Properties

Label 48.28.a.l
Level $48$
Weight $28$
Character orbit 48.a
Self dual yes
Analytic conductor $221.691$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [48,28,Mod(1,48)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(48, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 28, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("48.1");
 
S:= CuspForms(chi, 28);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 48 = 2^{4} \cdot 3 \)
Weight: \( k \) \(=\) \( 28 \)
Character orbit: \([\chi]\) \(=\) 48.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(221.690675922\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 360714331909x^{2} - 43287560841177118x + 8819337660421091919513 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{42}\cdot 3^{8}\cdot 5\cdot 7 \)
Twist minimal: no (minimal twist has level 24)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 1594323 q^{3} + ( - \beta_1 + 1237262606) q^{5} + (\beta_{2} + 10 \beta_1 + 22062432888) q^{7} + 2541865828329 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 1594323 q^{3} + ( - \beta_1 + 1237262606) q^{5} + (\beta_{2} + 10 \beta_1 + 22062432888) q^{7} + 2541865828329 q^{9} + (\beta_{3} - 133 \beta_{2} + \cdots + 27797408429212) q^{11}+ \cdots + (2541865828329 \beta_{3} + \cdots + 70\!\cdots\!48) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6377292 q^{3} + 4949050424 q^{5} + 88249731552 q^{7} + 10167463313316 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 6377292 q^{3} + 4949050424 q^{5} + 88249731552 q^{7} + 10167463313316 q^{9} + 111189633716848 q^{11} - 7339657642664 q^{13} - 78\!\cdots\!52 q^{15}+ \cdots + 28\!\cdots\!92 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} - 360714331909x^{2} - 43287560841177118x + 8819337660421091919513 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 45950336 \nu^{3} - 24972080483328 \nu^{2} + \cdots + 30\!\cdots\!28 ) / 784193203840095 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 39230848 \nu^{3} + 75313256469504 \nu^{2} + \cdots - 14\!\cdots\!80 ) / 156838640768019 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 3643222147456 \nu^{3} + \cdots - 70\!\cdots\!92 ) / 784193203840095 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} - 3549\beta_{2} - 64136\beta _1 + 1486356480 ) / 2972712960 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 147449\beta_{3} - 40817973\beta_{2} - 11516408584\beta _1 + 53615008466478563328 ) / 297271296 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 1036344307171 \beta_{3} + \cdots + 96\!\cdots\!40 ) / 2972712960 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−263517.
108627.
637889.
−482996.
0 −1.59432e6 0 −2.94911e9 0 2.52860e11 0 2.54187e12 0
1.2 0 −1.59432e6 0 −8.07135e8 0 −1.51306e11 0 2.54187e12 0
1.3 0 −1.59432e6 0 3.92930e9 0 −4.56279e11 0 2.54187e12 0
1.4 0 −1.59432e6 0 4.77599e9 0 4.42974e11 0 2.54187e12 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 48.28.a.l 4
4.b odd 2 1 24.28.a.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
24.28.a.d 4 4.b odd 2 1
48.28.a.l 4 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} - 4949050424 T_{5}^{3} + \cdots + 44\!\cdots\!00 \) acting on \(S_{28}^{\mathrm{new}}(\Gamma_0(48))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T + 1594323)^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + \cdots + 44\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( T^{4} + \cdots + 77\!\cdots\!80 \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 41\!\cdots\!48 \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 97\!\cdots\!48 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 28\!\cdots\!44 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 16\!\cdots\!32 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 48\!\cdots\!60 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots - 99\!\cdots\!84 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 10\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots - 30\!\cdots\!00 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 26\!\cdots\!92 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots - 42\!\cdots\!76 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 88\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 58\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots - 27\!\cdots\!52 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 11\!\cdots\!92 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 40\!\cdots\!52 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 59\!\cdots\!48 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots - 70\!\cdots\!64 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots - 66\!\cdots\!44 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 61\!\cdots\!52 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 31\!\cdots\!60 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 93\!\cdots\!24 \) Copy content Toggle raw display
show more
show less