Properties

Label 476.3.x.a.321.12
Level $476$
Weight $3$
Character 476.321
Analytic conductor $12.970$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Error: no document with id 208683215 found in table mf_hecke_traces.

Error: table True does not exist

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [476,3,Mod(321,476)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("476.321"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(476, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 4, 3])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 476 = 2^{2} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 476.x (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.9700605836\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(24\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 321.12
Character \(\chi\) \(=\) 476.321
Dual form 476.3.x.a.433.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0501663 + 0.0207796i) q^{3} +(0.962011 + 2.32250i) q^{5} +(4.78783 + 5.10654i) q^{7} +(-6.36188 + 6.36188i) q^{9} +(-1.18102 + 2.85123i) q^{11} -8.74049 q^{13} +(-0.0965212 - 0.0965212i) q^{15} +(-13.3103 - 10.5752i) q^{17} +(-7.21117 + 7.21117i) q^{19} +(-0.346299 - 0.156687i) q^{21} +(-0.658489 + 1.58973i) q^{23} +(13.2091 - 13.2091i) q^{25} +(0.373971 - 0.902846i) q^{27} +(-7.14167 + 2.95818i) q^{29} +(-37.2629 + 15.4348i) q^{31} -0.167577i q^{33} +(-7.25399 + 16.0323i) q^{35} +(13.4899 + 32.5675i) q^{37} +(0.438478 - 0.181624i) q^{39} +(-12.9801 + 31.3368i) q^{41} +(1.34176 - 1.34176i) q^{43} +(-20.8957 - 8.65526i) q^{45} -25.8144 q^{47} +(-3.15346 + 48.8984i) q^{49} +(0.887479 + 0.253938i) q^{51} +(36.4773 + 36.4773i) q^{53} -7.75813 q^{55} +(0.211913 - 0.511603i) q^{57} +(-52.4817 - 52.4817i) q^{59} +(-15.2031 + 36.7034i) q^{61} +(-62.9467 - 2.02761i) q^{63} +(-8.40845 - 20.2998i) q^{65} -22.8206 q^{67} -0.0934342i q^{69} +(34.7898 + 83.9900i) q^{71} +(29.5591 + 71.3619i) q^{73} +(-0.388174 + 0.937134i) q^{75} +(-20.2144 + 7.62027i) q^{77} +(3.74921 - 9.05140i) q^{79} -80.9204i q^{81} +(91.8612 - 91.8612i) q^{83} +(11.7563 - 41.0867i) q^{85} +(0.296802 - 0.296802i) q^{87} +62.5431 q^{89} +(-41.8479 - 44.6336i) q^{91} +(1.54861 - 1.54861i) q^{93} +(-23.6852 - 9.81072i) q^{95} +(32.9612 + 79.5755i) q^{97} +(-10.6257 - 25.6526i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q - 40 q^{11} - 16 q^{15} + 72 q^{23} + 72 q^{25} + 32 q^{35} - 256 q^{37} - 88 q^{39} - 32 q^{43} - 20 q^{49} - 120 q^{51} - 80 q^{53} + 492 q^{63} - 104 q^{65} - 144 q^{67} - 64 q^{71} + 84 q^{77}+ \cdots + 560 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/476\mathbb{Z}\right)^\times\).

\(n\) \(239\) \(309\) \(409\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{8}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.0501663 + 0.0207796i −0.0167221 + 0.00692653i −0.391029 0.920378i \(-0.627881\pi\)
0.374307 + 0.927305i \(0.377881\pi\)
\(4\) 0 0
\(5\) 0.962011 + 2.32250i 0.192402 + 0.464500i 0.990412 0.138144i \(-0.0441138\pi\)
−0.798010 + 0.602644i \(0.794114\pi\)
\(6\) 0 0
\(7\) 4.78783 + 5.10654i 0.683975 + 0.729505i
\(8\) 0 0
\(9\) −6.36188 + 6.36188i −0.706875 + 0.706875i
\(10\) 0 0
\(11\) −1.18102 + 2.85123i −0.107365 + 0.259203i −0.968427 0.249298i \(-0.919800\pi\)
0.861062 + 0.508501i \(0.169800\pi\)
\(12\) 0 0
\(13\) −8.74049 −0.672345 −0.336173 0.941800i \(-0.609133\pi\)
−0.336173 + 0.941800i \(0.609133\pi\)
\(14\) 0 0
\(15\) −0.0965212 0.0965212i −0.00643474 0.00643474i
\(16\) 0 0
\(17\) −13.3103 10.5752i −0.782960 0.622073i
\(18\) 0 0
\(19\) −7.21117 + 7.21117i −0.379535 + 0.379535i −0.870934 0.491399i \(-0.836486\pi\)
0.491399 + 0.870934i \(0.336486\pi\)
\(20\) 0 0
\(21\) −0.346299 0.156687i −0.0164904 0.00746130i
\(22\) 0 0
\(23\) −0.658489 + 1.58973i −0.0286300 + 0.0691188i −0.937548 0.347856i \(-0.886910\pi\)
0.908918 + 0.416975i \(0.136910\pi\)
\(24\) 0 0
\(25\) 13.2091 13.2091i 0.528365 0.528365i
\(26\) 0 0
\(27\) 0.373971 0.902846i 0.0138508 0.0334388i
\(28\) 0 0
\(29\) −7.14167 + 2.95818i −0.246264 + 0.102006i −0.502402 0.864634i \(-0.667550\pi\)
0.256137 + 0.966640i \(0.417550\pi\)
\(30\) 0 0
\(31\) −37.2629 + 15.4348i −1.20203 + 0.497896i −0.891654 0.452718i \(-0.850454\pi\)
−0.310375 + 0.950614i \(0.600454\pi\)
\(32\) 0 0
\(33\) 0.167577i 0.00507808i
\(34\) 0 0
\(35\) −7.25399 + 16.0323i −0.207257 + 0.458065i
\(36\) 0 0
\(37\) 13.4899 + 32.5675i 0.364592 + 0.880202i 0.994616 + 0.103627i \(0.0330447\pi\)
−0.630025 + 0.776575i \(0.716955\pi\)
\(38\) 0 0
\(39\) 0.438478 0.181624i 0.0112430 0.00465702i
\(40\) 0 0
\(41\) −12.9801 + 31.3368i −0.316589 + 0.764313i 0.682842 + 0.730567i \(0.260744\pi\)
−0.999430 + 0.0337467i \(0.989256\pi\)
\(42\) 0 0
\(43\) 1.34176 1.34176i 0.0312037 0.0312037i −0.691333 0.722536i \(-0.742976\pi\)
0.722536 + 0.691333i \(0.242976\pi\)
\(44\) 0 0
\(45\) −20.8957 8.65526i −0.464348 0.192339i
\(46\) 0 0
\(47\) −25.8144 −0.549243 −0.274622 0.961552i \(-0.588553\pi\)
−0.274622 + 0.961552i \(0.588553\pi\)
\(48\) 0 0
\(49\) −3.15346 + 48.8984i −0.0643563 + 0.997927i
\(50\) 0 0
\(51\) 0.887479 + 0.253938i 0.0174015 + 0.00497918i
\(52\) 0 0
\(53\) 36.4773 + 36.4773i 0.688251 + 0.688251i 0.961845 0.273594i \(-0.0882125\pi\)
−0.273594 + 0.961845i \(0.588212\pi\)
\(54\) 0 0
\(55\) −7.75813 −0.141057
\(56\) 0 0
\(57\) 0.211913 0.511603i 0.00371777 0.00897550i
\(58\) 0 0
\(59\) −52.4817 52.4817i −0.889520 0.889520i 0.104957 0.994477i \(-0.466529\pi\)
−0.994477 + 0.104957i \(0.966529\pi\)
\(60\) 0 0
\(61\) −15.2031 + 36.7034i −0.249231 + 0.601696i −0.998139 0.0609776i \(-0.980578\pi\)
0.748909 + 0.662673i \(0.230578\pi\)
\(62\) 0 0
\(63\) −62.9467 2.02761i −0.999154 0.0321843i
\(64\) 0 0
\(65\) −8.40845 20.2998i −0.129361 0.312304i
\(66\) 0 0
\(67\) −22.8206 −0.340606 −0.170303 0.985392i \(-0.554475\pi\)
−0.170303 + 0.985392i \(0.554475\pi\)
\(68\) 0 0
\(69\) 0.0934342i 0.00135412i
\(70\) 0 0
\(71\) 34.7898 + 83.9900i 0.489997 + 1.18296i 0.954721 + 0.297502i \(0.0961536\pi\)
−0.464724 + 0.885456i \(0.653846\pi\)
\(72\) 0 0
\(73\) 29.5591 + 71.3619i 0.404919 + 0.977560i 0.986454 + 0.164039i \(0.0524522\pi\)
−0.581535 + 0.813521i \(0.697548\pi\)
\(74\) 0 0
\(75\) −0.388174 + 0.937134i −0.00517565 + 0.0124951i
\(76\) 0 0
\(77\) −20.2144 + 7.62027i −0.262525 + 0.0989646i
\(78\) 0 0
\(79\) 3.74921 9.05140i 0.0474584 0.114575i −0.898373 0.439234i \(-0.855250\pi\)
0.945831 + 0.324660i \(0.105250\pi\)
\(80\) 0 0
\(81\) 80.9204i 0.999017i
\(82\) 0 0
\(83\) 91.8612 91.8612i 1.10676 1.10676i 0.113188 0.993574i \(-0.463894\pi\)
0.993574 0.113188i \(-0.0361062\pi\)
\(84\) 0 0
\(85\) 11.7563 41.0867i 0.138310 0.483373i
\(86\) 0 0
\(87\) 0.296802 0.296802i 0.00341151 0.00341151i
\(88\) 0 0
\(89\) 62.5431 0.702732 0.351366 0.936238i \(-0.385717\pi\)
0.351366 + 0.936238i \(0.385717\pi\)
\(90\) 0 0
\(91\) −41.8479 44.6336i −0.459867 0.490480i
\(92\) 0 0
\(93\) 1.54861 1.54861i 0.0166518 0.0166518i
\(94\) 0 0
\(95\) −23.6852 9.81072i −0.249318 0.103271i
\(96\) 0 0
\(97\) 32.9612 + 79.5755i 0.339807 + 0.820366i 0.997734 + 0.0672843i \(0.0214334\pi\)
−0.657927 + 0.753082i \(0.728567\pi\)
\(98\) 0 0
\(99\) −10.6257 25.6526i −0.107330 0.259118i
\(100\) 0 0
\(101\) 50.4637i 0.499641i 0.968292 + 0.249820i \(0.0803715\pi\)
−0.968292 + 0.249820i \(0.919628\pi\)
\(102\) 0 0
\(103\) 32.4418i 0.314969i −0.987521 0.157485i \(-0.949662\pi\)
0.987521 0.157485i \(-0.0503385\pi\)
\(104\) 0 0
\(105\) 0.0307625 0.955015i 0.000292976 0.00909538i
\(106\) 0 0
\(107\) −54.7827 + 22.6918i −0.511988 + 0.212072i −0.623694 0.781669i \(-0.714369\pi\)
0.111705 + 0.993741i \(0.464369\pi\)
\(108\) 0 0
\(109\) −10.8539 4.49584i −0.0995773 0.0412463i 0.332339 0.943160i \(-0.392162\pi\)
−0.431916 + 0.901914i \(0.642162\pi\)
\(110\) 0 0
\(111\) −1.35348 1.35348i −0.0121935 0.0121935i
\(112\) 0 0
\(113\) 34.5323 83.3684i 0.305596 0.737773i −0.694242 0.719742i \(-0.744260\pi\)
0.999837 0.0180313i \(-0.00573984\pi\)
\(114\) 0 0
\(115\) −4.32563 −0.0376142
\(116\) 0 0
\(117\) 55.6059 55.6059i 0.475264 0.475264i
\(118\) 0 0
\(119\) −9.72461 118.602i −0.0817194 0.996655i
\(120\) 0 0
\(121\) 78.8252 + 78.8252i 0.651448 + 0.651448i
\(122\) 0 0
\(123\) 1.84178i 0.0149738i
\(124\) 0 0
\(125\) 101.448 + 42.0211i 0.811584 + 0.336169i
\(126\) 0 0
\(127\) −19.4440 + 19.4440i −0.153102 + 0.153102i −0.779502 0.626400i \(-0.784528\pi\)
0.626400 + 0.779502i \(0.284528\pi\)
\(128\) 0 0
\(129\) −0.0394299 + 0.0951923i −0.000305658 + 0.000737925i
\(130\) 0 0
\(131\) −0.136302 0.329063i −0.00104048 0.00251193i 0.923358 0.383939i \(-0.125433\pi\)
−0.924399 + 0.381427i \(0.875433\pi\)
\(132\) 0 0
\(133\) −71.3499 2.29829i −0.536466 0.0172804i
\(134\) 0 0
\(135\) 2.45662 0.0181972
\(136\) 0 0
\(137\) −37.6635 −0.274916 −0.137458 0.990508i \(-0.543893\pi\)
−0.137458 + 0.990508i \(0.543893\pi\)
\(138\) 0 0
\(139\) 165.030 68.3578i 1.18727 0.491783i 0.300404 0.953812i \(-0.402878\pi\)
0.886865 + 0.462029i \(0.152878\pi\)
\(140\) 0 0
\(141\) 1.29502 0.536413i 0.00918451 0.00380435i
\(142\) 0 0
\(143\) 10.3227 24.9211i 0.0721865 0.174274i
\(144\) 0 0
\(145\) −13.7407 13.7407i −0.0947636 0.0947636i
\(146\) 0 0
\(147\) −0.857891 2.51858i −0.00583600 0.0171332i
\(148\) 0 0
\(149\) 108.097i 0.725485i −0.931889 0.362743i \(-0.881840\pi\)
0.931889 0.362743i \(-0.118160\pi\)
\(150\) 0 0
\(151\) 25.0577 + 25.0577i 0.165945 + 0.165945i 0.785194 0.619250i \(-0.212563\pi\)
−0.619250 + 0.785194i \(0.712563\pi\)
\(152\) 0 0
\(153\) 151.957 17.4002i 0.993182 0.113727i
\(154\) 0 0
\(155\) −71.6946 71.6946i −0.462546 0.462546i
\(156\) 0 0
\(157\) 34.9017 0.222304 0.111152 0.993803i \(-0.464546\pi\)
0.111152 + 0.993803i \(0.464546\pi\)
\(158\) 0 0
\(159\) −2.58792 1.07195i −0.0162762 0.00674182i
\(160\) 0 0
\(161\) −11.2708 + 4.24877i −0.0700048 + 0.0263899i
\(162\) 0 0
\(163\) −156.384 64.7764i −0.959412 0.397402i −0.152652 0.988280i \(-0.548781\pi\)
−0.806761 + 0.590879i \(0.798781\pi\)
\(164\) 0 0
\(165\) 0.389197 0.161211i 0.00235877 0.000977034i
\(166\) 0 0
\(167\) 154.053 63.8110i 0.922476 0.382102i 0.129657 0.991559i \(-0.458613\pi\)
0.792819 + 0.609457i \(0.208613\pi\)
\(168\) 0 0
\(169\) −92.6038 −0.547952
\(170\) 0 0
\(171\) 91.7532i 0.536568i
\(172\) 0 0
\(173\) 221.779 91.8638i 1.28196 0.531004i 0.365379 0.930859i \(-0.380939\pi\)
0.916579 + 0.399854i \(0.130939\pi\)
\(174\) 0 0
\(175\) 130.696 + 4.20991i 0.746834 + 0.0240567i
\(176\) 0 0
\(177\) 3.72336 + 1.54227i 0.0210359 + 0.00871337i
\(178\) 0 0
\(179\) 4.48799 4.48799i 0.0250725 0.0250725i −0.694459 0.719532i \(-0.744356\pi\)
0.719532 + 0.694459i \(0.244356\pi\)
\(180\) 0 0
\(181\) 264.382 + 109.511i 1.46068 + 0.605032i 0.964711 0.263311i \(-0.0848146\pi\)
0.495964 + 0.868343i \(0.334815\pi\)
\(182\) 0 0
\(183\) 2.15719i 0.0117879i
\(184\) 0 0
\(185\) −62.6605 + 62.6605i −0.338706 + 0.338706i
\(186\) 0 0
\(187\) 45.8721 25.4612i 0.245305 0.136156i
\(188\) 0 0
\(189\) 6.40093 2.41297i 0.0338673 0.0127670i
\(190\) 0 0
\(191\) 75.6760i 0.396209i −0.980181 0.198105i \(-0.936521\pi\)
0.980181 0.198105i \(-0.0634786\pi\)
\(192\) 0 0
\(193\) −17.2852 + 41.7303i −0.0895608 + 0.216219i −0.962313 0.271945i \(-0.912333\pi\)
0.872752 + 0.488164i \(0.162333\pi\)
\(194\) 0 0
\(195\) 0.843642 + 0.843642i 0.00432637 + 0.00432637i
\(196\) 0 0
\(197\) −14.2345 5.89613i −0.0722565 0.0299296i 0.346262 0.938138i \(-0.387451\pi\)
−0.418519 + 0.908208i \(0.637451\pi\)
\(198\) 0 0
\(199\) −42.6353 102.931i −0.214248 0.517240i 0.779820 0.626004i \(-0.215311\pi\)
−0.994068 + 0.108764i \(0.965311\pi\)
\(200\) 0 0
\(201\) 1.14482 0.474202i 0.00569564 0.00235921i
\(202\) 0 0
\(203\) −49.2991 22.3060i −0.242853 0.109882i
\(204\) 0 0
\(205\) −85.2669 −0.415936
\(206\) 0 0
\(207\) −5.92446 14.3029i −0.0286206 0.0690962i
\(208\) 0 0
\(209\) −12.0442 29.0772i −0.0576276 0.139125i
\(210\) 0 0
\(211\) 214.007 + 88.6445i 1.01425 + 0.420116i 0.827003 0.562197i \(-0.190044\pi\)
0.187246 + 0.982313i \(0.440044\pi\)
\(212\) 0 0
\(213\) −3.49055 3.49055i −0.0163876 0.0163876i
\(214\) 0 0
\(215\) 4.40702 + 1.82545i 0.0204978 + 0.00849045i
\(216\) 0 0
\(217\) −257.226 116.385i −1.18538 0.536337i
\(218\) 0 0
\(219\) −2.96574 2.96574i −0.0135422 0.0135422i
\(220\) 0 0
\(221\) 116.339 + 92.4327i 0.526419 + 0.418248i
\(222\) 0 0
\(223\) −7.12076 + 7.12076i −0.0319316 + 0.0319316i −0.722892 0.690961i \(-0.757188\pi\)
0.690961 + 0.722892i \(0.257188\pi\)
\(224\) 0 0
\(225\) 168.070i 0.746976i
\(226\) 0 0
\(227\) −306.416 126.922i −1.34985 0.559127i −0.413601 0.910458i \(-0.635729\pi\)
−0.936251 + 0.351332i \(0.885729\pi\)
\(228\) 0 0
\(229\) 157.377 + 157.377i 0.687235 + 0.687235i 0.961620 0.274385i \(-0.0884743\pi\)
−0.274385 + 0.961620i \(0.588474\pi\)
\(230\) 0 0
\(231\) 0.855737 0.802328i 0.00370449 0.00347328i
\(232\) 0 0
\(233\) 338.071 140.033i 1.45095 0.601002i 0.488522 0.872552i \(-0.337536\pi\)
0.962424 + 0.271550i \(0.0875362\pi\)
\(234\) 0 0
\(235\) −24.8338 59.9540i −0.105676 0.255123i
\(236\) 0 0
\(237\) 0.531983i 0.00224465i
\(238\) 0 0
\(239\) −319.947 −1.33869 −0.669346 0.742951i \(-0.733425\pi\)
−0.669346 + 0.742951i \(0.733425\pi\)
\(240\) 0 0
\(241\) −391.205 + 162.042i −1.62326 + 0.672375i −0.994452 0.105189i \(-0.966455\pi\)
−0.628804 + 0.777564i \(0.716455\pi\)
\(242\) 0 0
\(243\) 5.04723 + 12.1851i 0.0207705 + 0.0501444i
\(244\) 0 0
\(245\) −116.600 + 39.7169i −0.475919 + 0.162110i
\(246\) 0 0
\(247\) 63.0292 63.0292i 0.255179 0.255179i
\(248\) 0 0
\(249\) −2.69950 + 6.51718i −0.0108414 + 0.0261734i
\(250\) 0 0
\(251\) 283.418 1.12916 0.564578 0.825380i \(-0.309039\pi\)
0.564578 + 0.825380i \(0.309039\pi\)
\(252\) 0 0
\(253\) −3.75501 3.75501i −0.0148419 0.0148419i
\(254\) 0 0
\(255\) 0.263993 + 2.30546i 0.00103527 + 0.00904102i
\(256\) 0 0
\(257\) −41.2861 + 41.2861i −0.160646 + 0.160646i −0.782853 0.622207i \(-0.786236\pi\)
0.622207 + 0.782853i \(0.286236\pi\)
\(258\) 0 0
\(259\) −101.720 + 224.814i −0.392740 + 0.868008i
\(260\) 0 0
\(261\) 26.6149 64.2539i 0.101973 0.246184i
\(262\) 0 0
\(263\) −324.025 + 324.025i −1.23204 + 1.23204i −0.268855 + 0.963181i \(0.586645\pi\)
−0.963181 + 0.268855i \(0.913355\pi\)
\(264\) 0 0
\(265\) −49.6270 + 119.810i −0.187272 + 0.452114i
\(266\) 0 0
\(267\) −3.13756 + 1.29962i −0.0117512 + 0.00486749i
\(268\) 0 0
\(269\) −16.1871 + 6.70491i −0.0601751 + 0.0249253i −0.412568 0.910927i \(-0.635368\pi\)
0.352393 + 0.935852i \(0.385368\pi\)
\(270\) 0 0
\(271\) 98.1739i 0.362265i 0.983459 + 0.181133i \(0.0579763\pi\)
−0.983459 + 0.181133i \(0.942024\pi\)
\(272\) 0 0
\(273\) 3.02683 + 1.36952i 0.0110873 + 0.00501657i
\(274\) 0 0
\(275\) 22.0620 + 53.2624i 0.0802256 + 0.193682i
\(276\) 0 0
\(277\) 294.882 122.144i 1.06456 0.440954i 0.219490 0.975615i \(-0.429561\pi\)
0.845067 + 0.534661i \(0.179561\pi\)
\(278\) 0 0
\(279\) 138.868 335.256i 0.497733 1.20163i
\(280\) 0 0
\(281\) 127.841 127.841i 0.454952 0.454952i −0.442042 0.896994i \(-0.645746\pi\)
0.896994 + 0.442042i \(0.145746\pi\)
\(282\) 0 0
\(283\) −428.042 177.301i −1.51252 0.626505i −0.536442 0.843937i \(-0.680232\pi\)
−0.976075 + 0.217432i \(0.930232\pi\)
\(284\) 0 0
\(285\) 1.39206 0.00488443
\(286\) 0 0
\(287\) −222.169 + 83.7517i −0.774110 + 0.291818i
\(288\) 0 0
\(289\) 65.3288 + 281.519i 0.226051 + 0.974115i
\(290\) 0 0
\(291\) −3.30709 3.30709i −0.0113646 0.0113646i
\(292\) 0 0
\(293\) 277.116 0.945789 0.472895 0.881119i \(-0.343209\pi\)
0.472895 + 0.881119i \(0.343209\pi\)
\(294\) 0 0
\(295\) 71.4007 172.377i 0.242036 0.584327i
\(296\) 0 0
\(297\) 2.13255 + 2.13255i 0.00718032 + 0.00718032i
\(298\) 0 0
\(299\) 5.75552 13.8950i 0.0192492 0.0464717i
\(300\) 0 0
\(301\) 13.2758 + 0.427635i 0.0441058 + 0.00142071i
\(302\) 0 0
\(303\) −1.04861 2.53158i −0.00346077 0.00835505i
\(304\) 0 0
\(305\) −99.8693 −0.327440
\(306\) 0 0
\(307\) 421.209i 1.37202i 0.727594 + 0.686008i \(0.240639\pi\)
−0.727594 + 0.686008i \(0.759361\pi\)
\(308\) 0 0
\(309\) 0.674128 + 1.62749i 0.00218164 + 0.00526695i
\(310\) 0 0
\(311\) −87.8427 212.071i −0.282453 0.681901i 0.717439 0.696621i \(-0.245314\pi\)
−0.999892 + 0.0147205i \(0.995314\pi\)
\(312\) 0 0
\(313\) −97.3179 + 234.946i −0.310920 + 0.750627i 0.688752 + 0.724997i \(0.258159\pi\)
−0.999672 + 0.0256294i \(0.991841\pi\)
\(314\) 0 0
\(315\) −55.8463 148.144i −0.177290 0.470299i
\(316\) 0 0
\(317\) −24.2521 + 58.5497i −0.0765049 + 0.184699i −0.957505 0.288417i \(-0.906871\pi\)
0.881000 + 0.473116i \(0.156871\pi\)
\(318\) 0 0
\(319\) 23.8562i 0.0747842i
\(320\) 0 0
\(321\) 2.27672 2.27672i 0.00709260 0.00709260i
\(322\) 0 0
\(323\) 172.243 19.7231i 0.533259 0.0610623i
\(324\) 0 0
\(325\) −115.454 + 115.454i −0.355244 + 0.355244i
\(326\) 0 0
\(327\) 0.637923 0.00195084
\(328\) 0 0
\(329\) −123.595 131.822i −0.375669 0.400676i
\(330\) 0 0
\(331\) −346.245 + 346.245i −1.04606 + 1.04606i −0.0471713 + 0.998887i \(0.515021\pi\)
−0.998887 + 0.0471713i \(0.984979\pi\)
\(332\) 0 0
\(333\) −293.011 121.369i −0.879913 0.364472i
\(334\) 0 0
\(335\) −21.9536 53.0008i −0.0655332 0.158211i
\(336\) 0 0
\(337\) 218.883 + 528.429i 0.649503 + 1.56804i 0.813491 + 0.581577i \(0.197564\pi\)
−0.163988 + 0.986462i \(0.552436\pi\)
\(338\) 0 0
\(339\) 4.89985i 0.0144538i
\(340\) 0 0
\(341\) 124.474i 0.365026i
\(342\) 0 0
\(343\) −264.800 + 218.014i −0.772011 + 0.635609i
\(344\) 0 0
\(345\) 0.217001 0.0898848i 0.000628989 0.000260536i
\(346\) 0 0
\(347\) 165.066 + 68.3727i 0.475696 + 0.197040i 0.607632 0.794219i \(-0.292120\pi\)
−0.131937 + 0.991258i \(0.542120\pi\)
\(348\) 0 0
\(349\) 99.1742 + 99.1742i 0.284167 + 0.284167i 0.834768 0.550601i \(-0.185602\pi\)
−0.550601 + 0.834768i \(0.685602\pi\)
\(350\) 0 0
\(351\) −3.26869 + 7.89132i −0.00931251 + 0.0224824i
\(352\) 0 0
\(353\) −469.425 −1.32982 −0.664908 0.746926i \(-0.731529\pi\)
−0.664908 + 0.746926i \(0.731529\pi\)
\(354\) 0 0
\(355\) −161.599 + 161.599i −0.455207 + 0.455207i
\(356\) 0 0
\(357\) 2.95235 + 5.74775i 0.00826988 + 0.0161002i
\(358\) 0 0
\(359\) −36.8627 36.8627i −0.102682 0.102682i 0.653900 0.756581i \(-0.273132\pi\)
−0.756581 + 0.653900i \(0.773132\pi\)
\(360\) 0 0
\(361\) 256.998i 0.711906i
\(362\) 0 0
\(363\) −5.59233 2.31642i −0.0154059 0.00638132i
\(364\) 0 0
\(365\) −137.302 + 137.302i −0.376169 + 0.376169i
\(366\) 0 0
\(367\) −211.909 + 511.594i −0.577409 + 1.39399i 0.317722 + 0.948184i \(0.397082\pi\)
−0.895131 + 0.445804i \(0.852918\pi\)
\(368\) 0 0
\(369\) −116.783 281.939i −0.316485 0.764063i
\(370\) 0 0
\(371\) −11.6258 + 360.920i −0.0313363 + 0.972830i
\(372\) 0 0
\(373\) 264.454 0.708993 0.354496 0.935057i \(-0.384652\pi\)
0.354496 + 0.935057i \(0.384652\pi\)
\(374\) 0 0
\(375\) −5.96246 −0.0158999
\(376\) 0 0
\(377\) 62.4217 25.8559i 0.165575 0.0685833i
\(378\) 0 0
\(379\) 222.560 92.1873i 0.587229 0.243238i −0.0692291 0.997601i \(-0.522054\pi\)
0.656458 + 0.754363i \(0.272054\pi\)
\(380\) 0 0
\(381\) 0.571395 1.37947i 0.00149972 0.00362066i
\(382\) 0 0
\(383\) −31.2145 31.2145i −0.0815000 0.0815000i 0.665182 0.746682i \(-0.268354\pi\)
−0.746682 + 0.665182i \(0.768354\pi\)
\(384\) 0 0
\(385\) −37.1446 39.6172i −0.0964794 0.102902i
\(386\) 0 0
\(387\) 17.0722i 0.0441142i
\(388\) 0 0
\(389\) −40.3894 40.3894i −0.103829 0.103829i 0.653284 0.757113i \(-0.273391\pi\)
−0.757113 + 0.653284i \(0.773391\pi\)
\(390\) 0 0
\(391\) 25.5765 14.1962i 0.0654130 0.0363073i
\(392\) 0 0
\(393\) 0.0136756 + 0.0136756i 3.47979e−5 + 3.47979e-5i
\(394\) 0 0
\(395\) 24.6287 0.0623510
\(396\) 0 0
\(397\) 23.1247 + 9.57858i 0.0582487 + 0.0241274i 0.411618 0.911357i \(-0.364964\pi\)
−0.353369 + 0.935484i \(0.614964\pi\)
\(398\) 0 0
\(399\) 3.62712 1.36733i 0.00909054 0.00342688i
\(400\) 0 0
\(401\) −557.027 230.728i −1.38909 0.575382i −0.442197 0.896918i \(-0.645801\pi\)
−0.946897 + 0.321536i \(0.895801\pi\)
\(402\) 0 0
\(403\) 325.696 134.908i 0.808178 0.334758i
\(404\) 0 0
\(405\) 187.938 77.8463i 0.464044 0.192213i
\(406\) 0 0
\(407\) −108.789 −0.267295
\(408\) 0 0
\(409\) 434.053i 1.06125i 0.847605 + 0.530627i \(0.178044\pi\)
−0.847605 + 0.530627i \(0.821956\pi\)
\(410\) 0 0
\(411\) 1.88944 0.782631i 0.00459717 0.00190421i
\(412\) 0 0
\(413\) 16.7266 519.273i 0.0405001 1.25732i
\(414\) 0 0
\(415\) 301.719 + 124.976i 0.727034 + 0.301147i
\(416\) 0 0
\(417\) −6.85852 + 6.85852i −0.0164473 + 0.0164473i
\(418\) 0 0
\(419\) 119.828 + 49.6343i 0.285985 + 0.118459i 0.521065 0.853517i \(-0.325535\pi\)
−0.235080 + 0.971976i \(0.575535\pi\)
\(420\) 0 0
\(421\) 630.213i 1.49694i −0.663168 0.748471i \(-0.730788\pi\)
0.663168 0.748471i \(-0.269212\pi\)
\(422\) 0 0
\(423\) 164.228 164.228i 0.388246 0.388246i
\(424\) 0 0
\(425\) −315.507 + 36.1280i −0.742370 + 0.0850070i
\(426\) 0 0
\(427\) −260.217 + 98.0946i −0.609408 + 0.229730i
\(428\) 0 0
\(429\) 1.46470i 0.00341423i
\(430\) 0 0
\(431\) 190.866 460.791i 0.442844 1.06912i −0.532102 0.846680i \(-0.678598\pi\)
0.974946 0.222440i \(-0.0714022\pi\)
\(432\) 0 0
\(433\) 274.013 + 274.013i 0.632824 + 0.632824i 0.948775 0.315952i \(-0.102324\pi\)
−0.315952 + 0.948775i \(0.602324\pi\)
\(434\) 0 0
\(435\) 0.974848 + 0.403795i 0.00224103 + 0.000928265i
\(436\) 0 0
\(437\) −6.71536 16.2123i −0.0153670 0.0370991i
\(438\) 0 0
\(439\) 408.138 169.056i 0.929699 0.385094i 0.134135 0.990963i \(-0.457174\pi\)
0.795564 + 0.605869i \(0.207174\pi\)
\(440\) 0 0
\(441\) −291.024 331.148i −0.659918 0.750902i
\(442\) 0 0
\(443\) −246.023 −0.555357 −0.277678 0.960674i \(-0.589565\pi\)
−0.277678 + 0.960674i \(0.589565\pi\)
\(444\) 0 0
\(445\) 60.1672 + 145.256i 0.135207 + 0.326419i
\(446\) 0 0
\(447\) 2.24622 + 5.42284i 0.00502509 + 0.0121316i
\(448\) 0 0
\(449\) −258.791 107.195i −0.576373 0.238742i 0.0754029 0.997153i \(-0.475976\pi\)
−0.651776 + 0.758412i \(0.725976\pi\)
\(450\) 0 0
\(451\) −74.0187 74.0187i −0.164121 0.164121i
\(452\) 0 0
\(453\) −1.77774 0.736363i −0.00392437 0.00162553i
\(454\) 0 0
\(455\) 63.4035 140.130i 0.139348 0.307978i
\(456\) 0 0
\(457\) 226.478 + 226.478i 0.495576 + 0.495576i 0.910058 0.414482i \(-0.136037\pi\)
−0.414482 + 0.910058i \(0.636037\pi\)
\(458\) 0 0
\(459\) −14.5255 + 8.06233i −0.0316459 + 0.0175650i
\(460\) 0 0
\(461\) 488.028 488.028i 1.05863 1.05863i 0.0604572 0.998171i \(-0.480744\pi\)
0.998171 0.0604572i \(-0.0192559\pi\)
\(462\) 0 0
\(463\) 402.340i 0.868985i 0.900676 + 0.434492i \(0.143072\pi\)
−0.900676 + 0.434492i \(0.856928\pi\)
\(464\) 0 0
\(465\) 5.08644 + 2.10687i 0.0109386 + 0.00453091i
\(466\) 0 0
\(467\) 547.937 + 547.937i 1.17331 + 1.17331i 0.981415 + 0.191899i \(0.0614645\pi\)
0.191899 + 0.981415i \(0.438535\pi\)
\(468\) 0 0
\(469\) −109.261 116.534i −0.232966 0.248474i
\(470\) 0 0
\(471\) −1.75089 + 0.725243i −0.00371739 + 0.00153979i
\(472\) 0 0
\(473\) 2.24102 + 5.41030i 0.00473788 + 0.0114383i
\(474\) 0 0
\(475\) 190.507i 0.401066i
\(476\) 0 0
\(477\) −464.128 −0.973015
\(478\) 0 0
\(479\) 506.556 209.822i 1.05753 0.438043i 0.214955 0.976624i \(-0.431040\pi\)
0.842573 + 0.538581i \(0.181040\pi\)
\(480\) 0 0
\(481\) −117.908 284.656i −0.245131 0.591800i
\(482\) 0 0
\(483\) 0.477126 0.447347i 0.000987838 0.000926184i
\(484\) 0 0
\(485\) −153.105 + 153.105i −0.315680 + 0.315680i
\(486\) 0 0
\(487\) 98.6577 238.181i 0.202582 0.489077i −0.789638 0.613573i \(-0.789731\pi\)
0.992220 + 0.124496i \(0.0397314\pi\)
\(488\) 0 0
\(489\) 9.19125 0.0187960
\(490\) 0 0
\(491\) −288.400 288.400i −0.587372 0.587372i 0.349547 0.936919i \(-0.386336\pi\)
−0.936919 + 0.349547i \(0.886336\pi\)
\(492\) 0 0
\(493\) 126.341 + 36.1506i 0.256270 + 0.0733277i
\(494\) 0 0
\(495\) 49.3563 49.3563i 0.0997096 0.0997096i
\(496\) 0 0
\(497\) −262.331 + 579.785i −0.527828 + 1.16657i
\(498\) 0 0
\(499\) 297.382 717.944i 0.595956 1.43877i −0.281713 0.959499i \(-0.590903\pi\)
0.877669 0.479267i \(-0.159097\pi\)
\(500\) 0 0
\(501\) −6.40233 + 6.40233i −0.0127791 + 0.0127791i
\(502\) 0 0
\(503\) 26.4263 63.7988i 0.0525374 0.126837i −0.895432 0.445199i \(-0.853133\pi\)
0.947969 + 0.318363i \(0.103133\pi\)
\(504\) 0 0
\(505\) −117.202 + 48.5466i −0.232083 + 0.0961319i
\(506\) 0 0
\(507\) 4.64560 1.92427i 0.00916291 0.00379540i
\(508\) 0 0
\(509\) 583.954i 1.14726i −0.819116 0.573628i \(-0.805535\pi\)
0.819116 0.573628i \(-0.194465\pi\)
\(510\) 0 0
\(511\) −222.889 + 492.613i −0.436181 + 0.964017i
\(512\) 0 0
\(513\) 3.81381 + 9.20735i 0.00743433 + 0.0179480i
\(514\) 0 0
\(515\) 75.3462 31.2094i 0.146303 0.0606008i
\(516\) 0 0
\(517\) 30.4873 73.6028i 0.0589696 0.142365i
\(518\) 0 0
\(519\) −9.21694 + 9.21694i −0.0177590 + 0.0177590i
\(520\) 0 0
\(521\) −32.4755 13.4518i −0.0623331 0.0258192i 0.351299 0.936263i \(-0.385740\pi\)
−0.413632 + 0.910444i \(0.635740\pi\)
\(522\) 0 0
\(523\) 37.6372 0.0719640 0.0359820 0.999352i \(-0.488544\pi\)
0.0359820 + 0.999352i \(0.488544\pi\)
\(524\) 0 0
\(525\) −6.64402 + 2.50461i −0.0126553 + 0.00477069i
\(526\) 0 0
\(527\) 659.207 + 188.622i 1.25087 + 0.357916i
\(528\) 0 0
\(529\) 371.966 + 371.966i 0.703149 + 0.703149i
\(530\) 0 0
\(531\) 667.764 1.25756
\(532\) 0 0
\(533\) 113.453 273.899i 0.212857 0.513882i
\(534\) 0 0
\(535\) −105.403 105.403i −0.197015 0.197015i
\(536\) 0 0
\(537\) −0.131887 + 0.318404i −0.000245600 + 0.000592932i
\(538\) 0 0
\(539\) −135.696 66.7411i −0.251756 0.123824i
\(540\) 0 0
\(541\) −195.176 471.197i −0.360769 0.870973i −0.995188 0.0979841i \(-0.968761\pi\)
0.634419 0.772989i \(-0.281239\pi\)
\(542\) 0 0
\(543\) −15.5387 −0.0286164
\(544\) 0 0
\(545\) 29.5333i 0.0541895i
\(546\) 0 0
\(547\) 343.800 + 830.006i 0.628519 + 1.51738i 0.841463 + 0.540314i \(0.181695\pi\)
−0.212944 + 0.977064i \(0.568305\pi\)
\(548\) 0 0
\(549\) −136.783 330.223i −0.249149 0.601499i
\(550\) 0 0
\(551\) 30.1679 72.8317i 0.0547511 0.132181i
\(552\) 0 0
\(553\) 64.1719 24.1910i 0.116043 0.0437451i
\(554\) 0 0
\(555\) 1.84139 4.44551i 0.00331782 0.00800993i
\(556\) 0 0
\(557\) 666.298i 1.19623i −0.801412 0.598113i \(-0.795917\pi\)
0.801412 0.598113i \(-0.204083\pi\)
\(558\) 0 0
\(559\) −11.7276 + 11.7276i −0.0209797 + 0.0209797i
\(560\) 0 0
\(561\) −1.77216 + 2.23050i −0.00315894 + 0.00397593i
\(562\) 0 0
\(563\) 259.433 259.433i 0.460804 0.460804i −0.438115 0.898919i \(-0.644354\pi\)
0.898919 + 0.438115i \(0.144354\pi\)
\(564\) 0 0
\(565\) 226.843 0.401493
\(566\) 0 0
\(567\) 413.223 387.433i 0.728789 0.683303i
\(568\) 0 0
\(569\) −590.604 + 590.604i −1.03797 + 1.03797i −0.0387181 + 0.999250i \(0.512327\pi\)
−0.999250 + 0.0387181i \(0.987673\pi\)
\(570\) 0 0
\(571\) −711.789 294.833i −1.24657 0.516345i −0.340805 0.940134i \(-0.610700\pi\)
−0.905761 + 0.423789i \(0.860700\pi\)
\(572\) 0 0
\(573\) 1.57252 + 3.79639i 0.00274436 + 0.00662546i
\(574\) 0 0
\(575\) 12.3009 + 29.6971i 0.0213929 + 0.0516471i
\(576\) 0 0
\(577\) 560.703i 0.971755i 0.874027 + 0.485877i \(0.161500\pi\)
−0.874027 + 0.485877i \(0.838500\pi\)
\(578\) 0 0
\(579\) 2.45263i 0.00423598i
\(580\) 0 0
\(581\) 908.908 + 29.2773i 1.56439 + 0.0503912i
\(582\) 0 0
\(583\) −147.085 + 60.9248i −0.252291 + 0.104502i
\(584\) 0 0
\(585\) 182.638 + 75.6512i 0.312202 + 0.129318i
\(586\) 0 0
\(587\) 445.016 + 445.016i 0.758119 + 0.758119i 0.975980 0.217861i \(-0.0699079\pi\)
−0.217861 + 0.975980i \(0.569908\pi\)
\(588\) 0 0
\(589\) 157.406 380.012i 0.267243 0.645182i
\(590\) 0 0
\(591\) 0.836613 0.00141559
\(592\) 0 0
\(593\) 308.677 308.677i 0.520535 0.520535i −0.397198 0.917733i \(-0.630017\pi\)
0.917733 + 0.397198i \(0.130017\pi\)
\(594\) 0 0
\(595\) 266.098 136.682i 0.447223 0.229717i
\(596\) 0 0
\(597\) 4.27772 + 4.27772i 0.00716535 + 0.00716535i
\(598\) 0 0
\(599\) 166.616i 0.278158i −0.990281 0.139079i \(-0.955586\pi\)
0.990281 0.139079i \(-0.0444141\pi\)
\(600\) 0 0
\(601\) −45.6274 18.8995i −0.0759191 0.0314467i 0.344401 0.938823i \(-0.388082\pi\)
−0.420320 + 0.907376i \(0.638082\pi\)
\(602\) 0 0
\(603\) 145.182 145.182i 0.240766 0.240766i
\(604\) 0 0
\(605\) −107.241 + 258.902i −0.177258 + 0.427938i
\(606\) 0 0
\(607\) 222.191 + 536.416i 0.366048 + 0.883717i 0.994390 + 0.105780i \(0.0337339\pi\)
−0.628342 + 0.777937i \(0.716266\pi\)
\(608\) 0 0
\(609\) 2.93666 + 0.0945944i 0.00482211 + 0.000155327i
\(610\) 0 0
\(611\) 225.631 0.369281
\(612\) 0 0
\(613\) −1111.13 −1.81261 −0.906303 0.422630i \(-0.861107\pi\)
−0.906303 + 0.422630i \(0.861107\pi\)
\(614\) 0 0
\(615\) 4.27753 1.77181i 0.00695533 0.00288099i
\(616\) 0 0
\(617\) 641.144 265.571i 1.03913 0.430422i 0.203131 0.979151i \(-0.434888\pi\)
0.836000 + 0.548729i \(0.184888\pi\)
\(618\) 0 0
\(619\) 358.572 865.669i 0.579276 1.39850i −0.314188 0.949361i \(-0.601732\pi\)
0.893464 0.449135i \(-0.148268\pi\)
\(620\) 0 0
\(621\) 1.18903 + 1.18903i 0.00191470 + 0.00191470i
\(622\) 0 0
\(623\) 299.446 + 319.379i 0.480651 + 0.512647i
\(624\) 0 0
\(625\) 190.975i 0.305561i
\(626\) 0 0
\(627\) 1.20842 + 1.20842i 0.00192731 + 0.00192731i
\(628\) 0 0
\(629\) 164.854 576.142i 0.262089 0.915965i
\(630\) 0 0
\(631\) 38.3125 + 38.3125i 0.0607171 + 0.0607171i 0.736813 0.676096i \(-0.236330\pi\)
−0.676096 + 0.736813i \(0.736330\pi\)
\(632\) 0 0
\(633\) −12.5779 −0.0198703
\(634\) 0 0
\(635\) −63.8639 26.4533i −0.100573 0.0416587i
\(636\) 0 0
\(637\) 27.5628 427.396i 0.0432696 0.670952i
\(638\) 0 0
\(639\) −755.662 313.006i −1.18257 0.489837i
\(640\) 0 0
\(641\) 36.0697 14.9405i 0.0562709 0.0233082i −0.354370 0.935105i \(-0.615305\pi\)
0.410641 + 0.911797i \(0.365305\pi\)
\(642\) 0 0
\(643\) −311.908 + 129.197i −0.485082 + 0.200928i −0.611802 0.791011i \(-0.709555\pi\)
0.126720 + 0.991939i \(0.459555\pi\)
\(644\) 0 0
\(645\) −0.259016 −0.000401575
\(646\) 0 0
\(647\) 162.482i 0.251132i 0.992085 + 0.125566i \(0.0400747\pi\)
−0.992085 + 0.125566i \(0.959925\pi\)
\(648\) 0 0
\(649\) 211.619 87.6554i 0.326069 0.135062i
\(650\) 0 0
\(651\) 15.3225 + 0.493563i 0.0235369 + 0.000758161i
\(652\) 0 0
\(653\) −209.237 86.6689i −0.320424 0.132724i 0.216673 0.976244i \(-0.430479\pi\)
−0.537098 + 0.843520i \(0.680479\pi\)
\(654\) 0 0
\(655\) 0.633125 0.633125i 0.000966603 0.000966603i
\(656\) 0 0
\(657\) −642.046 265.944i −0.977240 0.404786i
\(658\) 0 0
\(659\) 1096.17i 1.66338i −0.555240 0.831691i \(-0.687373\pi\)
0.555240 0.831691i \(-0.312627\pi\)
\(660\) 0 0
\(661\) 208.642 208.642i 0.315646 0.315646i −0.531446 0.847092i \(-0.678351\pi\)
0.847092 + 0.531446i \(0.178351\pi\)
\(662\) 0 0
\(663\) −7.75700 2.21954i −0.0116998 0.00334773i
\(664\) 0 0
\(665\) −63.3017 167.921i −0.0951905 0.252513i
\(666\) 0 0
\(667\) 13.3013i 0.0199419i
\(668\) 0 0
\(669\) 0.209256 0.505189i 0.000312789 0.000755140i
\(670\) 0 0
\(671\) −86.6948 86.6948i −0.129202 0.129202i
\(672\) 0 0
\(673\) −565.428 234.208i −0.840161 0.348006i −0.0792437 0.996855i \(-0.525251\pi\)
−0.760917 + 0.648849i \(0.775251\pi\)
\(674\) 0 0
\(675\) −6.98598 16.8656i −0.0103496 0.0249861i
\(676\) 0 0
\(677\) −96.2272 + 39.8586i −0.142138 + 0.0588754i −0.452618 0.891704i \(-0.649510\pi\)
0.310481 + 0.950580i \(0.399510\pi\)
\(678\) 0 0
\(679\) −248.543 + 549.311i −0.366042 + 0.809001i
\(680\) 0 0
\(681\) 18.0092 0.0264452
\(682\) 0 0
\(683\) 363.052 + 876.486i 0.531556 + 1.28329i 0.930493 + 0.366310i \(0.119379\pi\)
−0.398937 + 0.916978i \(0.630621\pi\)
\(684\) 0 0
\(685\) −36.2327 87.4734i −0.0528944 0.127698i
\(686\) 0 0
\(687\) −11.1652 4.62479i −0.0162522 0.00673187i
\(688\) 0 0
\(689\) −318.830 318.830i −0.462742 0.462742i
\(690\) 0 0
\(691\) −322.534 133.598i −0.466764 0.193340i 0.136890 0.990586i \(-0.456289\pi\)
−0.603654 + 0.797246i \(0.706289\pi\)
\(692\) 0 0
\(693\) 80.1223 177.081i 0.115617 0.255528i
\(694\) 0 0
\(695\) 317.522 + 317.522i 0.456866 + 0.456866i
\(696\) 0 0
\(697\) 504.164 279.835i 0.723335 0.401485i
\(698\) 0 0
\(699\) −14.0499 + 14.0499i −0.0201000 + 0.0201000i
\(700\) 0 0
\(701\) 1044.35i 1.48981i 0.667173 + 0.744903i \(0.267504\pi\)
−0.667173 + 0.744903i \(0.732496\pi\)
\(702\) 0 0
\(703\) −332.127 137.572i −0.472443 0.195692i
\(704\) 0 0
\(705\) 2.49164 + 2.49164i 0.00353424 + 0.00353424i
\(706\) 0 0
\(707\) −257.695 + 241.611i −0.364490 + 0.341742i
\(708\) 0 0
\(709\) 645.350 267.313i 0.910226 0.377028i 0.122083 0.992520i \(-0.461043\pi\)
0.788143 + 0.615492i \(0.211043\pi\)
\(710\) 0 0
\(711\) 33.7319 + 81.4359i 0.0474428 + 0.114537i
\(712\) 0 0
\(713\) 69.4017i 0.0973376i
\(714\) 0 0
\(715\) 67.8098 0.0948389
\(716\) 0 0
\(717\) 16.0506 6.64837i 0.0223857 0.00927248i
\(718\) 0 0
\(719\) 336.687 + 812.834i 0.468271 + 1.13051i 0.964918 + 0.262553i \(0.0845645\pi\)
−0.496647 + 0.867953i \(0.665435\pi\)
\(720\) 0 0
\(721\) 165.665 155.326i 0.229772 0.215431i
\(722\) 0 0
\(723\) 16.2581 16.2581i 0.0224871 0.0224871i
\(724\) 0 0
\(725\) −55.2603 + 133.410i −0.0762211 + 0.184014i
\(726\) 0 0
\(727\) −1273.57 −1.75181 −0.875906 0.482483i \(-0.839735\pi\)
−0.875906 + 0.482483i \(0.839735\pi\)
\(728\) 0 0
\(729\) 514.468 + 514.468i 0.705717 + 0.705717i
\(730\) 0 0
\(731\) −32.0486 + 3.66981i −0.0438422 + 0.00502026i
\(732\) 0 0
\(733\) 774.634 774.634i 1.05680 1.05680i 0.0585134 0.998287i \(-0.481364\pi\)
0.998287 0.0585134i \(-0.0186360\pi\)
\(734\) 0 0
\(735\) 5.02411 4.41536i 0.00683552 0.00600729i
\(736\) 0 0
\(737\) 26.9515 65.0666i 0.0365692 0.0882858i
\(738\) 0 0
\(739\) −565.268 + 565.268i −0.764909 + 0.764909i −0.977205 0.212297i \(-0.931906\pi\)
0.212297 + 0.977205i \(0.431906\pi\)
\(740\) 0 0
\(741\) −1.85222 + 4.47166i −0.00249963 + 0.00603463i
\(742\) 0 0
\(743\) −342.440 + 141.843i −0.460888 + 0.190906i −0.601032 0.799225i \(-0.705244\pi\)
0.140144 + 0.990131i \(0.455244\pi\)
\(744\) 0 0
\(745\) 251.056 103.991i 0.336988 0.139585i
\(746\) 0 0
\(747\) 1168.82i 1.56468i
\(748\) 0 0
\(749\) −378.166 171.106i −0.504895 0.228446i
\(750\) 0 0
\(751\) 256.134 + 618.362i 0.341057 + 0.823385i 0.997609 + 0.0691043i \(0.0220141\pi\)
−0.656552 + 0.754281i \(0.727986\pi\)
\(752\) 0 0
\(753\) −14.2180 + 5.88931i −0.0188819 + 0.00782112i
\(754\) 0 0
\(755\) −34.0907 + 82.3021i −0.0451532 + 0.109009i
\(756\) 0 0
\(757\) −253.706 + 253.706i −0.335147 + 0.335147i −0.854537 0.519390i \(-0.826159\pi\)
0.519390 + 0.854537i \(0.326159\pi\)
\(758\) 0 0
\(759\) 0.266402 + 0.110347i 0.000350991 + 0.000145385i
\(760\) 0 0
\(761\) −1436.91 −1.88818 −0.944092 0.329683i \(-0.893058\pi\)
−0.944092 + 0.329683i \(0.893058\pi\)
\(762\) 0 0
\(763\) −29.0085 76.9513i −0.0380190 0.100854i
\(764\) 0 0
\(765\) 186.596 + 336.181i 0.243917 + 0.439452i
\(766\) 0 0
\(767\) 458.715 + 458.715i 0.598064 + 0.598064i
\(768\) 0 0
\(769\) −513.474 −0.667717 −0.333858 0.942623i \(-0.608351\pi\)
−0.333858 + 0.942623i \(0.608351\pi\)
\(770\) 0 0
\(771\) 1.21327 2.92908i 0.00157363 0.00379907i
\(772\) 0 0
\(773\) 541.648 + 541.648i 0.700709 + 0.700709i 0.964563 0.263854i \(-0.0849936\pi\)
−0.263854 + 0.964563i \(0.584994\pi\)
\(774\) 0 0
\(775\) −288.330 + 696.090i −0.372039 + 0.898181i
\(776\) 0 0
\(777\) 0.431370 13.3918i 0.000555174 0.0172352i
\(778\) 0 0
\(779\) −132.373 319.577i −0.169927 0.410241i
\(780\) 0 0
\(781\) −280.562 −0.359234
\(782\) 0 0
\(783\) 7.55410i 0.00964764i
\(784\) 0 0
\(785\) 33.5758 + 81.0592i 0.0427717 + 0.103260i
\(786\) 0 0
\(787\) 127.617 + 308.094i 0.162156 + 0.391479i 0.983984 0.178256i \(-0.0570456\pi\)
−0.821828 + 0.569736i \(0.807046\pi\)
\(788\) 0 0
\(789\) 9.52206 22.9883i 0.0120685 0.0291360i
\(790\) 0 0
\(791\) 591.058 222.813i 0.747229 0.281685i
\(792\) 0 0
\(793\) 132.882 320.806i 0.167569 0.404547i
\(794\) 0 0
\(795\) 7.04166i 0.00885744i
\(796\) 0 0
\(797\) −807.424 + 807.424i −1.01308 + 1.01308i −0.0131662 + 0.999913i \(0.504191\pi\)
−0.999913 + 0.0131662i \(0.995809\pi\)
\(798\) 0 0
\(799\) 343.598 + 272.994i 0.430035 + 0.341669i
\(800\) 0 0
\(801\) −397.892 + 397.892i −0.496744 + 0.496744i
\(802\) 0 0
\(803\) −238.379 −0.296860
\(804\) 0 0
\(805\) −20.7104 22.0890i −0.0257272 0.0274397i
\(806\) 0 0
\(807\) 0.672722 0.672722i 0.000833609 0.000833609i
\(808\) 0 0
\(809\) −295.305 122.320i −0.365025 0.151198i 0.192629 0.981272i \(-0.438299\pi\)
−0.557654 + 0.830073i \(0.688299\pi\)
\(810\) 0 0
\(811\) −106.752 257.722i −0.131630 0.317783i 0.844299 0.535873i \(-0.180017\pi\)
−0.975929 + 0.218090i \(0.930017\pi\)
\(812\) 0 0
\(813\) −2.04001 4.92503i −0.00250924 0.00605784i
\(814\) 0 0
\(815\) 425.518i 0.522108i
\(816\) 0 0
\(817\) 19.3513i 0.0236858i
\(818\) 0 0
\(819\) 550.185 + 17.7223i 0.671777 + 0.0216389i
\(820\) 0 0
\(821\) −311.690 + 129.106i −0.379647 + 0.157255i −0.564342 0.825541i \(-0.690870\pi\)
0.184695 + 0.982796i \(0.440870\pi\)
\(822\) 0 0
\(823\) 551.973 + 228.635i 0.670684 + 0.277806i 0.691926 0.721968i \(-0.256762\pi\)
−0.0212428 + 0.999774i \(0.506762\pi\)
\(824\) 0 0
\(825\) −2.21354 2.21354i −0.00268308 0.00268308i
\(826\) 0 0
\(827\) 166.845 402.800i 0.201747 0.487061i −0.790331 0.612680i \(-0.790092\pi\)
0.992079 + 0.125618i \(0.0400915\pi\)
\(828\) 0 0
\(829\) 489.318 0.590250 0.295125 0.955459i \(-0.404639\pi\)
0.295125 + 0.955459i \(0.404639\pi\)
\(830\) 0 0
\(831\) −12.2551 + 12.2551i −0.0147474 + 0.0147474i
\(832\) 0 0
\(833\) 559.086 617.505i 0.671171 0.741302i
\(834\) 0 0
\(835\) 296.402 + 296.402i 0.354973 + 0.354973i
\(836\) 0 0
\(837\) 39.4148i 0.0470906i
\(838\) 0 0
\(839\) −620.176 256.885i −0.739184 0.306180i −0.0188642 0.999822i \(-0.506005\pi\)
−0.720320 + 0.693642i \(0.756005\pi\)
\(840\) 0 0
\(841\) −552.424 + 552.424i −0.656866 + 0.656866i
\(842\) 0 0
\(843\) −3.75685 + 9.06983i −0.00445652 + 0.0107590i
\(844\) 0 0
\(845\) −89.0859 215.072i −0.105427 0.254524i
\(846\) 0 0
\(847\) −25.1226 + 779.925i −0.0296607 + 0.920809i
\(848\) 0 0
\(849\) 25.1576 0.0296320
\(850\) 0 0
\(851\) −60.6565 −0.0712768
\(852\) 0 0
\(853\) −75.8387 + 31.4134i −0.0889082 + 0.0368270i −0.426694 0.904396i \(-0.640322\pi\)
0.337786 + 0.941223i \(0.390322\pi\)
\(854\) 0 0
\(855\) 213.097 88.2675i 0.249236 0.103237i
\(856\) 0 0
\(857\) −418.831 + 1011.15i −0.488717 + 1.17987i 0.466648 + 0.884443i \(0.345461\pi\)
−0.955366 + 0.295425i \(0.904539\pi\)
\(858\) 0 0
\(859\) −797.773 797.773i −0.928722 0.928722i 0.0689011 0.997623i \(-0.478051\pi\)
−0.997623 + 0.0689011i \(0.978051\pi\)
\(860\) 0 0
\(861\) 9.40510 8.81811i 0.0109235 0.0102417i
\(862\) 0 0
\(863\) 1261.19i 1.46140i −0.682696 0.730702i \(-0.739193\pi\)
0.682696 0.730702i \(-0.260807\pi\)
\(864\) 0 0
\(865\) 426.707 + 426.707i 0.493303 + 0.493303i
\(866\) 0 0
\(867\) −9.12716 12.7653i −0.0105273 0.0147235i
\(868\) 0 0
\(869\) 21.3797 + 21.3797i 0.0246027 + 0.0246027i
\(870\) 0 0
\(871\) 199.463 0.229005
\(872\) 0 0
\(873\) −715.945 296.554i −0.820097 0.339695i
\(874\) 0 0
\(875\) 271.133 + 719.238i 0.309866 + 0.821986i
\(876\) 0 0
\(877\) −928.702 384.681i −1.05895 0.438633i −0.215874 0.976421i \(-0.569260\pi\)
−0.843080 + 0.537788i \(0.819260\pi\)
\(878\) 0 0
\(879\) −13.9019 + 5.75836i −0.0158156 + 0.00655103i
\(880\) 0 0
\(881\) −1429.68 + 592.195i −1.62280 + 0.672185i −0.994397 0.105706i \(-0.966290\pi\)
−0.628400 + 0.777891i \(0.716290\pi\)
\(882\) 0 0
\(883\) −1336.76 −1.51389 −0.756943 0.653481i \(-0.773308\pi\)
−0.756943 + 0.653481i \(0.773308\pi\)
\(884\) 0 0
\(885\) 10.1312i 0.0114477i
\(886\) 0 0
\(887\) −262.827 + 108.867i −0.296310 + 0.122736i −0.525886 0.850555i \(-0.676266\pi\)
0.229576 + 0.973291i \(0.426266\pi\)
\(888\) 0 0
\(889\) −192.386 6.19703i −0.216407 0.00697079i
\(890\) 0 0
\(891\) 230.723 + 95.5684i 0.258948 + 0.107260i
\(892\) 0 0
\(893\) 186.152 186.152i 0.208457 0.208457i
\(894\) 0 0
\(895\) 14.7408 + 6.10585i 0.0164702 + 0.00682218i
\(896\) 0 0
\(897\) 0.816661i 0.000910436i
\(898\) 0 0
\(899\) 220.460 220.460i 0.245228 0.245228i
\(900\) 0 0
\(901\) −99.7683 871.280i −0.110731 0.967015i
\(902\) 0 0
\(903\) −0.674887 + 0.254414i −0.000747383 + 0.000281743i
\(904\) 0 0
\(905\) 719.378i 0.794893i
\(906\) 0 0
\(907\) −93.9464 + 226.807i −0.103579 + 0.250062i −0.967170 0.254132i \(-0.918210\pi\)
0.863590 + 0.504194i \(0.168210\pi\)
\(908\) 0 0
\(909\) −321.044 321.044i −0.353183 0.353183i
\(910\) 0 0
\(911\) 104.765 + 43.3950i 0.115000 + 0.0476345i 0.439441 0.898271i \(-0.355176\pi\)
−0.324442 + 0.945906i \(0.605176\pi\)
\(912\) 0 0
\(913\) 153.428 + 370.407i 0.168048 + 0.405703i
\(914\) 0 0
\(915\) 5.01008 2.07524i 0.00547549 0.00226802i
\(916\) 0 0
\(917\) 1.02778 2.27153i 0.00112081 0.00247713i
\(918\) 0 0
\(919\) −330.988 −0.360161 −0.180081 0.983652i \(-0.557636\pi\)
−0.180081 + 0.983652i \(0.557636\pi\)
\(920\) 0 0
\(921\) −8.75254 21.1305i −0.00950331 0.0229430i
\(922\) 0 0
\(923\) −304.080 734.114i −0.329447 0.795356i
\(924\) 0 0
\(925\) 608.377 + 251.998i 0.657705 + 0.272430i
\(926\) 0 0
\(927\) 206.391 + 206.391i 0.222644 + 0.222644i
\(928\) 0 0
\(929\) −549.576 227.642i −0.591578 0.245039i 0.0667516 0.997770i \(-0.478736\pi\)
−0.658329 + 0.752730i \(0.728736\pi\)
\(930\) 0 0
\(931\) −329.875 375.355i −0.354323 0.403174i
\(932\) 0 0
\(933\) 8.81350 + 8.81350i 0.00944641 + 0.00944641i
\(934\) 0 0
\(935\) 103.263 + 82.0440i 0.110442 + 0.0877476i
\(936\) 0 0
\(937\) −1227.11 + 1227.11i −1.30962 + 1.30962i −0.387927 + 0.921690i \(0.626809\pi\)
−0.921690 + 0.387927i \(0.873191\pi\)
\(938\) 0 0
\(939\) 13.8086i 0.0147057i
\(940\) 0 0
\(941\) 769.313 + 318.660i 0.817548 + 0.338640i 0.751961 0.659207i \(-0.229108\pi\)
0.0655871 + 0.997847i \(0.479108\pi\)
\(942\) 0 0
\(943\) −41.2699 41.2699i −0.0437645 0.0437645i
\(944\) 0 0
\(945\) 11.7619 + 12.5448i 0.0124464 + 0.0132750i
\(946\) 0 0
\(947\) 1075.24 445.381i 1.13542 0.470307i 0.265801 0.964028i \(-0.414364\pi\)
0.869620 + 0.493721i \(0.164364\pi\)
\(948\) 0 0
\(949\) −258.361 623.738i −0.272245 0.657258i
\(950\) 0 0
\(951\) 3.44117i 0.00361848i
\(952\) 0 0
\(953\) −650.038 −0.682097 −0.341048 0.940046i \(-0.610782\pi\)
−0.341048 + 0.940046i \(0.610782\pi\)
\(954\) 0 0
\(955\) 175.758 72.8011i 0.184039 0.0762316i
\(956\) 0 0
\(957\) 0.495721 + 1.19678i 0.000517995 + 0.00125055i
\(958\) 0 0
\(959\) −180.326 192.330i −0.188035 0.200553i
\(960\) 0 0
\(961\) 470.760 470.760i 0.489865 0.489865i
\(962\) 0 0
\(963\) 204.159 492.883i 0.212003 0.511820i
\(964\) 0 0
\(965\) −113.547 −0.117665
\(966\) 0 0
\(967\) 106.450 + 106.450i 0.110083 + 0.110083i 0.760003 0.649920i \(-0.225197\pi\)
−0.649920 + 0.760003i \(0.725197\pi\)
\(968\) 0 0
\(969\) −8.23095 + 4.56857i −0.00849427 + 0.00471473i
\(970\) 0 0
\(971\) −826.660 + 826.660i −0.851349 + 0.851349i −0.990299 0.138950i \(-0.955627\pi\)
0.138950 + 0.990299i \(0.455627\pi\)
\(972\) 0 0
\(973\) 1139.21 + 515.449i 1.17082 + 0.529752i
\(974\) 0 0
\(975\) 3.39283 8.19101i 0.00347982 0.00840103i
\(976\) 0 0
\(977\) −927.438 + 927.438i −0.949271 + 0.949271i −0.998774 0.0495026i \(-0.984236\pi\)
0.0495026 + 0.998774i \(0.484236\pi\)
\(978\) 0 0
\(979\) −73.8645 + 178.325i −0.0754490 + 0.182150i
\(980\) 0 0
\(981\) 97.6533 40.4493i 0.0995447 0.0412327i
\(982\) 0 0
\(983\) 582.485 241.273i 0.592559 0.245446i −0.0661921 0.997807i \(-0.521085\pi\)
0.658751 + 0.752361i \(0.271085\pi\)
\(984\) 0 0
\(985\) 38.7318i 0.0393217i
\(986\) 0 0
\(987\) 8.93952 + 4.04479i 0.00905726 + 0.00409807i
\(988\) 0 0
\(989\) 1.24951 + 3.01657i 0.00126340 + 0.00305012i
\(990\) 0 0
\(991\) 1031.18 427.130i 1.04055 0.431009i 0.204039 0.978963i \(-0.434593\pi\)
0.836508 + 0.547954i \(0.184593\pi\)
\(992\) 0 0
\(993\) 10.1750 24.5647i 0.0102468 0.0247379i
\(994\) 0 0
\(995\) 198.041 198.041i 0.199036 0.199036i
\(996\) 0 0
\(997\) 947.942 + 392.651i 0.950795 + 0.393832i 0.803529 0.595265i \(-0.202953\pi\)
0.147265 + 0.989097i \(0.452953\pi\)
\(998\) 0 0
\(999\) 34.4482 0.0344827
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 476.3.x.a.321.12 96
7.6 odd 2 inner 476.3.x.a.321.13 yes 96
17.8 even 8 inner 476.3.x.a.433.13 yes 96
119.76 odd 8 inner 476.3.x.a.433.12 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
476.3.x.a.321.12 96 1.1 even 1 trivial
476.3.x.a.321.13 yes 96 7.6 odd 2 inner
476.3.x.a.433.12 yes 96 119.76 odd 8 inner
476.3.x.a.433.13 yes 96 17.8 even 8 inner