\) 0 0
\(263\) −7.89949 −0.487104 −0.243552 0.969888i \(-0.578313\pi\)
−0.243552 + 0.969888i \(0.578313\pi\)
\(264\) 0 0
\(265\) 7.65685 0.470357
\(266\) 0 0
\(267\) −4.48528 + 26.1421i −0.274495 + 1.59987i
\(268\) 0 0
\(269\) 18.0000i 1.09748i 0.835993 + 0.548740i \(0.184892\pi\)
−0.835993 + 0.548740i \(0.815108\pi\)
\(270\) 0 0
\(271\) 13.6569i 0.829595i −0.909914 0.414797i \(-0.863852\pi\)
0.909914 0.414797i \(-0.136148\pi\)
\(272\) 0 0
\(273\) 0.343146 2.00000i 0.0207681 0.121046i
\(274\) 0 0
\(275\) 2.82843 0.170561
\(276\) 0 0
\(277\) 0.343146 0.0206176 0.0103088 0.999947i \(-0.496719\pi\)
0.0103088 + 0.999947i \(0.496719\pi\)
\(278\) 0 0
\(279\) −5.65685 + 16.0000i −0.338667 + 0.957895i
\(280\) 0 0
\(281\) 9.31371i 0.555609i −0.960638 0.277805i \(-0.910393\pi\)
0.960638 0.277805i \(-0.0896068\pi\)
\(282\) 0 0
\(283\) 17.5563i 1.04362i −0.853063 0.521808i \(-0.825258\pi\)
0.853063 0.521808i \(-0.174742\pi\)
\(284\) 0 0
\(285\) 4.82843 + 0.828427i 0.286011 + 0.0490718i
\(286\) 0 0
\(287\) −1.17157 −0.0691558
\(288\) 0 0
\(289\) 3.62742 0.213377
\(290\) 0 0
\(291\) 25.5563 + 4.38478i 1.49814 + 0.257040i
\(292\) 0 0
\(293\) 22.0000i 1.28525i −0.766179 0.642627i \(-0.777845\pi\)
0.766179 0.642627i \(-0.222155\pi\)
\(294\) 0 0
\(295\) 9.65685i 0.562244i
\(296\) 0 0
\(297\) 12.8284 + 7.17157i 0.744381 + 0.416137i
\(298\) 0 0
\(299\) 9.17157 0.530406
\(300\) 0 0
\(301\) 6.97056 0.401777
\(302\) 0 0
\(303\) −4.48528 + 26.1421i −0.257673 + 1.50183i
\(304\) 0 0
\(305\) 5.65685i 0.323911i
\(306\) 0 0
\(307\) 11.8995i 0.679140i −0.940581 0.339570i \(-0.889718\pi\)
0.940581 0.339570i \(-0.110282\pi\)
\(308\) 0 0
\(309\) −1.82843 + 10.6569i −0.104016 + 0.606247i
\(310\) 0 0
\(311\) −28.4853 −1.61525 −0.807626 0.589695i \(-0.799248\pi\)
−0.807626 + 0.589695i \(0.799248\pi\)
\(312\) 0 0
\(313\) −5.31371 −0.300349 −0.150174 0.988660i \(-0.547983\pi\)
−0.150174 + 0.988660i \(0.547983\pi\)
\(314\) 0 0
\(315\) 1.65685 + 0.585786i 0.0933532 + 0.0330053i
\(316\) 0 0
\(317\) 11.6569i 0.654714i 0.944901 + 0.327357i \(0.106158\pi\)
−0.944901 + 0.327357i \(0.893842\pi\)
\(318\) 0 0
\(319\) 22.6274i 1.26689i
\(320\) 0 0
\(321\) −21.4853 3.68629i −1.19919 0.205749i
\(322\) 0 0
\(323\) −10.3431 −0.575508
\(324\) 0 0
\(325\) 2.00000 0.110940
\(326\) 0 0
\(327\) −10.8284 1.85786i −0.598813 0.102740i
\(328\) 0 0
\(329\) 1.31371i 0.0724271i
\(330\) 0 0
\(331\) 31.3137i 1.72116i 0.509318 + 0.860579i \(0.329898\pi\)
−0.509318 + 0.860579i \(0.670102\pi\)
\(332\) 0 0
\(333\) −32.9706 11.6569i −1.80678 0.638792i
\(334\) 0 0
\(335\) 13.0711 0.714149
\(336\) 0 0
\(337\) 13.3137 0.725244 0.362622 0.931936i \(-0.381882\pi\)
0.362622 + 0.931936i \(0.381882\pi\)
\(338\) 0 0
\(339\) 2.92893 17.0711i 0.159078 0.927173i
\(340\) 0 0
\(341\) 16.0000i 0.866449i
\(342\) 0 0
\(343\) 8.00000i 0.431959i
\(344\) 0 0
\(345\) −1.34315 + 7.82843i −0.0723125 + 0.421468i
\(346\) 0 0
\(347\) 31.6985 1.70166 0.850832 0.525438i \(-0.176099\pi\)
0.850832 + 0.525438i \(0.176099\pi\)
\(348\) 0 0
\(349\) −28.6274 −1.53239 −0.766195 0.642608i \(-0.777852\pi\)
−0.766195 + 0.642608i \(0.777852\pi\)
\(350\) 0 0
\(351\) 9.07107 + 5.07107i 0.484178 + 0.270674i
\(352\) 0 0
\(353\) 6.00000i 0.319348i 0.987170 + 0.159674i \(0.0510443\pi\)
−0.987170 + 0.159674i \(0.948956\pi\)
\(354\) 0 0
\(355\) 6.82843i 0.362415i
\(356\) 0 0
\(357\) −3.65685 0.627417i −0.193541 0.0332064i
\(358\) 0 0
\(359\) 18.3431 0.968114 0.484057 0.875036i \(-0.339163\pi\)
0.484057 + 0.875036i \(0.339163\pi\)
\(360\) 0 0
\(361\) 11.0000 0.578947
\(362\) 0 0
\(363\) 5.12132 + 0.878680i 0.268800 + 0.0461187i
\(364\) 0 0
\(365\) 4.34315i 0.227331i
\(366\) 0 0
\(367\) 29.0711i 1.51750i 0.651383 + 0.758749i \(0.274189\pi\)
−0.651383 + 0.758749i \(0.725811\pi\)
\(368\) 0 0
\(369\) 2.00000 5.65685i 0.104116 0.294484i
\(370\) 0 0
\(371\) −4.48528 −0.232864
\(372\) 0 0
\(373\) −8.34315 −0.431992 −0.215996 0.976394i \(-0.569300\pi\)
−0.215996 + 0.976394i \(0.569300\pi\)
\(374\) 0 0
\(375\) −0.292893 + 1.70711i −0.0151249 + 0.0881546i
\(376\) 0 0
\(377\) 16.0000i 0.824042i
\(378\) 0 0
\(379\) 14.1421i 0.726433i −0.931705 0.363216i \(-0.881679\pi\)
0.931705 0.363216i \(-0.118321\pi\)
\(380\) 0 0
\(381\) 0.857864 5.00000i 0.0439497 0.256158i
\(382\) 0 0
\(383\) −3.41421 −0.174458 −0.0872291 0.996188i \(-0.527801\pi\)
−0.0872291 + 0.996188i \(0.527801\pi\)
\(384\) 0 0
\(385\) −1.65685 −0.0844411
\(386\) 0 0
\(387\) −11.8995 + 33.6569i −0.604885 + 1.71087i
\(388\) 0 0
\(389\) 13.3137i 0.675032i 0.941320 + 0.337516i \(0.109587\pi\)
−0.941320 + 0.337516i \(0.890413\pi\)
\(390\) 0 0
\(391\) 16.7696i 0.848073i
\(392\) 0 0
\(393\) −8.82843 1.51472i −0.445335 0.0764074i
\(394\) 0 0
\(395\) −12.4853 −0.628203
\(396\) 0 0
\(397\) 24.6274 1.23601 0.618007 0.786172i \(-0.287940\pi\)
0.618007 + 0.786172i \(0.287940\pi\)
\(398\) 0 0
\(399\) −2.82843 0.485281i −0.141598 0.0242945i
\(400\) 0 0
\(401\) 8.00000i 0.399501i −0.979847 0.199750i \(-0.935987\pi\)
0.979847 0.199750i \(-0.0640132\pi\)
\(402\) 0 0
\(403\) 11.3137i 0.563576i
\(404\) 0 0
\(405\) −5.65685 + 7.00000i −0.281091 + 0.347833i
\(406\) 0 0
\(407\) 32.9706 1.63429
\(408\) 0 0
\(409\) −5.65685 −0.279713 −0.139857 0.990172i \(-0.544664\pi\)
−0.139857 + 0.990172i \(0.544664\pi\)
\(410\) 0 0
\(411\) 1.55635 9.07107i 0.0767690 0.447443i
\(412\) 0 0
\(413\) 5.65685i 0.278356i
\(414\) 0 0
\(415\) 9.07107i 0.445281i
\(416\) 0 0
\(417\) 5.51472 32.1421i 0.270057 1.57401i
\(418\) 0 0
\(419\) 20.0000 0.977064 0.488532 0.872546i \(-0.337533\pi\)
0.488532 + 0.872546i \(0.337533\pi\)
\(420\) 0 0
\(421\) −16.9706 −0.827095 −0.413547 0.910483i \(-0.635710\pi\)
−0.413547 + 0.910483i \(0.635710\pi\)
\(422\) 0 0
\(423\) −6.34315 2.24264i −0.308414 0.109041i
\(424\) 0 0
\(425\) 3.65685i 0.177383i
\(426\) 0 0
\(427\) 3.31371i 0.160362i
\(428\) 0 0
\(429\) −9.65685 1.65685i −0.466237 0.0799937i
\(430\) 0 0
\(431\) 28.4853 1.37209 0.686044 0.727560i \(-0.259346\pi\)
0.686044 + 0.727560i \(0.259346\pi\)
\(432\) 0 0
\(433\) 4.34315 0.208718 0.104359 0.994540i \(-0.466721\pi\)
0.104359 + 0.994540i \(0.466721\pi\)
\(434\) 0 0
\(435\) 13.6569 + 2.34315i 0.654796 + 0.112345i
\(436\) 0 0
\(437\) 12.9706i 0.620466i
\(438\) 0 0
\(439\) 22.8284i 1.08954i −0.838585 0.544771i \(-0.816617\pi\)
0.838585 0.544771i \(-0.183383\pi\)
\(440\) 0 0
\(441\) 18.8284 + 6.65685i 0.896592 + 0.316993i
\(442\) 0 0
\(443\) −16.1005 −0.764958 −0.382479 0.923964i \(-0.624930\pi\)
−0.382479 + 0.923964i \(0.624930\pi\)
\(444\) 0 0
\(445\) 15.3137 0.725939
\(446\) 0 0
\(447\) 2.72792 15.8995i 0.129026 0.752020i
\(448\) 0 0
\(449\) 2.00000i 0.0943858i 0.998886 + 0.0471929i \(0.0150276\pi\)
−0.998886 + 0.0471929i \(0.984972\pi\)
\(450\) 0 0
\(451\) 5.65685i 0.266371i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −1.17157 −0.0549242
\(456\) 0 0
\(457\) 17.3137 0.809901 0.404951 0.914339i \(-0.367289\pi\)
0.404951 + 0.914339i \(0.367289\pi\)
\(458\) 0 0
\(459\) 9.27208 16.5858i 0.432784 0.774158i
\(460\) 0 0
\(461\) 18.6274i 0.867565i −0.901018 0.433783i \(-0.857179\pi\)
0.901018 0.433783i \(-0.142821\pi\)
\(462\) 0 0
\(463\) 23.4142i 1.08815i −0.839036 0.544075i \(-0.816881\pi\)
0.839036 0.544075i \(-0.183119\pi\)
\(464\) 0 0
\(465\) 9.65685 + 1.65685i 0.447826 + 0.0768348i
\(466\) 0 0
\(467\) −16.1005 −0.745043 −0.372521 0.928024i \(-0.621507\pi\)
−0.372521 + 0.928024i \(0.621507\pi\)
\(468\) 0 0
\(469\) −7.65685 −0.353561
\(470\) 0 0
\(471\) −6.24264 1.07107i −0.287646 0.0493522i
\(472\) 0 0
\(473\) 33.6569i 1.54754i
\(474\) 0 0
\(475\) 2.82843i 0.129777i
\(476\) 0 0
\(477\) 7.65685 21.6569i 0.350583 0.991599i
\(478\) 0 0
\(479\) 32.9706 1.50646 0.753232 0.657755i \(-0.228494\pi\)
0.753232 + 0.657755i \(0.228494\pi\)
\(480\) 0 0
\(481\) 23.3137 1.06301
\(482\) 0 0
\(483\) 0.786797 4.58579i 0.0358005 0.208661i
\(484\) 0 0
\(485\) 14.9706i 0.679778i
\(486\) 0 0
\(487\) 27.8995i 1.26425i 0.774868 + 0.632123i \(0.217816\pi\)
−0.774868 + 0.632123i \(0.782184\pi\)
\(488\) 0 0
\(489\) 0.514719 3.00000i 0.0232764 0.135665i
\(490\) 0 0
\(491\) −23.1127 −1.04306 −0.521531 0.853232i \(-0.674639\pi\)
−0.521531 + 0.853232i \(0.674639\pi\)
\(492\) 0 0
\(493\) −29.2548 −1.31757
\(494\) 0 0
\(495\) 2.82843 8.00000i 0.127128 0.359573i
\(496\) 0 0
\(497\) 4.00000i 0.179425i
\(498\) 0 0
\(499\) 17.4558i 0.781431i −0.920512 0.390715i \(-0.872228\pi\)
0.920512 0.390715i \(-0.127772\pi\)
\(500\) 0 0
\(501\) −11.4853 1.97056i −0.513125 0.0880383i
\(502\) 0 0
\(503\) 43.2132 1.92678 0.963391 0.268101i \(-0.0863962\pi\)
0.963391 + 0.268101i \(0.0863962\pi\)
\(504\) 0 0
\(505\) 15.3137 0.681451
\(506\) 0 0
\(507\) 15.3640 + 2.63604i 0.682337 + 0.117071i
\(508\) 0 0
\(509\) 22.6274i 1.00294i 0.865174 + 0.501471i \(0.167208\pi\)
−0.865174 + 0.501471i \(0.832792\pi\)
\(510\) 0 0
\(511\) 2.54416i 0.112547i
\(512\) 0 0
\(513\) 7.17157 12.8284i 0.316633 0.566389i
\(514\) 0 0
\(515\) 6.24264 0.275084
\(516\) 0 0
\(517\) 6.34315 0.278971
\(518\) 0 0
\(519\) −0.585786 + 3.41421i −0.0257132 + 0.149867i
\(520\) 0 0
\(521\) 16.0000i 0.700973i −0.936568 0.350486i \(-0.886016\pi\)
0.936568 0.350486i \(-0.113984\pi\)
\(522\) 0 0
\(523\) 8.58579i 0.375430i 0.982224 + 0.187715i \(0.0601082\pi\)
−0.982224 + 0.187715i \(0.939892\pi\)
\(524\) 0 0
\(525\) 0.171573 1.00000i 0.00748805 0.0436436i
\(526\) 0 0
\(527\) −20.6863 −0.901109
\(528\) 0 0
\(529\) −1.97056 −0.0856766
\(530\) 0 0
\(531\) 27.3137 + 9.65685i 1.18531 + 0.419072i
\(532\) 0 0
\(533\) 4.00000i 0.173259i
\(534\) 0 0
\(535\) 12.5858i 0.544131i
\(536\) 0 0
\(537\) 10.8284 + 1.85786i 0.467281 + 0.0801728i
\(538\) 0 0
\(539\) −18.8284 −0.810998
\(540\) 0 0
\(541\) −37.3137 −1.60424 −0.802121 0.597162i \(-0.796295\pi\)
−0.802121 + 0.597162i \(0.796295\pi\)
\(542\) 0 0
\(543\) −22.7279 3.89949i −0.975348 0.167343i
\(544\) 0 0
\(545\) 6.34315i 0.271711i
\(546\) 0 0
\(547\) 30.0416i 1.28449i 0.766501 + 0.642244i \(0.221996\pi\)
−0.766501 + 0.642244i \(0.778004\pi\)
\(548\) 0 0
\(549\) −16.0000 5.65685i −0.682863 0.241429i
\(550\) 0 0
\(551\) −22.6274 −0.963960
\(552\) 0 0
\(553\) 7.31371 0.311011
\(554\) 0 0
\(555\) −3.41421 + 19.8995i −0.144925 + 0.844687i
\(556\) 0 0
\(557\) 18.0000i 0.762684i 0.924434 + 0.381342i \(0.124538\pi\)
−0.924434 + 0.381342i \(0.875462\pi\)
\(558\) 0 0
\(559\) 23.7990i 1.00659i
\(560\) 0 0
\(561\) −3.02944 + 17.6569i −0.127903 + 0.745473i
\(562\) 0 0
\(563\) −5.55635 −0.234172 −0.117086 0.993122i \(-0.537355\pi\)
−0.117086 + 0.993122i \(0.537355\pi\)
\(564\) 0 0
\(565\) −10.0000 −0.420703
\(566\) 0 0
\(567\) 3.31371 4.10051i 0.139163 0.172205i
\(568\) 0 0
\(569\) 16.6274i 0.697058i 0.937298 + 0.348529i \(0.113319\pi\)
−0.937298 + 0.348529i \(0.886681\pi\)
\(570\) 0 0
\(571\) 40.2843i 1.68584i −0.538036 0.842922i \(-0.680833\pi\)
0.538036 0.842922i \(-0.319167\pi\)
\(572\) 0 0
\(573\) 17.3137 + 2.97056i 0.723291 + 0.124097i
\(574\) 0 0
\(575\) 4.58579 0.191241
\(576\) 0 0
\(577\) 22.0000 0.915872 0.457936 0.888985i \(-0.348589\pi\)
0.457936 + 0.888985i \(0.348589\pi\)
\(578\) 0 0
\(579\) −6.24264 1.07107i −0.259435 0.0445121i
\(580\) 0 0
\(581\) 5.31371i 0.220450i
\(582\) 0 0
\(583\) 21.6569i 0.896935i
\(584\) 0 0
\(585\) 2.00000 5.65685i 0.0826898 0.233882i
\(586\) 0 0
\(587\) 6.72792 0.277691 0.138846 0.990314i \(-0.455661\pi\)
0.138846 + 0.990314i \(0.455661\pi\)
\(588\) 0 0
\(589\) −16.0000 −0.659269
\(590\) 0 0
\(591\) 3.21320 18.7279i 0.132174 0.770364i
\(592\) 0 0
\(593\) 12.6274i 0.518546i 0.965804 + 0.259273i \(0.0834829\pi\)
−0.965804 + 0.259273i \(0.916517\pi\)
\(594\) 0 0
\(595\) 2.14214i 0.0878190i
\(596\) 0 0
\(597\) −5.02944 + 29.3137i −0.205841 + 1.19973i
\(598\) 0 0
\(599\) −14.6274 −0.597660 −0.298830 0.954306i \(-0.596596\pi\)
−0.298830 + 0.954306i \(0.596596\pi\)
\(600\) 0 0
\(601\) −28.9706 −1.18173 −0.590867 0.806769i \(-0.701214\pi\)
−0.590867 + 0.806769i \(0.701214\pi\)
\(602\) 0 0
\(603\) 13.0711 36.9706i 0.532295 1.50556i
\(604\) 0 0
\(605\) 3.00000i 0.121967i
\(606\) 0 0
\(607\) 26.9289i 1.09301i 0.837455 + 0.546506i \(0.184042\pi\)
−0.837455 + 0.546506i \(0.815958\pi\)
\(608\) 0 0
\(609\) −8.00000 1.37258i −0.324176 0.0556199i
\(610\) 0 0
\(611\) 4.48528 0.181455
\(612\) 0 0
\(613\) −14.6863 −0.593174 −0.296587 0.955006i \(-0.595848\pi\)
−0.296587 + 0.955006i \(0.595848\pi\)
\(614\) 0 0
\(615\) −3.41421 0.585786i −0.137674 0.0236212i
\(616\) 0 0
\(617\) 7.65685i 0.308253i −0.988051 0.154127i \(-0.950744\pi\)
0.988051 0.154127i \(-0.0492564\pi\)
\(618\) 0 0
\(619\) 33.4558i 1.34470i 0.740232 + 0.672352i \(0.234716\pi\)
−0.740232 + 0.672352i \(0.765284\pi\)
\(620\) 0 0
\(621\) 20.7990 + 11.6274i 0.834635 + 0.466592i
\(622\) 0 0
\(623\) −8.97056 −0.359398
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −2.34315 + 13.6569i −0.0935762 + 0.545402i
\(628\) 0 0
\(629\) 42.6274i 1.69967i
\(630\) 0 0
\(631\) 19.3137i 0.768867i 0.923153 + 0.384433i \(0.125603\pi\)
−0.923153 + 0.384433i \(0.874397\pi\)
\(632\) 0 0
\(633\) −3.51472 + 20.4853i −0.139698 + 0.814217i
\(634\) 0 0
\(635\) −2.92893 −0.116231
\(636\) 0 0
\(637\) −13.3137 −0.527508
\(638\) 0 0
\(639\) −19.3137 6.82843i −0.764038 0.270128i
\(640\) 0 0
\(641\) 17.3137i 0.683850i 0.939727 + 0.341925i \(0.111079\pi\)
−0.939727 + 0.341925i \(0.888921\pi\)
\(642\) 0 0
\(643\) 35.8995i 1.41574i 0.706344 + 0.707869i \(0.250343\pi\)
−0.706344 + 0.707869i \(0.749657\pi\)
\(644\) 0 0
\(645\) 20.3137 + 3.48528i 0.799851 + 0.137233i
\(646\) 0 0
\(647\) 42.2426 1.66073 0.830365 0.557220i \(-0.188132\pi\)
0.830365 + 0.557220i \(0.188132\pi\)
\(648\) 0 0
\(649\) −27.3137 −1.07216
\(650\) 0 0
\(651\) −5.65685 0.970563i −0.221710 0.0380394i
\(652\) 0 0
\(653\) 43.6569i 1.70842i 0.519924 + 0.854212i \(0.325960\pi\)
−0.519924 + 0.854212i \(0.674040\pi\)
\(654\) 0 0
\(655\) 5.17157i 0.202070i
\(656\) 0 0
\(657\) 12.2843 + 4.34315i 0.479255 + 0.169442i
\(658\) 0 0
\(659\) −33.6569 −1.31108 −0.655542 0.755158i \(-0.727560\pi\)
−0.655542 + 0.755158i \(0.727560\pi\)
\(660\) 0 0
\(661\) 21.6569 0.842354 0.421177 0.906978i \(-0.361617\pi\)
0.421177 + 0.906978i \(0.361617\pi\)
\(662\) 0 0
\(663\) −2.14214 + 12.4853i −0.0831937 + 0.484888i
\(664\) 0 0
\(665\) 1.65685i 0.0642501i
\(666\) 0 0
\(667\) 36.6863i 1.42050i
\(668\) 0 0
\(669\) 3.48528 20.3137i 0.134749 0.785373i
\(670\) 0 0
\(671\) 16.0000 0.617673
\(672\) 0 0
\(673\) −35.6569 −1.37447 −0.687235 0.726435i \(-0.741176\pi\)
−0.687235 + 0.726435i \(0.741176\pi\)
\(674\) 0 0
\(675\) 4.53553 + 2.53553i 0.174573 + 0.0975927i
\(676\) 0 0
\(677\) 11.6569i 0.448009i −0.974588 0.224005i \(-0.928087\pi\)
0.974588 0.224005i \(-0.0719131\pi\)
\(678\) 0 0
\(679\) 8.76955i 0.336545i
\(680\) 0 0
\(681\) 7.82843 + 1.34315i 0.299986 + 0.0514695i
\(682\) 0 0
\(683\) 21.5563 0.824831 0.412415 0.910996i \(-0.364685\pi\)
0.412415 + 0.910996i \(0.364685\pi\)
\(684\) 0 0
\(685\) −5.31371 −0.203026
\(686\) 0 0
\(687\) −43.2132 7.41421i −1.64869 0.282870i
\(688\) 0 0
\(689\) 15.3137i 0.583406i
\(690\) 0 0
\(691\) 16.2843i 0.619483i 0.950821 + 0.309741i \(0.100242\pi\)
−0.950821 + 0.309741i \(0.899758\pi\)
\(692\) 0 0
\(693\) −1.65685 + 4.68629i −0.0629387 + 0.178017i
\(694\) 0 0
\(695\) −18.8284 −0.714203
\(696\) 0 0
\(697\) 7.31371 0.277026
\(698\) 0 0
\(699\) 7.89949 46.0416i 0.298786 1.74145i
\(700\) 0 0
\(701\) 51.9411i 1.96179i 0.194540 + 0.980895i \(0.437679\pi\)
−0.194540 + 0.980895i \(0.562321\pi\)
\(702\) 0 0
\(703\) 32.9706i 1.24351i
\(704\) 0 0
\(705\) −0.656854 + 3.82843i −0.0247386 + 0.144187i
\(706\) 0 0
\(707\) −8.97056 −0.337373
\(708\) 0 0
\(709\) −25.3137 −0.950676 −0.475338 0.879803i \(-0.657674\pi\)
−0.475338 + 0.879803i \(0.657674\pi\)
\(710\) 0 0
\(711\) −12.4853 + 35.3137i −0.468235 + 1.32437i
\(712\) 0 0
\(713\) 25.9411i 0.971503i
\(714\) 0 0
\(715\) 5.65685i 0.211554i
\(716\) 0 0
\(717\) 23.3137 + 4.00000i 0.870666 + 0.149383i
\(718\) 0 0
\(719\) −44.2843 −1.65152 −0.825762 0.564018i \(-0.809255\pi\)
−0.825762 + 0.564018i \(0.809255\pi\)
\(720\) 0 0
\(721\) −3.65685 −0.136188
\(722\) 0 0
\(723\) 2.82843 + 0.485281i 0.105190 + 0.0180478i
\(724\) 0 0
\(725\) 8.00000i 0.297113i
\(726\) 0 0
\(727\) 48.1838i 1.78704i 0.449026 + 0.893518i \(0.351771\pi\)
−0.449026 + 0.893518i \(0.648229\pi\)
\(728\) 0 0
\(729\) 14.1421 + 23.0000i 0.523783 + 0.851852i
\(730\) 0 0
\(731\) −43.5147 −1.60945
\(732\) 0 0
\(733\) 42.9706 1.58715 0.793577 0.608470i \(-0.208216\pi\)
0.793577 + 0.608470i \(0.208216\pi\)
\(734\) 0 0
\(735\) 1.94975 11.3640i 0.0719175 0.419166i
\(736\) 0 0
\(737\) 36.9706i 1.36183i
\(738\) 0 0
\(739\) 32.4853i 1.19499i 0.801872 + 0.597495i \(0.203837\pi\)
−0.801872 + 0.597495i \(0.796163\pi\)
\(740\) 0 0
\(741\) −1.65685 + 9.65685i −0.0608661 + 0.354753i
\(742\) 0 0
\(743\) −30.7279 −1.12730 −0.563649 0.826014i \(-0.690603\pi\)
−0.563649 + 0.826014i \(0.690603\pi\)
\(744\) 0 0
\(745\) −9.31371 −0.341228
\(746\) 0 0
\(747\) 25.6569 + 9.07107i 0.938735 + 0.331893i
\(748\) 0 0
\(749\) 7.37258i 0.269388i
\(750\) 0 0
\(751\) 6.62742i 0.241838i 0.992662 + 0.120919i \(0.0385841\pi\)
−0.992662 + 0.120919i \(0.961416\pi\)
\(752\) 0 0
\(753\) 28.1421 + 4.82843i 1.02556 + 0.175958i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 27.6569 1.00521 0.502603 0.864517i \(-0.332376\pi\)
0.502603 + 0.864517i \(0.332376\pi\)
\(758\) 0 0
\(759\) −22.1421 3.79899i −0.803709 0.137895i
\(760\) 0 0
\(761\) 11.3137i 0.410122i −0.978749 0.205061i \(-0.934261\pi\)
0.978749 0.205061i \(-0.0657392\pi\)
\(762\) 0 0
\(763\) 3.71573i 0.134518i
\(764\) 0 0
\(765\) −10.3431 3.65685i −0.373957 0.132214i
\(766\) 0 0
\(767\) −19.3137 −0.697378
\(768\) 0 0
\(769\) 2.68629 0.0968701 0.0484351 0.998826i \(-0.484577\pi\)
0.0484351 + 0.998826i \(0.484577\pi\)
\(770\) 0 0
\(771\) 6.44365 37.5563i 0.232062 1.35256i
\(772\) 0 0
\(773\) 30.2843i 1.08925i 0.838680 + 0.544625i \(0.183328\pi\)
−0.838680 + 0.544625i \(0.816672\pi\)
\(774\) 0 0
\(775\) 5.65685i 0.203200i
\(776\) 0 0
\(777\) 2.00000 11.6569i 0.0717496 0.418187i
\(778\) 0 0
\(779\) 5.65685 0.202678
\(780\) 0 0
\(781\) 19.3137 0.691099
\(782\) 0 0
\(783\) 20.2843 36.2843i 0.724901 1.29669i
\(784\) 0 0
\(785\) 3.65685i 0.130519i
\(786\) 0 0
\(787\) 9.55635i 0.340647i −0.985388 0.170324i \(-0.945519\pi\)
0.985388 0.170324i \(-0.0544813\pi\)
\(788\) 0 0
\(789\) 13.4853 + 2.31371i 0.480089 + 0.0823702i
\(790\) 0 0
\(791\) 5.85786 0.208282
\(792\) 0 0
\(793\) 11.3137 0.401762
\(794\) 0 0
\(795\) −13.0711 2.24264i −0.463583 0.0795383i
\(796\) 0 0
\(797\) 2.97056i 0.105223i −0.998615 0.0526114i \(-0.983246\pi\)
0.998615 0.0526114i \(-0.0167545\pi\)
\(798\) 0 0
\(799\) 8.20101i 0.290131i
\(800\) 0 0
\(801\) 15.3137 43.3137i 0.541083 1.53041i
\(802\) 0 0
\(803\) −12.2843 −0.433503
\(804\) 0 0
\(805\) −2.68629 −0.0946793
\(806\) 0 0
\(807\) 5.27208 30.7279i 0.185586 1.08167i
\(808\) 0 0
\(809\) 18.6274i 0.654905i −0.944868 0.327453i \(-0.893810\pi\)
0.944868 0.327453i \(-0.106190\pi\)
\(810\) 0 0
\(811\) 2.62742i 0.0922611i −0.998935 0.0461305i \(-0.985311\pi\)
0.998935 0.0461305i \(-0.0146890\pi\)
\(812\) 0 0
\(813\) −4.00000 + 23.3137i −0.140286 + 0.817647i
\(814\) 0 0
\(815\) −1.75736 −0.0615576
\(816\) 0 0
\(817\) −33.6569 −1.17750
\(818\) 0 0
\(819\) −1.17157 + 3.31371i −0.0409381 + 0.115790i
\(820\) 0 0
\(821\) 16.6274i 0.580301i 0.956981 + 0.290150i \(0.0937053\pi\)
−0.956981 + 0.290150i \(0.906295\pi\)
\(822\) 0 0
\(823\) 35.8995i 1.25138i −0.780073 0.625689i \(-0.784818\pi\)
0.780073 0.625689i \(-0.215182\pi\)
\(824\) 0 0
\(825\) −4.82843 0.828427i −0.168104 0.0288421i
\(826\) 0 0
\(827\) −27.4142 −0.953286 −0.476643 0.879097i \(-0.658146\pi\)
−0.476643 + 0.879097i \(0.658146\pi\)
\(828\) 0 0
\(829\) 20.9706 0.728338 0.364169 0.931333i \(-0.381353\pi\)
0.364169 + 0.931333i \(0.381353\pi\)
\(830\) 0 0
\(831\) −0.585786 0.100505i −0.0203207 0.00348648i
\(832\) 0 0
\(833\) 24.3431i 0.843440i
\(834\) 0 0
\(835\) 6.72792i 0.232829i
\(836\) 0 0
\(837\) 14.3431 25.6569i 0.495772 0.886831i
\(838\) 0 0
\(839\) 49.9411 1.72416 0.862080 0.506773i \(-0.169162\pi\)
0.862080 + 0.506773i \(0.169162\pi\)
\(840\) 0 0
\(841\) −35.0000 −1.20690
\(842\) 0 0
\(843\) −2.72792 + 15.8995i −0.0939546 + 0.547608i
\(844\) 0 0
\(845\) 9.00000i 0.309609i
\(846\) 0 0
\(847\) 1.75736i 0.0603836i
\(848\) 0 0
\(849\) −5.14214 + 29.9706i −0.176478 + 1.02859i
\(850\) 0 0
\(851\) 53.4558 1.83244
\(852\) 0 0
\(853\) −19.9411 −0.682771 −0.341386 0.939923i \(-0.610896\pi\)
−0.341386 + 0.939923i \(0.610896\pi\)
\(854\) 0 0
\(855\) −8.00000 2.82843i −0.273594 0.0967302i
\(856\) 0 0
\(857\) 10.0000i 0.341593i 0.985306 + 0.170797i \(0.0546341\pi\)
−0.985306 + 0.170797i \(0.945366\pi\)
\(858\) 0 0
\(859\) 24.4853i 0.835427i −0.908579 0.417714i \(-0.862832\pi\)
0.908579 0.417714i \(-0.137168\pi\)
\(860\) 0 0
\(861\) 2.00000 + 0.343146i 0.0681598 + 0.0116944i
\(862\) 0 0
\(863\) 13.5563 0.461463 0.230732 0.973017i \(-0.425888\pi\)
0.230732 + 0.973017i \(0.425888\pi\)
\(864\) 0 0
\(865\) 2.00000 0.0680020
\(866\) 0 0
\(867\) −6.19239 1.06245i −0.210305 0.0360826i
\(868\) 0 0
\(869\) 35.3137i 1.19794i
\(870\) 0 0
\(871\) 26.1421i 0.885792i
\(872\) 0 0
\(873\) −42.3431 14.9706i −1.43310 0.506677i
\(874\) 0 0
\(875\) −0.585786 −0.0198032
\(876\) 0 0
\(877\) −12.3431 −0.416798 −0.208399 0.978044i \(-0.566825\pi\)
−0.208399 + 0.978044i \(0.566825\pi\)
\(878\) 0 0
\(879\) −6.44365 + 37.5563i −0.217339 + 1.26674i
\(880\) 0 0
\(881\) 16.6274i 0.560192i −0.959972 0.280096i \(-0.909634\pi\)
0.959972 0.280096i \(-0.0903663\pi\)
\(882\) 0 0
\(883\) 26.7279i 0.899466i 0.893163 + 0.449733i \(0.148481\pi\)
−0.893163 + 0.449733i \(0.851519\pi\)
\(884\) 0 0
\(885\) 2.82843 16.4853i 0.0950765 0.554147i
\(886\) 0 0
\(887\) 7.89949 0.265239 0.132620 0.991167i \(-0.457661\pi\)
0.132620 + 0.991167i \(0.457661\pi\)
\(888\) 0 0
\(889\) 1.71573 0.0575437
\(890\) 0 0
\(891\) −19.7990 16.0000i −0.663291 0.536020i
\(892\) 0 0
\(893\) 6.34315i 0.212265i
\(894\) 0 0
\(895\) 6.34315i 0.212028i
\(896\) 0 0
\(897\) −15.6569 2.68629i −0.522767 0.0896927i
\(898\) 0 0
\(899\) −45.2548 −1.50933
\(900\) 0 0
\(901\) 28.0000 0.932815
\(902\) 0 0
\(903\) −11.8995 2.04163i −0.395990 0.0679412i
\(904\) 0 0
\(905\) 13.3137i 0.442563i
\(906\) 0 0
\(907\) 13.0711i 0.434018i −0.976170 0.217009i \(-0.930370\pi\)
0.976170 0.217009i \(-0.0696300\pi\)
\(908\) 0 0
\(909\) 15.3137 43.3137i 0.507924 1.43663i
\(910\) 0 0
\(911\) 51.1127 1.69344 0.846720 0.532039i \(-0.178574\pi\)
0.846720 + 0.532039i \(0.178574\pi\)
\(912\) 0 0
\(913\) −25.6569 −0.849118
\(914\) 0 0
\(915\) −1.65685 + 9.65685i −0.0547739 + 0.319246i
\(916\) 0 0
\(917\) 3.02944i 0.100041i
\(918\) 0 0
\(919\) 27.5147i 0.907627i 0.891097 + 0.453813i \(0.149937\pi\)
−0.891097 + 0.453813i \(0.850063\pi\)
\(920\) 0 0
\(921\) −3.48528 + 20.3137i −0.114844 + 0.669359i
\(922\) 0 0
\(923\) 13.6569 0.449521
\(924\) 0 0
\(925\) 11.6569 0.383275
\(926\) 0 0
\(927\) 6.24264 17.6569i 0.205035 0.579927i
\(928\) 0 0
\(929\) 46.0000i 1.50921i 0.656179 + 0.754606i \(0.272172\pi\)
−0.656179 + 0.754606i \(0.727828\pi\)
\(930\) 0 0
\(931\) 18.8284i 0.617077i
\(932\) 0 0
\(933\) 48.6274 + 8.34315i 1.59199 + 0.273142i
\(934\) 0 0
\(935\) 10.3431 0.338257
\(936\) 0 0
\(937\) −41.5980 −1.35895 −0.679473 0.733700i \(-0.737792\pi\)
−0.679473 + 0.733700i \(0.737792\pi\)
\(938\) 0 0
\(939\) 9.07107 + 1.55635i 0.296023 + 0.0507895i
\(940\) 0 0
\(941\) 12.0000i 0.391189i −0.980685 0.195594i \(-0.937336\pi\)
0.980685 0.195594i \(-0.0626636\pi\)
\(942\) 0 0
\(943\) 9.17157i 0.298668i
\(944\) 0 0
\(945\) −2.65685 1.48528i −0.0864275 0.0483162i
\(946\) 0 0
\(947\) −19.2132 −0.624345 −0.312173 0.950025i \(-0.601057\pi\)
−0.312173 + 0.950025i \(0.601057\pi\)
\(948\) 0 0
\(949\) −8.68629 −0.281969
\(950\) 0 0
\(951\) 3.41421 19.8995i 0.110713 0.645285i
\(952\) 0 0
\(953\) 2.68629i 0.0870175i −0.999053 0.0435088i \(-0.986146\pi\)
0.999053 0.0435088i \(-0.0138536\pi\)
\(954\) 0 0
\(955\) 10.1421i 0.328192i
\(956\) 0 0
\(957\) −6.62742 + 38.6274i −0.214234 + 1.24865i
\(958\) 0 0
\(959\) 3.11270 0.100514
\(960\) 0 0
\(961\) −1.00000 −0.0322581
\(962\) 0 0
\(963\) 35.5980 + 12.5858i 1.14713 + 0.405571i
\(964\) 0 0
\(965\) 3.65685i 0.117718i
\(966\) 0 0
\(967\) 8.58579i 0.276100i −0.990425 0.138050i \(-0.955916\pi\)
0.990425 0.138050i \(-0.0440835\pi\)
\(968\) 0 0
\(969\) 17.6569 + 3.02944i 0.567220 + 0.0973195i
\(970\) 0 0
\(971\) −15.5147 −0.497891 −0.248946 0.968517i \(-0.580084\pi\)
−0.248946 + 0.968517i \(0.580084\pi\)
\(972\) 0 0
\(973\) 11.0294 0.353588
\(974\) 0 0
\(975\) −3.41421 0.585786i −0.109342 0.0187602i
\(976\) 0 0
\(977\) 54.9706i 1.75866i −0.476209 0.879332i \(-0.657989\pi\)
0.476209 0.879332i \(-0.342011\pi\)
\(978\) 0 0
\(979\) 43.3137i 1.38431i
\(980\) 0 0
\(981\) 17.9411 + 6.34315i 0.572816 + 0.202521i
\(982\) 0 0
\(983\) 30.9289 0.986480 0.493240 0.869893i \(-0.335812\pi\)
0.493240 + 0.869893i \(0.335812\pi\)
\(984\) 0 0
\(985\) −10.9706 −0.349551
\(986\) 0 0
\(987\) 0.384776 2.24264i 0.0122476 0.0713840i
\(988\) 0 0
\(989\) 54.5685i 1.73518i
\(990\) 0 0
\(991\) 28.2843i 0.898479i −0.893411 0.449240i \(-0.851695\pi\)
0.893411 0.449240i \(-0.148305\pi\)
\(992\) 0 0
\(993\) 9.17157 53.4558i 0.291051 1.69637i
\(994\) 0 0
\(995\) 17.1716 0.544375
\(996\) 0 0
\(997\) −18.0000 −0.570066 −0.285033 0.958518i \(-0.592005\pi\)
−0.285033 + 0.958518i \(0.592005\pi\)
\(998\) 0 0
\(999\) 52.8701 + 29.5563i 1.67273 + 0.935122i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 480.2.h.b.191.1 4
3.2 odd 2 480.2.h.d.191.3 yes 4
4.3 odd 2 480.2.h.d.191.4 yes 4
5.2 odd 4 2400.2.o.c.2399.4 4
5.3 odd 4 2400.2.o.i.2399.1 4
5.4 even 2 2400.2.h.e.1151.4 4
8.3 odd 2 960.2.h.b.191.1 4
8.5 even 2 960.2.h.f.191.4 4
12.11 even 2 inner 480.2.h.b.191.2 yes 4
15.2 even 4 2400.2.o.b.2399.3 4
15.8 even 4 2400.2.o.j.2399.2 4
15.14 odd 2 2400.2.h.b.1151.2 4
20.3 even 4 2400.2.o.b.2399.4 4
20.7 even 4 2400.2.o.j.2399.1 4
20.19 odd 2 2400.2.h.b.1151.1 4
24.5 odd 2 960.2.h.b.191.2 4
24.11 even 2 960.2.h.f.191.3 4
60.23 odd 4 2400.2.o.c.2399.3 4
60.47 odd 4 2400.2.o.i.2399.2 4
60.59 even 2 2400.2.h.e.1151.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
480.2.h.b.191.1 4 1.1 even 1 trivial
480.2.h.b.191.2 yes 4 12.11 even 2 inner
480.2.h.d.191.3 yes 4 3.2 odd 2
480.2.h.d.191.4 yes 4 4.3 odd 2
960.2.h.b.191.1 4 8.3 odd 2
960.2.h.b.191.2 4 24.5 odd 2
960.2.h.f.191.3 4 24.11 even 2
960.2.h.f.191.4 4 8.5 even 2
2400.2.h.b.1151.1 4 20.19 odd 2
2400.2.h.b.1151.2 4 15.14 odd 2
2400.2.h.e.1151.3 4 60.59 even 2
2400.2.h.e.1151.4 4 5.4 even 2
2400.2.o.b.2399.3 4 15.2 even 4
2400.2.o.b.2399.4 4 20.3 even 4
2400.2.o.c.2399.3 4 60.23 odd 4
2400.2.o.c.2399.4 4 5.2 odd 4
2400.2.o.i.2399.1 4 5.3 odd 4
2400.2.o.i.2399.2 4 60.47 odd 4
2400.2.o.j.2399.1 4 20.7 even 4
2400.2.o.j.2399.2 4 15.8 even 4