Properties

Label 4760.2.a.n
Level $4760$
Weight $2$
Character orbit 4760.a
Self dual yes
Analytic conductor $38.009$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4760,2,Mod(1,4760)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4760, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4760.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4760 = 2^{3} \cdot 5 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4760.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,3,0,-5,0,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.0087913621\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.1891397.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 6x^{3} + 8x^{2} + x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 1) q^{3} - q^{5} - q^{7} + (\beta_{2} - \beta_1 + 1) q^{9} + (\beta_{4} + \beta_{3} + \beta_1) q^{11} + (\beta_{2} + 2) q^{13} + (\beta_1 - 1) q^{15} + q^{17} + ( - \beta_{4} - \beta_{3} + \beta_1) q^{19}+ \cdots + ( - 3 \beta_{4} - 2 \beta_{3} + \cdots - 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 3 q^{3} - 5 q^{5} - 5 q^{7} + 2 q^{9} + 4 q^{11} + 9 q^{13} - 3 q^{15} + 5 q^{17} - 3 q^{21} + 10 q^{23} + 5 q^{25} + 9 q^{27} - 6 q^{29} + 4 q^{31} - 10 q^{33} + 5 q^{35} + 8 q^{37} + 7 q^{39} - 10 q^{41}+ \cdots - 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - 2x^{4} - 6x^{3} + 8x^{2} + x - 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{4} - \nu^{3} - 7\nu^{2} + \nu + 3 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} - 2\nu^{3} - 6\nu^{2} + 8\nu + 1 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{4} + \beta_{3} + \beta_{2} + 8\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -\beta_{4} + 2\beta_{3} + 8\beta_{2} + 14\beta _1 + 19 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3.08153
1.16472
0.338347
−0.372213
−2.21238
0 −2.08153 0 −1.00000 0 −1.00000 0 1.33275 0
1.2 0 −0.164718 0 −1.00000 0 −1.00000 0 −2.97287 0
1.3 0 0.661653 0 −1.00000 0 −1.00000 0 −2.56222 0
1.4 0 1.37221 0 −1.00000 0 −1.00000 0 −1.11703 0
1.5 0 3.21238 0 −1.00000 0 −1.00000 0 7.31937 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)
\(7\) \( +1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4760.2.a.n 5
4.b odd 2 1 9520.2.a.bp 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4760.2.a.n 5 1.a even 1 1 trivial
9520.2.a.bp 5 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4760))\):

\( T_{3}^{5} - 3T_{3}^{4} - 4T_{3}^{3} + 12T_{3}^{2} - 4T_{3} - 1 \) Copy content Toggle raw display
\( T_{13}^{5} - 9T_{13}^{4} + 6T_{13}^{3} + 61T_{13}^{2} + 60T_{13} + 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} \) Copy content Toggle raw display
$3$ \( T^{5} - 3 T^{4} + \cdots - 1 \) Copy content Toggle raw display
$5$ \( (T + 1)^{5} \) Copy content Toggle raw display
$7$ \( (T + 1)^{5} \) Copy content Toggle raw display
$11$ \( T^{5} - 4 T^{4} + \cdots + 125 \) Copy content Toggle raw display
$13$ \( T^{5} - 9 T^{4} + \cdots + 16 \) Copy content Toggle raw display
$17$ \( (T - 1)^{5} \) Copy content Toggle raw display
$19$ \( T^{5} - 35 T^{3} + \cdots - 111 \) Copy content Toggle raw display
$23$ \( T^{5} - 10 T^{4} + \cdots + 9 \) Copy content Toggle raw display
$29$ \( T^{5} + 6 T^{4} + \cdots + 1401 \) Copy content Toggle raw display
$31$ \( T^{5} - 4 T^{4} + \cdots - 315 \) Copy content Toggle raw display
$37$ \( T^{5} - 8 T^{4} + \cdots - 1332 \) Copy content Toggle raw display
$41$ \( T^{5} + 10 T^{4} + \cdots + 121 \) Copy content Toggle raw display
$43$ \( T^{5} + 14 T^{4} + \cdots - 8673 \) Copy content Toggle raw display
$47$ \( T^{5} - 12 T^{4} + \cdots + 9 \) Copy content Toggle raw display
$53$ \( T^{5} + 8 T^{4} + \cdots - 711 \) Copy content Toggle raw display
$59$ \( T^{5} + 4 T^{4} + \cdots + 78651 \) Copy content Toggle raw display
$61$ \( T^{5} - 25 T^{4} + \cdots - 2932 \) Copy content Toggle raw display
$67$ \( T^{5} - 8 T^{4} + \cdots - 92369 \) Copy content Toggle raw display
$71$ \( T^{5} - 27 T^{4} + \cdots + 28 \) Copy content Toggle raw display
$73$ \( T^{5} - 3 T^{4} + \cdots + 14660 \) Copy content Toggle raw display
$79$ \( T^{5} - 18 T^{4} + \cdots + 23604 \) Copy content Toggle raw display
$83$ \( T^{5} - 26 T^{4} + \cdots + 1764 \) Copy content Toggle raw display
$89$ \( T^{5} + 5 T^{4} + \cdots + 4672 \) Copy content Toggle raw display
$97$ \( T^{5} - 18 T^{4} + \cdots - 28 \) Copy content Toggle raw display
show more
show less