Properties

Label 475.2.u.b.74.3
Level $475$
Weight $2$
Character 475.74
Analytic conductor $3.793$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [475,2,Mod(24,475)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(475, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 16])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("475.24"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 475 = 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 475.u (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [36,0,0,6,0,-12,0,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.79289409601\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(6\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 74.3
Character \(\chi\) \(=\) 475.74
Dual form 475.2.u.b.199.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.207778 - 0.0366369i) q^{2} +(-0.0513559 + 0.0612035i) q^{3} +(-1.83756 - 0.668816i) q^{4} +(0.0129129 - 0.0108352i) q^{6} +(1.46118 - 0.843614i) q^{7} +(0.722735 + 0.417271i) q^{8} +(0.519836 + 2.94814i) q^{9} +(1.44339 - 2.50003i) q^{11} +(0.135303 - 0.0781173i) q^{12} +(-4.15627 - 4.95325i) q^{13} +(-0.334509 + 0.121751i) q^{14} +(2.86110 + 2.40075i) q^{16} +(-2.94112 - 0.518598i) q^{17} -0.631604i q^{18} +(4.34933 - 0.288668i) q^{19} +(-0.0234081 + 0.132754i) q^{21} +(-0.391499 + 0.466570i) q^{22} +(2.82424 - 7.75955i) q^{23} +(-0.0626552 + 0.0228046i) q^{24} +(0.682111 + 1.18145i) q^{26} +(-0.414708 - 0.239432i) q^{27} +(-3.24923 + 0.572926i) q^{28} +(-1.26021 - 7.14701i) q^{29} +(-2.02800 - 3.51260i) q^{31} +(-1.57939 - 1.88224i) q^{32} +(0.0788839 + 0.216732i) q^{33} +(0.592100 + 0.215507i) q^{34} +(1.01653 - 5.76504i) q^{36} -7.96989i q^{37} +(-0.914272 - 0.0993671i) q^{38} +0.516605 q^{39} +(4.17950 + 3.50702i) q^{41} +(0.00972740 - 0.0267258i) q^{42} +(1.82353 + 5.01011i) q^{43} +(-4.32437 + 3.62858i) q^{44} +(-0.871103 + 1.50879i) q^{46} +(1.62455 - 0.286452i) q^{47} +(-0.293868 + 0.0518169i) q^{48} +(-2.07663 + 3.59683i) q^{49} +(0.182783 - 0.153374i) q^{51} +(4.32457 + 11.8817i) q^{52} +(0.653921 - 1.79663i) q^{53} +(0.0773952 + 0.0649423i) q^{54} +1.40806 q^{56} +(-0.205696 + 0.281019i) q^{57} +1.53116i q^{58} +(-0.616931 + 3.49879i) q^{59} +(7.42370 + 2.70201i) q^{61} +(0.292684 + 0.804142i) q^{62} +(3.24666 + 3.86922i) q^{63} +(-3.47569 - 6.02008i) q^{64} +(-0.00844998 - 0.0479222i) q^{66} +(2.23091 - 0.393370i) q^{67} +(5.05762 + 2.92002i) q^{68} +(0.329870 + 0.571352i) q^{69} +(-9.79389 + 3.56469i) q^{71} +(-0.854469 + 2.34764i) q^{72} +(-0.907529 + 1.08155i) q^{73} +(-0.291992 + 1.65597i) q^{74} +(-8.18520 - 2.37846i) q^{76} -4.87066i q^{77} +(-0.107339 - 0.0189268i) q^{78} +(1.84675 + 1.54961i) q^{79} +(-8.40329 + 3.05855i) q^{81} +(-0.739923 - 0.881806i) q^{82} +(-9.87319 + 5.70029i) q^{83} +(0.131802 - 0.228287i) q^{84} +(-0.195335 - 1.10780i) q^{86} +(0.502142 + 0.289912i) q^{87} +(2.08638 - 1.20457i) q^{88} +(7.74938 - 6.50250i) q^{89} +(-10.2517 - 3.73131i) q^{91} +(-10.3794 + 12.3697i) q^{92} +(0.319133 + 0.0562718i) q^{93} -0.348041 q^{94} +0.196310 q^{96} +(9.71828 + 1.71360i) q^{97} +(0.563256 - 0.671262i) q^{98} +(8.12075 + 2.95571i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 6 q^{4} - 12 q^{6} - 6 q^{9} + 24 q^{14} - 6 q^{16} - 42 q^{21} + 30 q^{24} + 6 q^{26} - 30 q^{29} - 36 q^{31} + 24 q^{34} + 150 q^{36} - 72 q^{39} - 60 q^{41} - 84 q^{44} + 18 q^{46} - 18 q^{49}+ \cdots + 186 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/475\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.207778 0.0366369i −0.146921 0.0259062i 0.0997037 0.995017i \(-0.468211\pi\)
−0.246625 + 0.969111i \(0.579322\pi\)
\(3\) −0.0513559 + 0.0612035i −0.0296503 + 0.0353359i −0.780666 0.624949i \(-0.785120\pi\)
0.751016 + 0.660285i \(0.229564\pi\)
\(4\) −1.83756 0.668816i −0.918778 0.334408i
\(5\) 0 0
\(6\) 0.0129129 0.0108352i 0.00527169 0.00442347i
\(7\) 1.46118 0.843614i 0.552275 0.318856i −0.197764 0.980250i \(-0.563368\pi\)
0.750039 + 0.661394i \(0.230035\pi\)
\(8\) 0.722735 + 0.417271i 0.255526 + 0.147528i
\(9\) 0.519836 + 2.94814i 0.173279 + 0.982712i
\(10\) 0 0
\(11\) 1.44339 2.50003i 0.435199 0.753787i −0.562113 0.827061i \(-0.690011\pi\)
0.997312 + 0.0732738i \(0.0233447\pi\)
\(12\) 0.135303 0.0781173i 0.0390586 0.0225505i
\(13\) −4.15627 4.95325i −1.15274 1.37378i −0.915492 0.402336i \(-0.868198\pi\)
−0.237250 0.971449i \(-0.576246\pi\)
\(14\) −0.334509 + 0.121751i −0.0894014 + 0.0325394i
\(15\) 0 0
\(16\) 2.86110 + 2.40075i 0.715274 + 0.600186i
\(17\) −2.94112 0.518598i −0.713325 0.125778i −0.194803 0.980842i \(-0.562407\pi\)
−0.518523 + 0.855064i \(0.673518\pi\)
\(18\) 0.631604i 0.148871i
\(19\) 4.34933 0.288668i 0.997805 0.0662249i
\(20\) 0 0
\(21\) −0.0234081 + 0.132754i −0.00510807 + 0.0289693i
\(22\) −0.391499 + 0.466570i −0.0834678 + 0.0994731i
\(23\) 2.82424 7.75955i 0.588896 1.61798i −0.183631 0.982995i \(-0.558785\pi\)
0.772527 0.634982i \(-0.218992\pi\)
\(24\) −0.0626552 + 0.0228046i −0.0127894 + 0.00465497i
\(25\) 0 0
\(26\) 0.682111 + 1.18145i 0.133773 + 0.231702i
\(27\) −0.414708 0.239432i −0.0798105 0.0460786i
\(28\) −3.24923 + 0.572926i −0.614046 + 0.108273i
\(29\) −1.26021 7.14701i −0.234015 1.32717i −0.844677 0.535276i \(-0.820208\pi\)
0.610662 0.791891i \(-0.290903\pi\)
\(30\) 0 0
\(31\) −2.02800 3.51260i −0.364240 0.630882i 0.624414 0.781094i \(-0.285338\pi\)
−0.988654 + 0.150212i \(0.952005\pi\)
\(32\) −1.57939 1.88224i −0.279199 0.332736i
\(33\) 0.0788839 + 0.216732i 0.0137319 + 0.0377281i
\(34\) 0.592100 + 0.215507i 0.101544 + 0.0369591i
\(35\) 0 0
\(36\) 1.01653 5.76504i 0.169422 0.960840i
\(37\) 7.96989i 1.31024i −0.755524 0.655121i \(-0.772618\pi\)
0.755524 0.655121i \(-0.227382\pi\)
\(38\) −0.914272 0.0993671i −0.148315 0.0161195i
\(39\) 0.516605 0.0827230
\(40\) 0 0
\(41\) 4.17950 + 3.50702i 0.652728 + 0.547704i 0.907897 0.419192i \(-0.137687\pi\)
−0.255169 + 0.966896i \(0.582131\pi\)
\(42\) 0.00972740 0.0267258i 0.00150097 0.00412388i
\(43\) 1.82353 + 5.01011i 0.278086 + 0.764034i 0.997580 + 0.0695352i \(0.0221516\pi\)
−0.719494 + 0.694499i \(0.755626\pi\)
\(44\) −4.32437 + 3.62858i −0.651923 + 0.547029i
\(45\) 0 0
\(46\) −0.871103 + 1.50879i −0.128437 + 0.222460i
\(47\) 1.62455 0.286452i 0.236965 0.0417833i −0.0539044 0.998546i \(-0.517167\pi\)
0.290869 + 0.956763i \(0.406056\pi\)
\(48\) −0.293868 + 0.0518169i −0.0424162 + 0.00747912i
\(49\) −2.07663 + 3.59683i −0.296662 + 0.513833i
\(50\) 0 0
\(51\) 0.182783 0.153374i 0.0255948 0.0214766i
\(52\) 4.32457 + 11.8817i 0.599710 + 1.64769i
\(53\) 0.653921 1.79663i 0.0898230 0.246787i −0.886644 0.462452i \(-0.846970\pi\)
0.976467 + 0.215665i \(0.0691920\pi\)
\(54\) 0.0773952 + 0.0649423i 0.0105322 + 0.00883753i
\(55\) 0 0
\(56\) 1.40806 0.188160
\(57\) −0.205696 + 0.281019i −0.0272451 + 0.0372219i
\(58\) 1.53116i 0.201052i
\(59\) −0.616931 + 3.49879i −0.0803175 + 0.455503i 0.917952 + 0.396692i \(0.129842\pi\)
−0.998269 + 0.0588110i \(0.981269\pi\)
\(60\) 0 0
\(61\) 7.42370 + 2.70201i 0.950508 + 0.345956i 0.770307 0.637673i \(-0.220103\pi\)
0.180201 + 0.983630i \(0.442325\pi\)
\(62\) 0.292684 + 0.804142i 0.0371709 + 0.102126i
\(63\) 3.24666 + 3.86922i 0.409041 + 0.487476i
\(64\) −3.47569 6.02008i −0.434462 0.752510i
\(65\) 0 0
\(66\) −0.00844998 0.0479222i −0.00104012 0.00589882i
\(67\) 2.23091 0.393370i 0.272550 0.0480578i −0.0357028 0.999362i \(-0.511367\pi\)
0.308252 + 0.951305i \(0.400256\pi\)
\(68\) 5.05762 + 2.92002i 0.613326 + 0.354104i
\(69\) 0.329870 + 0.571352i 0.0397117 + 0.0687827i
\(70\) 0 0
\(71\) −9.79389 + 3.56469i −1.16232 + 0.423050i −0.849926 0.526902i \(-0.823354\pi\)
−0.312395 + 0.949952i \(0.601131\pi\)
\(72\) −0.854469 + 2.34764i −0.100700 + 0.276671i
\(73\) −0.907529 + 1.08155i −0.106218 + 0.126586i −0.816534 0.577297i \(-0.804108\pi\)
0.710316 + 0.703883i \(0.248552\pi\)
\(74\) −0.291992 + 1.65597i −0.0339434 + 0.192503i
\(75\) 0 0
\(76\) −8.18520 2.37846i −0.938907 0.272828i
\(77\) 4.87066i 0.555063i
\(78\) −0.107339 0.0189268i −0.0121538 0.00214304i
\(79\) 1.84675 + 1.54961i 0.207776 + 0.174344i 0.740737 0.671795i \(-0.234476\pi\)
−0.532961 + 0.846140i \(0.678921\pi\)
\(80\) 0 0
\(81\) −8.40329 + 3.05855i −0.933699 + 0.339838i
\(82\) −0.739923 0.881806i −0.0817108 0.0973792i
\(83\) −9.87319 + 5.70029i −1.08372 + 0.625688i −0.931898 0.362719i \(-0.881848\pi\)
−0.151825 + 0.988407i \(0.548515\pi\)
\(84\) 0.131802 0.228287i 0.0143807 0.0249082i
\(85\) 0 0
\(86\) −0.195335 1.10780i −0.0210635 0.119457i
\(87\) 0.502142 + 0.289912i 0.0538352 + 0.0310818i
\(88\) 2.08638 1.20457i 0.222409 0.128408i
\(89\) 7.74938 6.50250i 0.821433 0.689264i −0.131874 0.991266i \(-0.542099\pi\)
0.953307 + 0.302002i \(0.0976550\pi\)
\(90\) 0 0
\(91\) −10.2517 3.73131i −1.07467 0.391148i
\(92\) −10.3794 + 12.3697i −1.08213 + 1.28963i
\(93\) 0.319133 + 0.0562718i 0.0330926 + 0.00583512i
\(94\) −0.348041 −0.0358977
\(95\) 0 0
\(96\) 0.196310 0.0200358
\(97\) 9.71828 + 1.71360i 0.986742 + 0.173989i 0.643656 0.765315i \(-0.277417\pi\)
0.343086 + 0.939304i \(0.388528\pi\)
\(98\) 0.563256 0.671262i 0.0568974 0.0678077i
\(99\) 8.12075 + 2.95571i 0.816166 + 0.297060i
\(100\) 0 0
\(101\) 3.19421 2.68026i 0.317836 0.266696i −0.469886 0.882727i \(-0.655705\pi\)
0.787722 + 0.616031i \(0.211260\pi\)
\(102\) −0.0435976 + 0.0251711i −0.00431680 + 0.00249231i
\(103\) 10.8804 + 6.28180i 1.07208 + 0.618964i 0.928748 0.370711i \(-0.120886\pi\)
0.143329 + 0.989675i \(0.454219\pi\)
\(104\) −0.937034 5.31418i −0.0918837 0.521098i
\(105\) 0 0
\(106\) −0.201694 + 0.349344i −0.0195902 + 0.0339313i
\(107\) −12.9404 + 7.47116i −1.25100 + 0.722264i −0.971308 0.237826i \(-0.923565\pi\)
−0.279690 + 0.960090i \(0.590232\pi\)
\(108\) 0.601913 + 0.717332i 0.0579191 + 0.0690253i
\(109\) 4.89106 1.78020i 0.468479 0.170512i −0.0969843 0.995286i \(-0.530920\pi\)
0.565463 + 0.824774i \(0.308697\pi\)
\(110\) 0 0
\(111\) 0.487785 + 0.409301i 0.0462985 + 0.0388491i
\(112\) 6.20589 + 1.09427i 0.586401 + 0.103398i
\(113\) 8.57064i 0.806258i 0.915143 + 0.403129i \(0.132077\pi\)
−0.915143 + 0.403129i \(0.867923\pi\)
\(114\) 0.0530349 0.0508536i 0.00496717 0.00476288i
\(115\) 0 0
\(116\) −2.46433 + 13.9759i −0.228807 + 1.29763i
\(117\) 12.4423 14.8281i 1.15029 1.37086i
\(118\) 0.256370 0.704370i 0.0236007 0.0648425i
\(119\) −4.73500 + 1.72340i −0.434057 + 0.157984i
\(120\) 0 0
\(121\) 1.33324 + 2.30924i 0.121204 + 0.209931i
\(122\) −1.44349 0.833400i −0.130688 0.0754525i
\(123\) −0.429284 + 0.0756943i −0.0387072 + 0.00682512i
\(124\) 1.37728 + 7.81096i 0.123684 + 0.701445i
\(125\) 0 0
\(126\) −0.532830 0.922889i −0.0474683 0.0822175i
\(127\) −8.37999 9.98688i −0.743604 0.886192i 0.253090 0.967443i \(-0.418553\pi\)
−0.996694 + 0.0812503i \(0.974109\pi\)
\(128\) 2.18236 + 5.99600i 0.192896 + 0.529976i
\(129\) −0.400285 0.145692i −0.0352431 0.0128274i
\(130\) 0 0
\(131\) 0.0324867 0.184241i 0.00283838 0.0160972i −0.983356 0.181691i \(-0.941843\pi\)
0.986194 + 0.165594i \(0.0529541\pi\)
\(132\) 0.451015i 0.0392558i
\(133\) 6.11164 4.09095i 0.529946 0.354730i
\(134\) −0.477948 −0.0412884
\(135\) 0 0
\(136\) −1.90925 1.60205i −0.163717 0.137375i
\(137\) −0.737254 + 2.02559i −0.0629879 + 0.173058i −0.967194 0.254038i \(-0.918241\pi\)
0.904206 + 0.427096i \(0.140463\pi\)
\(138\) −0.0476073 0.130800i −0.00405260 0.0111344i
\(139\) 6.04955 5.07617i 0.513116 0.430555i −0.349108 0.937082i \(-0.613515\pi\)
0.862224 + 0.506527i \(0.169071\pi\)
\(140\) 0 0
\(141\) −0.0658982 + 0.114139i −0.00554963 + 0.00961225i
\(142\) 2.16556 0.381846i 0.181730 0.0320438i
\(143\) −18.3824 + 3.24131i −1.53721 + 0.271052i
\(144\) −5.59042 + 9.68290i −0.465869 + 0.806908i
\(145\) 0 0
\(146\) 0.228189 0.191474i 0.0188851 0.0158465i
\(147\) −0.113492 0.311815i −0.00936063 0.0257181i
\(148\) −5.33039 + 14.6451i −0.438155 + 1.20382i
\(149\) −13.7096 11.5037i −1.12313 0.942421i −0.124375 0.992235i \(-0.539693\pi\)
−0.998759 + 0.0498141i \(0.984137\pi\)
\(150\) 0 0
\(151\) 2.93984 0.239241 0.119620 0.992820i \(-0.461832\pi\)
0.119620 + 0.992820i \(0.461832\pi\)
\(152\) 3.26387 + 1.60622i 0.264735 + 0.130282i
\(153\) 8.94040i 0.722788i
\(154\) −0.178446 + 1.01202i −0.0143796 + 0.0815507i
\(155\) 0 0
\(156\) −0.949291 0.345514i −0.0760041 0.0276632i
\(157\) 2.31441 + 6.35878i 0.184710 + 0.507486i 0.997140 0.0755720i \(-0.0240783\pi\)
−0.812431 + 0.583058i \(0.801856\pi\)
\(158\) −0.326942 0.389634i −0.0260101 0.0309976i
\(159\) 0.0763776 + 0.132290i 0.00605714 + 0.0104913i
\(160\) 0 0
\(161\) −2.41933 13.7207i −0.190670 1.08134i
\(162\) 1.85808 0.327629i 0.145984 0.0257410i
\(163\) 0.786207 + 0.453917i 0.0615805 + 0.0355535i 0.530474 0.847701i \(-0.322014\pi\)
−0.468894 + 0.883255i \(0.655347\pi\)
\(164\) −5.33452 9.23965i −0.416556 0.721496i
\(165\) 0 0
\(166\) 2.26028 0.822673i 0.175431 0.0638518i
\(167\) −4.88117 + 13.4109i −0.377716 + 1.03777i 0.594585 + 0.804033i \(0.297317\pi\)
−0.972301 + 0.233733i \(0.924906\pi\)
\(168\) −0.0723123 + 0.0861785i −0.00557902 + 0.00664881i
\(169\) −5.00268 + 28.3716i −0.384822 + 2.18243i
\(170\) 0 0
\(171\) 3.11197 + 12.6724i 0.237978 + 0.969080i
\(172\) 10.4260i 0.794971i
\(173\) 13.8636 + 2.44452i 1.05403 + 0.185854i 0.673705 0.739000i \(-0.264702\pi\)
0.380323 + 0.924854i \(0.375813\pi\)
\(174\) −0.0937127 0.0786343i −0.00710434 0.00596125i
\(175\) 0 0
\(176\) 10.1316 3.68761i 0.763699 0.277964i
\(177\) −0.182455 0.217442i −0.0137142 0.0163439i
\(178\) −1.84839 + 1.06717i −0.138542 + 0.0799875i
\(179\) 7.87488 13.6397i 0.588596 1.01948i −0.405821 0.913953i \(-0.633014\pi\)
0.994417 0.105525i \(-0.0336524\pi\)
\(180\) 0 0
\(181\) 0.791542 + 4.48906i 0.0588348 + 0.333669i 0.999991 0.00430380i \(-0.00136995\pi\)
−0.941156 + 0.337973i \(0.890259\pi\)
\(182\) 1.99338 + 1.15088i 0.147759 + 0.0853087i
\(183\) −0.546623 + 0.315593i −0.0404075 + 0.0233293i
\(184\) 5.27902 4.42962i 0.389174 0.326556i
\(185\) 0 0
\(186\) −0.0642474 0.0233841i −0.00471085 0.00171461i
\(187\) −5.54169 + 6.60433i −0.405249 + 0.482956i
\(188\) −3.17678 0.560153i −0.231691 0.0408533i
\(189\) −0.807951 −0.0587698
\(190\) 0 0
\(191\) −9.95887 −0.720599 −0.360299 0.932837i \(-0.617325\pi\)
−0.360299 + 0.932837i \(0.617325\pi\)
\(192\) 0.546947 + 0.0964416i 0.0394725 + 0.00696007i
\(193\) 13.7564 16.3943i 0.990210 1.18009i 0.00656365 0.999978i \(-0.497911\pi\)
0.983647 0.180108i \(-0.0576448\pi\)
\(194\) −1.95647 0.712096i −0.140466 0.0511255i
\(195\) 0 0
\(196\) 6.22154 5.22049i 0.444396 0.372892i
\(197\) −1.18364 + 0.683372i −0.0843305 + 0.0486883i −0.541572 0.840654i \(-0.682171\pi\)
0.457242 + 0.889342i \(0.348837\pi\)
\(198\) −1.57903 0.911652i −0.112217 0.0647883i
\(199\) 3.11454 + 17.6634i 0.220784 + 1.25213i 0.870583 + 0.492022i \(0.163742\pi\)
−0.649799 + 0.760106i \(0.725147\pi\)
\(200\) 0 0
\(201\) −0.0904949 + 0.156742i −0.00638302 + 0.0110557i
\(202\) −0.761885 + 0.439874i −0.0536060 + 0.0309495i
\(203\) −7.87072 9.37996i −0.552416 0.658344i
\(204\) −0.438453 + 0.159584i −0.0306979 + 0.0111731i
\(205\) 0 0
\(206\) −2.03057 1.70385i −0.141476 0.118713i
\(207\) 24.3443 + 4.29257i 1.69205 + 0.298354i
\(208\) 24.1499i 1.67449i
\(209\) 5.55611 11.2901i 0.384324 0.780953i
\(210\) 0 0
\(211\) 3.60629 20.4523i 0.248267 1.40799i −0.564513 0.825424i \(-0.690936\pi\)
0.812781 0.582570i \(-0.197953\pi\)
\(212\) −2.40323 + 2.86406i −0.165055 + 0.196705i
\(213\) 0.284802 0.782488i 0.0195143 0.0536152i
\(214\) 2.96246 1.07825i 0.202510 0.0737075i
\(215\) 0 0
\(216\) −0.199816 0.346091i −0.0135957 0.0235485i
\(217\) −5.92656 3.42170i −0.402321 0.232280i
\(218\) −1.08148 + 0.190694i −0.0732469 + 0.0129154i
\(219\) −0.0195878 0.111088i −0.00132362 0.00750662i
\(220\) 0 0
\(221\) 9.65533 + 16.7235i 0.649488 + 1.12495i
\(222\) −0.0863557 0.102915i −0.00579582 0.00690719i
\(223\) −0.666925 1.83236i −0.0446606 0.122704i 0.915357 0.402642i \(-0.131908\pi\)
−0.960018 + 0.279938i \(0.909686\pi\)
\(224\) −3.89565 1.41790i −0.260289 0.0947375i
\(225\) 0 0
\(226\) 0.314002 1.78079i 0.0208871 0.118457i
\(227\) 12.6099i 0.836950i −0.908228 0.418475i \(-0.862565\pi\)
0.908228 0.418475i \(-0.137435\pi\)
\(228\) 0.565928 0.378815i 0.0374795 0.0250877i
\(229\) 6.12765 0.404926 0.202463 0.979290i \(-0.435105\pi\)
0.202463 + 0.979290i \(0.435105\pi\)
\(230\) 0 0
\(231\) 0.298102 + 0.250137i 0.0196136 + 0.0164578i
\(232\) 2.07145 5.69125i 0.135997 0.373649i
\(233\) −2.25977 6.20868i −0.148043 0.406744i 0.843400 0.537286i \(-0.180550\pi\)
−0.991443 + 0.130542i \(0.958328\pi\)
\(234\) −3.12849 + 2.62512i −0.204516 + 0.171609i
\(235\) 0 0
\(236\) 3.47369 6.01660i 0.226118 0.391648i
\(237\) −0.189683 + 0.0334462i −0.0123212 + 0.00217256i
\(238\) 1.04697 0.184609i 0.0678650 0.0119664i
\(239\) −1.10191 + 1.90856i −0.0712766 + 0.123455i −0.899461 0.437001i \(-0.856041\pi\)
0.828184 + 0.560456i \(0.189374\pi\)
\(240\) 0 0
\(241\) −0.0956409 + 0.0802523i −0.00616077 + 0.00516950i −0.645863 0.763453i \(-0.723502\pi\)
0.639702 + 0.768623i \(0.279058\pi\)
\(242\) −0.192415 0.528656i −0.0123689 0.0339833i
\(243\) 0.735707 2.02134i 0.0471956 0.129669i
\(244\) −11.8343 9.93017i −0.757615 0.635714i
\(245\) 0 0
\(246\) 0.0919690 0.00586373
\(247\) −19.5068 20.3435i −1.24119 1.29443i
\(248\) 3.38491i 0.214942i
\(249\) 0.158168 0.897017i 0.0100235 0.0568462i
\(250\) 0 0
\(251\) −3.49264 1.27122i −0.220453 0.0802385i 0.229432 0.973325i \(-0.426313\pi\)
−0.449886 + 0.893086i \(0.648535\pi\)
\(252\) −3.37813 9.28133i −0.212802 0.584669i
\(253\) −15.3226 18.2608i −0.963323 1.14804i
\(254\) 1.37529 + 2.38207i 0.0862935 + 0.149465i
\(255\) 0 0
\(256\) 2.18042 + 12.3658i 0.136276 + 0.772861i
\(257\) −26.5659 + 4.68428i −1.65713 + 0.292198i −0.922423 0.386182i \(-0.873794\pi\)
−0.734712 + 0.678379i \(0.762683\pi\)
\(258\) 0.0778328 + 0.0449368i 0.00484566 + 0.00279764i
\(259\) −6.72351 11.6455i −0.417779 0.723614i
\(260\) 0 0
\(261\) 20.4153 7.43055i 1.26367 0.459940i
\(262\) −0.0135001 + 0.0370911i −0.000834036 + 0.00229150i
\(263\) −13.2902 + 15.8386i −0.819508 + 0.976652i −0.999976 0.00692932i \(-0.997794\pi\)
0.180468 + 0.983581i \(0.442239\pi\)
\(264\) −0.0334238 + 0.189556i −0.00205709 + 0.0116663i
\(265\) 0 0
\(266\) −1.41975 + 0.626099i −0.0870502 + 0.0383886i
\(267\) 0.808231i 0.0494629i
\(268\) −4.36252 0.769230i −0.266483 0.0469882i
\(269\) 10.5139 + 8.82218i 0.641042 + 0.537898i 0.904338 0.426817i \(-0.140365\pi\)
−0.263296 + 0.964715i \(0.584810\pi\)
\(270\) 0 0
\(271\) 5.05880 1.84125i 0.307300 0.111848i −0.183767 0.982970i \(-0.558829\pi\)
0.491067 + 0.871122i \(0.336607\pi\)
\(272\) −7.16979 8.54463i −0.434733 0.518094i
\(273\) 0.754854 0.435815i 0.0456859 0.0263767i
\(274\) 0.227397 0.393863i 0.0137375 0.0237941i
\(275\) 0 0
\(276\) −0.224026 1.27051i −0.0134848 0.0764759i
\(277\) 19.7441 + 11.3993i 1.18631 + 0.684916i 0.957466 0.288547i \(-0.0931723\pi\)
0.228843 + 0.973463i \(0.426506\pi\)
\(278\) −1.44294 + 0.833082i −0.0865418 + 0.0499649i
\(279\) 9.30140 7.80481i 0.556861 0.467261i
\(280\) 0 0
\(281\) 16.1900 + 5.89267i 0.965814 + 0.351528i 0.776309 0.630352i \(-0.217090\pi\)
0.189505 + 0.981880i \(0.439312\pi\)
\(282\) 0.0178739 0.0213013i 0.00106438 0.00126848i
\(283\) 16.0512 + 2.83026i 0.954146 + 0.168242i 0.628986 0.777417i \(-0.283470\pi\)
0.325161 + 0.945659i \(0.394582\pi\)
\(284\) 20.3809 1.20939
\(285\) 0 0
\(286\) 3.93821 0.232871
\(287\) 9.06558 + 1.59851i 0.535124 + 0.0943568i
\(288\) 4.72807 5.63470i 0.278604 0.332028i
\(289\) −7.59356 2.76383i −0.446680 0.162578i
\(290\) 0 0
\(291\) −0.603969 + 0.506790i −0.0354053 + 0.0297086i
\(292\) 2.39099 1.38044i 0.139922 0.0807841i
\(293\) −21.9002 12.6441i −1.27942 0.738675i −0.302681 0.953092i \(-0.597882\pi\)
−0.976742 + 0.214416i \(0.931215\pi\)
\(294\) 0.0121571 + 0.0689465i 0.000709018 + 0.00402104i
\(295\) 0 0
\(296\) 3.32561 5.76012i 0.193297 0.334800i
\(297\) −1.19717 + 0.691187i −0.0694669 + 0.0401067i
\(298\) 2.42710 + 2.89250i 0.140598 + 0.167558i
\(299\) −50.1733 + 18.2616i −2.90160 + 1.05609i
\(300\) 0 0
\(301\) 6.89110 + 5.78232i 0.397197 + 0.333287i
\(302\) −0.610834 0.107707i −0.0351496 0.00619782i
\(303\) 0.333144i 0.0191386i
\(304\) 13.1369 + 9.61573i 0.753451 + 0.551500i
\(305\) 0 0
\(306\) −0.327549 + 1.85762i −0.0187247 + 0.106193i
\(307\) 11.0746 13.1982i 0.632059 0.753259i −0.351035 0.936362i \(-0.614170\pi\)
0.983094 + 0.183104i \(0.0586145\pi\)
\(308\) −3.25757 + 8.95011i −0.185617 + 0.509980i
\(309\) −0.943241 + 0.343312i −0.0536591 + 0.0195303i
\(310\) 0 0
\(311\) −12.4862 21.6267i −0.708028 1.22634i −0.965588 0.260078i \(-0.916252\pi\)
0.257560 0.966262i \(-0.417082\pi\)
\(312\) 0.373369 + 0.215565i 0.0211378 + 0.0122039i
\(313\) 16.6071 2.92827i 0.938687 0.165516i 0.316684 0.948531i \(-0.397430\pi\)
0.622002 + 0.783015i \(0.286319\pi\)
\(314\) −0.247917 1.40601i −0.0139908 0.0793457i
\(315\) 0 0
\(316\) −2.35710 4.08263i −0.132598 0.229666i
\(317\) −15.5048 18.4779i −0.870834 1.03782i −0.998939 0.0460593i \(-0.985334\pi\)
0.128104 0.991761i \(-0.459111\pi\)
\(318\) −0.0110229 0.0302852i −0.000618134 0.00169831i
\(319\) −19.6867 7.16538i −1.10224 0.401184i
\(320\) 0 0
\(321\) 0.207305 1.17569i 0.0115707 0.0656205i
\(322\) 2.93950i 0.163812i
\(323\) −12.9416 1.40655i −0.720089 0.0782624i
\(324\) 17.4871 0.971506
\(325\) 0 0
\(326\) −0.146727 0.123118i −0.00812644 0.00681889i
\(327\) −0.142230 + 0.390774i −0.00786534 + 0.0216099i
\(328\) 1.55729 + 4.27863i 0.0859872 + 0.236248i
\(329\) 2.13211 1.78905i 0.117547 0.0986335i
\(330\) 0 0
\(331\) −7.77017 + 13.4583i −0.427087 + 0.739736i −0.996613 0.0822371i \(-0.973794\pi\)
0.569526 + 0.821973i \(0.307127\pi\)
\(332\) 21.9550 3.87126i 1.20494 0.212463i
\(333\) 23.4963 4.14304i 1.28759 0.227037i
\(334\) 1.50553 2.60766i 0.0823792 0.142685i
\(335\) 0 0
\(336\) −0.385681 + 0.323625i −0.0210406 + 0.0176552i
\(337\) 3.76416 + 10.3419i 0.205047 + 0.563361i 0.999004 0.0446119i \(-0.0142051\pi\)
−0.793958 + 0.607973i \(0.791983\pi\)
\(338\) 2.07890 5.71172i 0.113077 0.310677i
\(339\) −0.524554 0.440153i −0.0284898 0.0239058i
\(340\) 0 0
\(341\) −11.7088 −0.634067
\(342\) −0.182324 2.74705i −0.00985894 0.148544i
\(343\) 18.8181i 1.01608i
\(344\) −0.772645 + 4.38189i −0.0416582 + 0.236255i
\(345\) 0 0
\(346\) −2.79099 1.01584i −0.150045 0.0546118i
\(347\) 10.4212 + 28.6321i 0.559441 + 1.53705i 0.820451 + 0.571716i \(0.193722\pi\)
−0.261010 + 0.965336i \(0.584056\pi\)
\(348\) −0.728816 0.868569i −0.0390686 0.0465602i
\(349\) 2.80872 + 4.86485i 0.150347 + 0.260409i 0.931355 0.364112i \(-0.118627\pi\)
−0.781008 + 0.624521i \(0.785294\pi\)
\(350\) 0 0
\(351\) 0.537673 + 3.04929i 0.0286988 + 0.162759i
\(352\) −6.98532 + 1.23170i −0.372319 + 0.0656499i
\(353\) 6.48321 + 3.74308i 0.345067 + 0.199224i 0.662510 0.749053i \(-0.269491\pi\)
−0.317444 + 0.948277i \(0.602824\pi\)
\(354\) 0.0299438 + 0.0518642i 0.00159150 + 0.00275655i
\(355\) 0 0
\(356\) −18.5889 + 6.76581i −0.985210 + 0.358587i
\(357\) 0.137692 0.378305i 0.00728743 0.0200220i
\(358\) −2.13594 + 2.54552i −0.112888 + 0.134535i
\(359\) 4.42550 25.0982i 0.233569 1.32463i −0.612038 0.790828i \(-0.709650\pi\)
0.845607 0.533806i \(-0.179239\pi\)
\(360\) 0 0
\(361\) 18.8333 2.51102i 0.991229 0.132159i
\(362\) 0.961728i 0.0505473i
\(363\) −0.209803 0.0369940i −0.0110118 0.00194168i
\(364\) 16.3425 + 13.7130i 0.856580 + 0.718756i
\(365\) 0 0
\(366\) 0.125139 0.0455468i 0.00654111 0.00238077i
\(367\) 21.5117 + 25.6366i 1.12290 + 1.33822i 0.934432 + 0.356141i \(0.115908\pi\)
0.188468 + 0.982079i \(0.439648\pi\)
\(368\) 26.7091 15.4205i 1.39231 0.803850i
\(369\) −8.16651 + 14.1448i −0.425132 + 0.736350i
\(370\) 0 0
\(371\) −0.560167 3.17686i −0.0290824 0.164935i
\(372\) −0.548790 0.316844i −0.0284534 0.0164276i
\(373\) −9.07481 + 5.23935i −0.469876 + 0.271283i −0.716188 0.697908i \(-0.754115\pi\)
0.246312 + 0.969191i \(0.420781\pi\)
\(374\) 1.39341 1.16921i 0.0720513 0.0604582i
\(375\) 0 0
\(376\) 1.29365 + 0.470849i 0.0667148 + 0.0242822i
\(377\) −30.1632 + 35.9471i −1.55348 + 1.85137i
\(378\) 0.167875 + 0.0296008i 0.00863454 + 0.00152250i
\(379\) 14.2962 0.734344 0.367172 0.930153i \(-0.380326\pi\)
0.367172 + 0.930153i \(0.380326\pi\)
\(380\) 0 0
\(381\) 1.04159 0.0533625
\(382\) 2.06924 + 0.364862i 0.105871 + 0.0186680i
\(383\) −23.7712 + 28.3295i −1.21465 + 1.44757i −0.356408 + 0.934331i \(0.615999\pi\)
−0.858246 + 0.513238i \(0.828446\pi\)
\(384\) −0.479053 0.174361i −0.0244466 0.00889783i
\(385\) 0 0
\(386\) −3.45893 + 2.90238i −0.176055 + 0.147727i
\(387\) −13.8225 + 7.98045i −0.702639 + 0.405669i
\(388\) −16.7118 9.64857i −0.848413 0.489832i
\(389\) 2.88385 + 16.3551i 0.146217 + 0.829237i 0.966382 + 0.257110i \(0.0827704\pi\)
−0.820165 + 0.572127i \(0.806119\pi\)
\(390\) 0 0
\(391\) −12.3305 + 21.3571i −0.623581 + 1.08007i
\(392\) −3.00171 + 1.73304i −0.151609 + 0.0875316i
\(393\) 0.00960783 + 0.0114502i 0.000484651 + 0.000577584i
\(394\) 0.270970 0.0986252i 0.0136513 0.00496866i
\(395\) 0 0
\(396\) −12.9455 10.8626i −0.650536 0.545865i
\(397\) 26.2337 + 4.62570i 1.31663 + 0.232157i 0.787464 0.616361i \(-0.211394\pi\)
0.529166 + 0.848518i \(0.322505\pi\)
\(398\) 3.78419i 0.189684i
\(399\) −0.0634878 + 0.584148i −0.00317836 + 0.0292440i
\(400\) 0 0
\(401\) 0.224832 1.27508i 0.0112276 0.0636747i −0.978679 0.205395i \(-0.934152\pi\)
0.989907 + 0.141720i \(0.0452633\pi\)
\(402\) 0.0245454 0.0292521i 0.00122421 0.00145896i
\(403\) −8.96988 + 24.6445i −0.446821 + 1.22763i
\(404\) −7.66215 + 2.78879i −0.381206 + 0.138748i
\(405\) 0 0
\(406\) 1.29171 + 2.23731i 0.0641066 + 0.111036i
\(407\) −19.9250 11.5037i −0.987643 0.570216i
\(408\) 0.196102 0.0345782i 0.00970852 0.00171187i
\(409\) −4.69402 26.6211i −0.232104 1.31633i −0.848627 0.528992i \(-0.822570\pi\)
0.616522 0.787337i \(-0.288541\pi\)
\(410\) 0 0
\(411\) −0.0861109 0.149148i −0.00424754 0.00735695i
\(412\) −15.7920 18.8201i −0.778015 0.927202i
\(413\) 2.05018 + 5.63282i 0.100883 + 0.277173i
\(414\) −4.90096 1.78380i −0.240869 0.0876692i
\(415\) 0 0
\(416\) −2.75884 + 15.6462i −0.135263 + 0.767117i
\(417\) 0.630945i 0.0308975i
\(418\) −1.56807 + 2.14228i −0.0766970 + 0.104782i
\(419\) 4.15498 0.202984 0.101492 0.994836i \(-0.467638\pi\)
0.101492 + 0.994836i \(0.467638\pi\)
\(420\) 0 0
\(421\) −20.2274 16.9728i −0.985822 0.827203i −0.000864321 1.00000i \(-0.500275\pi\)
−0.984957 + 0.172797i \(0.944720\pi\)
\(422\) −1.49862 + 4.11742i −0.0729516 + 0.200433i
\(423\) 1.68900 + 4.64049i 0.0821219 + 0.225628i
\(424\) 1.22230 1.02563i 0.0593599 0.0498089i
\(425\) 0 0
\(426\) −0.0878437 + 0.152150i −0.00425604 + 0.00737168i
\(427\) 13.1268 2.31461i 0.635252 0.112012i
\(428\) 28.7756 5.07391i 1.39092 0.245257i
\(429\) 0.745664 1.29153i 0.0360010 0.0623555i
\(430\) 0 0
\(431\) −7.44700 + 6.24878i −0.358710 + 0.300993i −0.804276 0.594256i \(-0.797447\pi\)
0.445567 + 0.895249i \(0.353002\pi\)
\(432\) −0.611705 1.68064i −0.0294306 0.0808600i
\(433\) −0.225679 + 0.620049i −0.0108455 + 0.0297976i −0.944997 0.327078i \(-0.893936\pi\)
0.934152 + 0.356876i \(0.116158\pi\)
\(434\) 1.10605 + 0.928086i 0.0530921 + 0.0445496i
\(435\) 0 0
\(436\) −10.1782 −0.487449
\(437\) 10.0436 34.5641i 0.480452 1.65342i
\(438\) 0.0237993i 0.00113717i
\(439\) −4.72146 + 26.7767i −0.225343 + 1.27798i 0.636686 + 0.771123i \(0.280305\pi\)
−0.862029 + 0.506860i \(0.830806\pi\)
\(440\) 0 0
\(441\) −11.6835 4.25243i −0.556355 0.202497i
\(442\) −1.39347 3.82853i −0.0662806 0.182104i
\(443\) 24.2897 + 28.9473i 1.15404 + 1.37533i 0.914572 + 0.404424i \(0.132528\pi\)
0.239466 + 0.970905i \(0.423028\pi\)
\(444\) −0.622586 1.07835i −0.0295466 0.0511763i
\(445\) 0 0
\(446\) 0.0714405 + 0.405159i 0.00338280 + 0.0191848i
\(447\) 1.40814 0.248292i 0.0666025 0.0117438i
\(448\) −10.1572 5.86429i −0.479885 0.277062i
\(449\) −8.27496 14.3327i −0.390520 0.676400i 0.601998 0.798497i \(-0.294371\pi\)
−0.992518 + 0.122097i \(0.961038\pi\)
\(450\) 0 0
\(451\) 14.8003 5.38687i 0.696919 0.253658i
\(452\) 5.73218 15.7490i 0.269619 0.740772i
\(453\) −0.150978 + 0.179928i −0.00709356 + 0.00845377i
\(454\) −0.461989 + 2.62007i −0.0216822 + 0.122966i
\(455\) 0 0
\(456\) −0.265925 + 0.117271i −0.0124531 + 0.00549173i
\(457\) 11.4492i 0.535571i −0.963479 0.267785i \(-0.913708\pi\)
0.963479 0.267785i \(-0.0862918\pi\)
\(458\) −1.27319 0.224498i −0.0594923 0.0104901i
\(459\) 1.09553 + 0.919262i 0.0511352 + 0.0429075i
\(460\) 0 0
\(461\) 10.1108 3.68002i 0.470905 0.171396i −0.0956571 0.995414i \(-0.530495\pi\)
0.566562 + 0.824019i \(0.308273\pi\)
\(462\) −0.0527748 0.0628946i −0.00245531 0.00292612i
\(463\) 14.7988 8.54409i 0.687758 0.397078i −0.115013 0.993364i \(-0.536691\pi\)
0.802772 + 0.596286i \(0.203358\pi\)
\(464\) 13.5526 23.4737i 0.629162 1.08974i
\(465\) 0 0
\(466\) 0.242065 + 1.37282i 0.0112134 + 0.0635946i
\(467\) 27.5880 + 15.9280i 1.27662 + 0.737058i 0.976226 0.216756i \(-0.0695478\pi\)
0.300396 + 0.953815i \(0.402881\pi\)
\(468\) −32.7807 + 18.9259i −1.51529 + 0.874851i
\(469\) 2.92792 2.45682i 0.135199 0.113445i
\(470\) 0 0
\(471\) −0.508038 0.184911i −0.0234092 0.00852024i
\(472\) −1.90582 + 2.27127i −0.0877225 + 0.104544i
\(473\) 15.1575 + 2.67267i 0.696941 + 0.122890i
\(474\) 0.0406374 0.00186654
\(475\) 0 0
\(476\) 9.85346 0.451633
\(477\) 5.63665 + 0.993894i 0.258085 + 0.0455073i
\(478\) 0.298877 0.356187i 0.0136703 0.0162916i
\(479\) −3.61807 1.31687i −0.165314 0.0601693i 0.258038 0.966135i \(-0.416924\pi\)
−0.423351 + 0.905966i \(0.639146\pi\)
\(480\) 0 0
\(481\) −39.4769 + 33.1250i −1.79999 + 1.51037i
\(482\) 0.0228123 0.0131707i 0.00103907 0.000599909i
\(483\) 0.964000 + 0.556566i 0.0438635 + 0.0253246i
\(484\) −0.905448 5.13505i −0.0411567 0.233411i
\(485\) 0 0
\(486\) −0.226919 + 0.393036i −0.0102933 + 0.0178285i
\(487\) −30.6638 + 17.7037i −1.38951 + 0.802233i −0.993260 0.115910i \(-0.963022\pi\)
−0.396249 + 0.918143i \(0.629688\pi\)
\(488\) 4.23790 + 5.05053i 0.191841 + 0.228627i
\(489\) −0.0681576 + 0.0248074i −0.00308220 + 0.00112183i
\(490\) 0 0
\(491\) 15.5179 + 13.0210i 0.700311 + 0.587631i 0.921862 0.387518i \(-0.126667\pi\)
−0.221551 + 0.975149i \(0.571112\pi\)
\(492\) 0.839458 + 0.148019i 0.0378457 + 0.00667322i
\(493\) 21.6737i 0.976136i
\(494\) 3.30777 + 4.94162i 0.148824 + 0.222334i
\(495\) 0 0
\(496\) 2.63055 14.9186i 0.118115 0.669866i
\(497\) −11.3034 + 13.4709i −0.507029 + 0.604253i
\(498\) −0.0657279 + 0.180586i −0.00294534 + 0.00809225i
\(499\) 0.553880 0.201596i 0.0247951 0.00902467i −0.329593 0.944123i \(-0.606911\pi\)
0.354388 + 0.935099i \(0.384689\pi\)
\(500\) 0 0
\(501\) −0.570118 0.987473i −0.0254710 0.0441170i
\(502\) 0.679121 + 0.392091i 0.0303107 + 0.0174999i
\(503\) 11.1776 1.97091i 0.498385 0.0878787i 0.0811953 0.996698i \(-0.474126\pi\)
0.417190 + 0.908820i \(0.363015\pi\)
\(504\) 0.731962 + 4.15116i 0.0326042 + 0.184908i
\(505\) 0 0
\(506\) 2.51468 + 4.35556i 0.111791 + 0.193628i
\(507\) −1.47953 1.76323i −0.0657080 0.0783078i
\(508\) 8.71931 + 23.9561i 0.386857 + 1.06288i
\(509\) 11.1499 + 4.05822i 0.494209 + 0.179877i 0.577088 0.816682i \(-0.304189\pi\)
−0.0828785 + 0.996560i \(0.526411\pi\)
\(510\) 0 0
\(511\) −0.413654 + 2.34595i −0.0182990 + 0.103779i
\(512\) 15.4108i 0.681069i
\(513\) −1.87282 0.921654i −0.0826869 0.0406920i
\(514\) 5.69143 0.251038
\(515\) 0 0
\(516\) 0.638105 + 0.535434i 0.0280910 + 0.0235712i
\(517\) 1.62872 4.47488i 0.0716312 0.196805i
\(518\) 0.970346 + 2.66600i 0.0426346 + 0.117137i
\(519\) −0.861589 + 0.722959i −0.0378196 + 0.0317344i
\(520\) 0 0
\(521\) 12.2611 21.2368i 0.537166 0.930400i −0.461889 0.886938i \(-0.652828\pi\)
0.999055 0.0434617i \(-0.0138386\pi\)
\(522\) −4.51408 + 0.795955i −0.197576 + 0.0348380i
\(523\) −20.9112 + 3.68721i −0.914382 + 0.161230i −0.610993 0.791636i \(-0.709230\pi\)
−0.303390 + 0.952867i \(0.598118\pi\)
\(524\) −0.182919 + 0.316826i −0.00799087 + 0.0138406i
\(525\) 0 0
\(526\) 3.34169 2.80401i 0.145705 0.122261i
\(527\) 4.14296 + 11.3827i 0.180470 + 0.495838i
\(528\) −0.294623 + 0.809471i −0.0128218 + 0.0352277i
\(529\) −34.6152 29.0456i −1.50501 1.26285i
\(530\) 0 0
\(531\) −10.6356 −0.461546
\(532\) −13.9666 + 3.42979i −0.605528 + 0.148700i
\(533\) 35.2782i 1.52807i
\(534\) 0.0296111 0.167933i 0.00128140 0.00726717i
\(535\) 0 0
\(536\) 1.77650 + 0.646594i 0.0767332 + 0.0279286i
\(537\) 0.430376 + 1.18245i 0.0185721 + 0.0510264i
\(538\) −1.86134 2.21825i −0.0802479 0.0956357i
\(539\) 5.99478 + 10.3833i 0.258214 + 0.447239i
\(540\) 0 0
\(541\) 2.57449 + 14.6006i 0.110686 + 0.627730i 0.988796 + 0.149272i \(0.0476930\pi\)
−0.878110 + 0.478458i \(0.841196\pi\)
\(542\) −1.11857 + 0.197233i −0.0480465 + 0.00847190i
\(543\) −0.315396 0.182094i −0.0135350 0.00781441i
\(544\) 3.66903 + 6.35495i 0.157308 + 0.272466i
\(545\) 0 0
\(546\) −0.172809 + 0.0628974i −0.00739555 + 0.00269176i
\(547\) −2.72298 + 7.48131i −0.116426 + 0.319878i −0.984195 0.177091i \(-0.943331\pi\)
0.867769 + 0.496969i \(0.165554\pi\)
\(548\) 2.70949 3.22905i 0.115744 0.137938i
\(549\) −4.10678 + 23.2907i −0.175273 + 0.994022i
\(550\) 0 0
\(551\) −7.54419 30.7209i −0.321393 1.30876i
\(552\) 0.550581i 0.0234343i
\(553\) 4.00571 + 0.706315i 0.170340 + 0.0300355i
\(554\) −3.68476 3.09188i −0.156551 0.131362i
\(555\) 0 0
\(556\) −14.5114 + 5.28172i −0.615421 + 0.223995i
\(557\) 5.20994 + 6.20896i 0.220752 + 0.263082i 0.865042 0.501699i \(-0.167292\pi\)
−0.644290 + 0.764781i \(0.722847\pi\)
\(558\) −2.21857 + 1.28089i −0.0939197 + 0.0542246i
\(559\) 17.2372 29.8558i 0.729057 1.26276i
\(560\) 0 0
\(561\) −0.119610 0.678342i −0.00504994 0.0286396i
\(562\) −3.14804 1.81752i −0.132792 0.0766675i
\(563\) 7.18648 4.14912i 0.302874 0.174864i −0.340859 0.940114i \(-0.610718\pi\)
0.643733 + 0.765250i \(0.277385\pi\)
\(564\) 0.197430 0.165663i 0.00831329 0.00697568i
\(565\) 0 0
\(566\) −3.23141 1.17614i −0.135826 0.0494367i
\(567\) −9.69850 + 11.5582i −0.407299 + 0.485400i
\(568\) −8.56583 1.51039i −0.359414 0.0633745i
\(569\) 7.28643 0.305463 0.152732 0.988268i \(-0.451193\pi\)
0.152732 + 0.988268i \(0.451193\pi\)
\(570\) 0 0
\(571\) −20.6974 −0.866159 −0.433080 0.901356i \(-0.642573\pi\)
−0.433080 + 0.901356i \(0.642573\pi\)
\(572\) 35.9465 + 6.33834i 1.50300 + 0.265019i
\(573\) 0.511446 0.609518i 0.0213660 0.0254630i
\(574\) −1.82507 0.664270i −0.0761768 0.0277261i
\(575\) 0 0
\(576\) 15.9412 13.3763i 0.664218 0.557345i
\(577\) −12.6361 + 7.29547i −0.526049 + 0.303715i −0.739406 0.673260i \(-0.764894\pi\)
0.213357 + 0.976974i \(0.431560\pi\)
\(578\) 1.47652 + 0.852469i 0.0614151 + 0.0354580i
\(579\) 0.296914 + 1.68389i 0.0123393 + 0.0699799i
\(580\) 0 0
\(581\) −9.61769 + 16.6583i −0.399009 + 0.691104i
\(582\) 0.144059 0.0831724i 0.00597143 0.00344761i
\(583\) −3.54777 4.22807i −0.146934 0.175109i
\(584\) −1.10720 + 0.402989i −0.0458164 + 0.0166758i
\(585\) 0 0
\(586\) 4.08715 + 3.42952i 0.168838 + 0.141672i
\(587\) 10.3481 + 1.82464i 0.427110 + 0.0753110i 0.383071 0.923719i \(-0.374866\pi\)
0.0440388 + 0.999030i \(0.485977\pi\)
\(588\) 0.648883i 0.0267595i
\(589\) −9.83443 14.6920i −0.405220 0.605375i
\(590\) 0 0
\(591\) 0.0189618 0.107538i 0.000779985 0.00442352i
\(592\) 19.1337 22.8026i 0.786389 0.937183i
\(593\) 8.31653 22.8495i 0.341519 0.938316i −0.643435 0.765501i \(-0.722491\pi\)
0.984954 0.172815i \(-0.0552864\pi\)
\(594\) 0.274069 0.0997530i 0.0112452 0.00409292i
\(595\) 0 0
\(596\) 17.4983 + 30.3079i 0.716757 + 1.24146i
\(597\) −1.24101 0.716500i −0.0507913 0.0293244i
\(598\) 11.0940 1.95617i 0.453666 0.0799936i
\(599\) 6.58292 + 37.3336i 0.268971 + 1.52541i 0.757484 + 0.652854i \(0.226428\pi\)
−0.488513 + 0.872557i \(0.662461\pi\)
\(600\) 0 0
\(601\) −12.9738 22.4713i −0.529213 0.916623i −0.999420 0.0340669i \(-0.989154\pi\)
0.470207 0.882556i \(-0.344179\pi\)
\(602\) −1.21998 1.45391i −0.0497225 0.0592569i
\(603\) 2.31942 + 6.37255i 0.0944541 + 0.259510i
\(604\) −5.40211 1.96621i −0.219809 0.0800039i
\(605\) 0 0
\(606\) 0.0122054 0.0692202i 0.000495810 0.00281188i
\(607\) 11.5300i 0.467988i 0.972238 + 0.233994i \(0.0751796\pi\)
−0.972238 + 0.233994i \(0.924820\pi\)
\(608\) −7.41261 7.73056i −0.300621 0.313516i
\(609\) 0.978294 0.0396425
\(610\) 0 0
\(611\) −8.17093 6.85623i −0.330561 0.277373i
\(612\) −5.97948 + 16.4285i −0.241706 + 0.664082i
\(613\) −7.74954 21.2917i −0.313001 0.859963i −0.992047 0.125868i \(-0.959829\pi\)
0.679046 0.734096i \(-0.262394\pi\)
\(614\) −2.78459 + 2.33655i −0.112377 + 0.0942956i
\(615\) 0 0
\(616\) 2.03239 3.52020i 0.0818872 0.141833i
\(617\) 5.88595 1.03785i 0.236959 0.0417823i −0.0539072 0.998546i \(-0.517168\pi\)
0.290867 + 0.956764i \(0.406056\pi\)
\(618\) 0.208563 0.0367753i 0.00838963 0.00147932i
\(619\) −17.1031 + 29.6234i −0.687431 + 1.19067i 0.285235 + 0.958458i \(0.407928\pi\)
−0.972666 + 0.232208i \(0.925405\pi\)
\(620\) 0 0
\(621\) −3.02912 + 2.54173i −0.121554 + 0.101996i
\(622\) 1.80203 + 4.95103i 0.0722547 + 0.198518i
\(623\) 5.83766 16.0388i 0.233881 0.642582i
\(624\) 1.47806 + 1.24024i 0.0591697 + 0.0496492i
\(625\) 0 0
\(626\) −3.55787 −0.142201
\(627\) 0.405656 + 0.919866i 0.0162003 + 0.0367359i
\(628\) 13.2325i 0.528035i
\(629\) −4.13317 + 23.4404i −0.164800 + 0.934629i
\(630\) 0 0
\(631\) 13.3916 + 4.87414i 0.533111 + 0.194036i 0.594527 0.804076i \(-0.297339\pi\)
−0.0614161 + 0.998112i \(0.519562\pi\)
\(632\) 0.688105 + 1.89055i 0.0273713 + 0.0752021i
\(633\) 1.06655 + 1.27106i 0.0423915 + 0.0505202i
\(634\) 2.54458 + 4.40735i 0.101058 + 0.175038i
\(635\) 0 0
\(636\) −0.0518706 0.294173i −0.00205680 0.0116647i
\(637\) 26.4471 4.66333i 1.04787 0.184768i
\(638\) 3.82795 + 2.21007i 0.151550 + 0.0874975i
\(639\) −15.6004 27.0207i −0.617142 1.06892i
\(640\) 0 0
\(641\) 37.3475 13.5934i 1.47514 0.536906i 0.525647 0.850703i \(-0.323823\pi\)
0.949490 + 0.313797i \(0.101601\pi\)
\(642\) −0.0861471 + 0.236687i −0.00339996 + 0.00934130i
\(643\) −10.2245 + 12.1851i −0.403214 + 0.480532i −0.928997 0.370087i \(-0.879328\pi\)
0.525783 + 0.850619i \(0.323772\pi\)
\(644\) −4.73096 + 26.8306i −0.186426 + 1.05727i
\(645\) 0 0
\(646\) 2.63745 + 0.766390i 0.103769 + 0.0301532i
\(647\) 18.8549i 0.741262i −0.928780 0.370631i \(-0.879142\pi\)
0.928780 0.370631i \(-0.120858\pi\)
\(648\) −7.34960 1.29593i −0.288719 0.0509090i
\(649\) 7.85659 + 6.59246i 0.308398 + 0.258777i
\(650\) 0 0
\(651\) 0.513784 0.187002i 0.0201368 0.00732919i
\(652\) −1.14111 1.35993i −0.0446894 0.0532588i
\(653\) −36.8279 + 21.2626i −1.44119 + 0.832070i −0.997929 0.0643232i \(-0.979511\pi\)
−0.443259 + 0.896394i \(0.646178\pi\)
\(654\) 0.0438691 0.0759835i 0.00171542 0.00297119i
\(655\) 0 0
\(656\) 3.53850 + 20.0678i 0.138155 + 0.783517i
\(657\) −3.66032 2.11329i −0.142803 0.0824473i
\(658\) −0.508551 + 0.293612i −0.0198254 + 0.0114462i
\(659\) 35.1057 29.4572i 1.36752 1.14749i 0.393945 0.919134i \(-0.371110\pi\)
0.973578 0.228354i \(-0.0733344\pi\)
\(660\) 0 0
\(661\) 43.3834 + 15.7903i 1.68742 + 0.614170i 0.994296 0.106652i \(-0.0340131\pi\)
0.693121 + 0.720822i \(0.256235\pi\)
\(662\) 2.10754 2.51167i 0.0819120 0.0976189i
\(663\) −1.51940 0.267910i −0.0590084 0.0104048i
\(664\) −9.51427 −0.369225
\(665\) 0 0
\(666\) −5.03382 −0.195056
\(667\) −59.0167 10.4062i −2.28514 0.402931i
\(668\) 17.9388 21.3787i 0.694074 0.827166i
\(669\) 0.146397 + 0.0532843i 0.00566005 + 0.00206009i
\(670\) 0 0
\(671\) 17.4704 14.6594i 0.674437 0.565920i
\(672\) 0.286845 0.165610i 0.0110653 0.00638855i
\(673\) −4.75292 2.74410i −0.183212 0.105777i 0.405589 0.914056i \(-0.367066\pi\)
−0.588801 + 0.808278i \(0.700400\pi\)
\(674\) −0.403213 2.28674i −0.0155312 0.0880818i
\(675\) 0 0
\(676\) 28.1681 48.7885i 1.08339 1.87648i
\(677\) 25.4878 14.7154i 0.979574 0.565557i 0.0774324 0.996998i \(-0.475328\pi\)
0.902141 + 0.431440i \(0.141994\pi\)
\(678\) 0.0928650 + 0.110672i 0.00356646 + 0.00425034i
\(679\) 15.6458 5.69460i 0.600430 0.218539i
\(680\) 0 0
\(681\) 0.771771 + 0.647593i 0.0295743 + 0.0248158i
\(682\) 2.43284 + 0.428975i 0.0931581 + 0.0164263i
\(683\) 27.4543i 1.05051i −0.850945 0.525254i \(-0.823970\pi\)
0.850945 0.525254i \(-0.176030\pi\)
\(684\) 2.75705 25.3675i 0.105419 0.969951i
\(685\) 0 0
\(686\) 0.689437 3.90999i 0.0263228 0.149284i
\(687\) −0.314690 + 0.375033i −0.0120062 + 0.0143084i
\(688\) −6.81069 + 18.7122i −0.259655 + 0.713397i
\(689\) −11.6170 + 4.22826i −0.442574 + 0.161084i
\(690\) 0 0
\(691\) −1.71390 2.96856i −0.0651997 0.112929i 0.831583 0.555401i \(-0.187435\pi\)
−0.896783 + 0.442471i \(0.854102\pi\)
\(692\) −23.8402 13.7641i −0.906267 0.523233i
\(693\) 14.3594 2.53195i 0.545468 0.0961806i
\(694\) −1.11631 6.33094i −0.0423747 0.240319i
\(695\) 0 0
\(696\) 0.241944 + 0.419059i 0.00917085 + 0.0158844i
\(697\) −10.4737 12.4820i −0.396718 0.472790i
\(698\) −0.405358 1.11371i −0.0153430 0.0421546i
\(699\) 0.496045 + 0.180546i 0.0187622 + 0.00682887i
\(700\) 0 0
\(701\) −0.566267 + 3.21146i −0.0213876 + 0.121295i −0.993632 0.112671i \(-0.964059\pi\)
0.972245 + 0.233966i \(0.0751705\pi\)
\(702\) 0.653276i 0.0246563i
\(703\) −2.30065 34.6637i −0.0867707 1.30737i
\(704\) −20.0672 −0.756309
\(705\) 0 0
\(706\) −1.20994 1.01526i −0.0455365 0.0382097i
\(707\) 2.40622 6.61103i 0.0904952 0.248634i
\(708\) 0.189843 + 0.521590i 0.00713474 + 0.0196025i
\(709\) 13.1285 11.0161i 0.493052 0.413720i −0.362067 0.932152i \(-0.617929\pi\)
0.855118 + 0.518433i \(0.173484\pi\)
\(710\) 0 0
\(711\) −3.60845 + 6.25001i −0.135327 + 0.234394i
\(712\) 8.31406 1.46599i 0.311583 0.0549404i
\(713\) −32.9838 + 5.81593i −1.23525 + 0.217808i
\(714\) −0.0424693 + 0.0735590i −0.00158937 + 0.00275288i
\(715\) 0 0
\(716\) −23.5930 + 19.7968i −0.881710 + 0.739843i
\(717\) −0.0602213 0.165457i −0.00224900 0.00617909i
\(718\) −1.83904 + 5.05273i −0.0686325 + 0.188566i
\(719\) −4.76900 4.00167i −0.177854 0.149237i 0.549515 0.835484i \(-0.314813\pi\)
−0.727369 + 0.686247i \(0.759257\pi\)
\(720\) 0 0
\(721\) 21.1977 0.789442
\(722\) −4.00516 0.168259i −0.149056 0.00626197i
\(723\) 0.00997498i 0.000370974i
\(724\) 1.54785 8.77829i 0.0575253 0.326242i
\(725\) 0 0
\(726\) 0.0422373 + 0.0153731i 0.00156757 + 0.000570549i
\(727\) −14.4739 39.7667i −0.536807 1.47487i −0.850825 0.525449i \(-0.823897\pi\)
0.314017 0.949417i \(-0.398325\pi\)
\(728\) −5.85229 6.97449i −0.216900 0.258492i
\(729\) −13.3280 23.0847i −0.493628 0.854989i
\(730\) 0 0
\(731\) −2.76498 15.6810i −0.102266 0.579982i
\(732\) 1.21552 0.214330i 0.0449270 0.00792185i
\(733\) 19.7134 + 11.3815i 0.728129 + 0.420386i 0.817737 0.575591i \(-0.195228\pi\)
−0.0896082 + 0.995977i \(0.528561\pi\)
\(734\) −3.53041 6.11485i −0.130310 0.225703i
\(735\) 0 0
\(736\) −19.0659 + 6.93941i −0.702778 + 0.255790i
\(737\) 2.23665 6.14514i 0.0823879 0.226359i
\(738\) 2.21505 2.63979i 0.0815370 0.0971720i
\(739\) −3.11567 + 17.6698i −0.114612 + 0.649996i 0.872330 + 0.488918i \(0.162608\pi\)
−0.986942 + 0.161078i \(0.948503\pi\)
\(740\) 0 0
\(741\) 2.24689 0.149127i 0.0825414 0.00547833i
\(742\) 0.680606i 0.0249858i
\(743\) −17.0676 3.00948i −0.626150 0.110407i −0.148435 0.988922i \(-0.547424\pi\)
−0.477715 + 0.878515i \(0.658535\pi\)
\(744\) 0.207168 + 0.173835i 0.00759516 + 0.00637310i
\(745\) 0 0
\(746\) 2.07750 0.756149i 0.0760628 0.0276846i
\(747\) −21.9377 26.1443i −0.802658 0.956570i
\(748\) 14.6002 8.42945i 0.533838 0.308211i
\(749\) −12.6055 + 21.8334i −0.460597 + 0.797777i
\(750\) 0 0
\(751\) −0.379642 2.15305i −0.0138533 0.0785661i 0.977097 0.212793i \(-0.0682560\pi\)
−0.990951 + 0.134227i \(0.957145\pi\)
\(752\) 5.33569 + 3.08056i 0.194573 + 0.112337i
\(753\) 0.257170 0.148477i 0.00937181 0.00541081i
\(754\) 7.58424 6.36394i 0.276202 0.231761i
\(755\) 0 0
\(756\) 1.48466 + 0.540370i 0.0539964 + 0.0196531i
\(757\) −10.0523 + 11.9799i −0.365358 + 0.435417i −0.917136 0.398574i \(-0.869505\pi\)
0.551778 + 0.833991i \(0.313950\pi\)
\(758\) −2.97043 0.523767i −0.107891 0.0190241i
\(759\) 1.90453 0.0691299
\(760\) 0 0
\(761\) 26.2993 0.953349 0.476675 0.879080i \(-0.341842\pi\)
0.476675 + 0.879080i \(0.341842\pi\)
\(762\) −0.216421 0.0381608i −0.00784009 0.00138242i
\(763\) 5.64493 6.72737i 0.204360 0.243547i
\(764\) 18.3000 + 6.66065i 0.662070 + 0.240974i
\(765\) 0 0
\(766\) 5.97705 5.01534i 0.215960 0.181212i
\(767\) 19.8945 11.4861i 0.718349 0.414739i
\(768\) −0.868806 0.501605i −0.0313503 0.0181001i
\(769\) −0.0147166 0.0834622i −0.000530695 0.00300972i 0.984541 0.175153i \(-0.0560420\pi\)
−0.985072 + 0.172143i \(0.944931\pi\)
\(770\) 0 0
\(771\) 1.07762 1.86649i 0.0388095 0.0672200i
\(772\) −36.2430 + 20.9249i −1.30441 + 0.753104i
\(773\) −0.00737611 0.00879051i −0.000265300 0.000316173i 0.765912 0.642946i \(-0.222288\pi\)
−0.766177 + 0.642630i \(0.777843\pi\)
\(774\) 3.16440 1.15175i 0.113742 0.0413987i
\(775\) 0 0
\(776\) 6.30871 + 5.29364i 0.226470 + 0.190030i
\(777\) 1.05803 + 0.186560i 0.0379568 + 0.00669281i
\(778\) 3.50389i 0.125621i
\(779\) 19.1904 + 14.0467i 0.687567 + 0.503275i
\(780\) 0 0
\(781\) −5.22461 + 29.6302i −0.186951 + 1.06025i
\(782\) 3.34447 3.98578i 0.119598 0.142531i
\(783\) −1.18860 + 3.26566i −0.0424771 + 0.116705i
\(784\) −14.5765 + 5.30542i −0.520590 + 0.189479i
\(785\) 0 0
\(786\) −0.00157680 0.00273110i −5.62426e−5 9.74150e-5i
\(787\) 26.0733 + 15.0534i 0.929411 + 0.536596i 0.886625 0.462488i \(-0.153043\pi\)
0.0427861 + 0.999084i \(0.486377\pi\)
\(788\) 2.63205 0.464101i 0.0937628 0.0165329i
\(789\) −0.286851 1.62681i −0.0102122 0.0579161i
\(790\) 0 0
\(791\) 7.23031 + 12.5233i 0.257080 + 0.445276i
\(792\) 4.63582 + 5.52475i 0.164727 + 0.196314i
\(793\) −17.4712 48.0017i −0.620421 1.70459i
\(794\) −5.28131 1.92224i −0.187427 0.0682178i
\(795\) 0 0
\(796\) 6.09044 34.5406i 0.215870 1.22426i
\(797\) 38.2339i 1.35432i −0.735838 0.677158i \(-0.763211\pi\)
0.735838 0.677158i \(-0.236789\pi\)
\(798\) 0.0345928 0.119047i 0.00122457 0.00421423i
\(799\) −4.92654 −0.174288
\(800\) 0 0
\(801\) 23.1987 + 19.4660i 0.819685 + 0.687798i
\(802\) −0.0934304 + 0.256698i −0.00329914 + 0.00906431i
\(803\) 1.39399 + 3.82995i 0.0491927 + 0.135156i
\(804\) 0.271121 0.227497i 0.00956169 0.00802321i
\(805\) 0 0
\(806\) 2.76665 4.79197i 0.0974509 0.168790i
\(807\) −1.07990 + 0.190415i −0.0380142 + 0.00670292i
\(808\) 3.42697 0.604267i 0.120560 0.0212580i
\(809\) 1.85001 3.20432i 0.0650431 0.112658i −0.831670 0.555270i \(-0.812615\pi\)
0.896713 + 0.442612i \(0.145948\pi\)
\(810\) 0 0
\(811\) 31.3508 26.3064i 1.10088 0.923744i 0.103392 0.994641i \(-0.467030\pi\)
0.997484 + 0.0708964i \(0.0225860\pi\)
\(812\) 8.18942 + 22.5002i 0.287392 + 0.789604i
\(813\) −0.147108 + 0.404175i −0.00515929 + 0.0141750i
\(814\) 3.71851 + 3.12020i 0.130334 + 0.109363i
\(815\) 0 0
\(816\) 0.891172 0.0311973
\(817\) 9.37739 + 21.2642i 0.328073 + 0.743940i
\(818\) 5.70327i 0.199410i
\(819\) 5.67122 32.1631i 0.198168 1.12387i
\(820\) 0 0
\(821\) −16.3884 5.96489i −0.571959 0.208176i 0.0398170 0.999207i \(-0.487323\pi\)
−0.611776 + 0.791031i \(0.709545\pi\)
\(822\) 0.0124276 + 0.0341447i 0.000433464 + 0.00119093i
\(823\) −4.18116 4.98291i −0.145746 0.173693i 0.688233 0.725490i \(-0.258387\pi\)
−0.833979 + 0.551797i \(0.813942\pi\)
\(824\) 5.24243 + 9.08016i 0.182629 + 0.316322i
\(825\) 0 0
\(826\) −0.219613 1.24549i −0.00764133 0.0433361i
\(827\) 1.59761 0.281701i 0.0555542 0.00979571i −0.145802 0.989314i \(-0.546576\pi\)
0.201356 + 0.979518i \(0.435465\pi\)
\(828\) −41.8632 24.1697i −1.45485 0.839955i
\(829\) 16.3252 + 28.2760i 0.566996 + 0.982066i 0.996861 + 0.0791727i \(0.0252279\pi\)
−0.429865 + 0.902893i \(0.641439\pi\)
\(830\) 0 0
\(831\) −1.71165 + 0.622990i −0.0593765 + 0.0216113i
\(832\) −15.3730 + 42.2371i −0.532964 + 1.46431i
\(833\) 7.97292 9.50176i 0.276245 0.329216i
\(834\) 0.0231159 0.131097i 0.000800437 0.00453951i
\(835\) 0 0
\(836\) −17.7607 + 17.0302i −0.614265 + 0.589001i
\(837\) 1.94227i 0.0671347i
\(838\) −0.863314 0.152226i −0.0298227 0.00525854i
\(839\) 8.85542 + 7.43058i 0.305723 + 0.256532i 0.782722 0.622372i \(-0.213831\pi\)
−0.476999 + 0.878904i \(0.658275\pi\)
\(840\) 0 0
\(841\) −22.2406 + 8.09491i −0.766916 + 0.279135i
\(842\) 3.58098 + 4.26764i 0.123409 + 0.147073i
\(843\) −1.19210 + 0.688261i −0.0410582 + 0.0237050i
\(844\) −20.3056 + 35.1703i −0.698947 + 1.21061i
\(845\) 0 0
\(846\) −0.180924 1.02607i −0.00622030 0.0352771i
\(847\) 3.89622 + 2.24948i 0.133876 + 0.0772931i
\(848\) 6.18419 3.57044i 0.212366 0.122610i
\(849\) −0.997547 + 0.837041i −0.0342357 + 0.0287272i
\(850\) 0 0
\(851\) −61.8427 22.5089i −2.11994 0.771596i
\(852\) −1.04668 + 1.24739i −0.0358587 + 0.0427347i
\(853\) 46.9892 + 8.28547i 1.60888 + 0.283689i 0.904609 0.426242i \(-0.140163\pi\)
0.704271 + 0.709931i \(0.251274\pi\)
\(854\) −2.81227 −0.0962339
\(855\) 0 0
\(856\) −12.4700 −0.426216
\(857\) 37.9503 + 6.69167i 1.29636 + 0.228583i 0.778913 0.627132i \(-0.215772\pi\)
0.517447 + 0.855716i \(0.326883\pi\)
\(858\) −0.202250 + 0.241033i −0.00690471 + 0.00822872i
\(859\) 18.0347 + 6.56408i 0.615335 + 0.223964i 0.630836 0.775916i \(-0.282712\pi\)
−0.0155009 + 0.999880i \(0.504934\pi\)
\(860\) 0 0
\(861\) −0.563405 + 0.472753i −0.0192008 + 0.0161114i
\(862\) 1.77626 1.02553i 0.0604997 0.0349295i
\(863\) 7.93967 + 4.58397i 0.270269 + 0.156040i 0.629010 0.777397i \(-0.283460\pi\)
−0.358741 + 0.933437i \(0.616794\pi\)
\(864\) 0.204316 + 1.15873i 0.00695097 + 0.0394209i
\(865\) 0 0
\(866\) 0.0696079 0.120564i 0.00236537 0.00409695i
\(867\) 0.559130 0.322814i 0.0189890 0.0109633i
\(868\) 8.60190 + 10.2513i 0.291967 + 0.347953i
\(869\) 6.53965 2.38024i 0.221842 0.0807440i
\(870\) 0 0
\(871\) −11.2207 9.41533i −0.380201 0.319026i
\(872\) 4.27777 + 0.754286i 0.144864 + 0.0255434i
\(873\) 29.5416i 0.999832i
\(874\) −3.35317 + 6.81370i −0.113423 + 0.230477i
\(875\) 0 0
\(876\) −0.0383037 + 0.217231i −0.00129416 + 0.00733955i
\(877\) −2.33325 + 2.78066i −0.0787882 + 0.0938961i −0.803999 0.594631i \(-0.797298\pi\)
0.725210 + 0.688527i \(0.241743\pi\)
\(878\) 1.96203 5.39064i 0.0662154 0.181925i
\(879\) 1.89857 0.691022i 0.0640370 0.0233076i
\(880\) 0 0
\(881\) 4.17191 + 7.22596i 0.140555 + 0.243449i 0.927706 0.373312i \(-0.121778\pi\)
−0.787151 + 0.616761i \(0.788445\pi\)
\(882\) 2.27177 + 1.31161i 0.0764946 + 0.0441642i
\(883\) −27.7836 + 4.89899i −0.934991 + 0.164864i −0.620331 0.784340i \(-0.713002\pi\)
−0.314660 + 0.949204i \(0.601891\pi\)
\(884\) −6.55725 37.1880i −0.220544 1.25077i
\(885\) 0 0
\(886\) −3.98633 6.90452i −0.133923 0.231962i
\(887\) 5.68349 + 6.77332i 0.190833 + 0.227426i 0.852974 0.521953i \(-0.174796\pi\)
−0.662141 + 0.749379i \(0.730352\pi\)
\(888\) 0.181750 + 0.499355i 0.00609914 + 0.0167573i
\(889\) −20.6698 7.52318i −0.693242 0.252319i
\(890\) 0 0
\(891\) −4.48278 + 25.4231i −0.150179 + 0.851707i
\(892\) 3.81312i 0.127673i
\(893\) 6.98301 1.71483i 0.233678 0.0573846i
\(894\) −0.301677 −0.0100896
\(895\) 0 0
\(896\) 8.24714 + 6.92017i 0.275517 + 0.231187i
\(897\) 1.45902 4.00862i 0.0487152 0.133844i
\(898\) 1.19425 + 3.28118i 0.0398528 + 0.109495i
\(899\) −22.5489 + 18.9208i −0.752048 + 0.631043i
\(900\) 0 0
\(901\) −2.85499 + 4.94498i −0.0951134 + 0.164741i
\(902\) −3.27254 + 0.577037i −0.108964 + 0.0192132i
\(903\) −0.707797 + 0.124804i −0.0235540 + 0.00415321i
\(904\) −3.57628 + 6.19431i −0.118945 + 0.206020i
\(905\) 0 0
\(906\) 0.0379619 0.0318539i 0.00126120 0.00105827i
\(907\) 1.44651 + 3.97425i 0.0480305 + 0.131963i 0.961389 0.275195i \(-0.0887423\pi\)
−0.913358 + 0.407157i \(0.866520\pi\)
\(908\) −8.43371 + 23.1714i −0.279882 + 0.768971i
\(909\) 9.56225 + 8.02368i 0.317160 + 0.266129i
\(910\) 0 0
\(911\) 10.1182 0.335231 0.167616 0.985852i \(-0.446393\pi\)
0.167616 + 0.985852i \(0.446393\pi\)
\(912\) −1.26317 + 0.310199i −0.0418278 + 0.0102717i
\(913\) 32.9110i 1.08920i
\(914\) −0.419463 + 2.37890i −0.0138746 + 0.0786869i
\(915\) 0 0
\(916\) −11.2599 4.09826i −0.372037 0.135410i
\(917\) −0.107959 0.296616i −0.00356513 0.00979513i
\(918\) −0.193949 0.231140i −0.00640128 0.00762875i
\(919\) −23.9378 41.4616i −0.789637 1.36769i −0.926190 0.377058i \(-0.876936\pi\)
0.136553 0.990633i \(-0.456398\pi\)
\(920\) 0 0
\(921\) 0.239030 + 1.35561i 0.00787630 + 0.0446687i
\(922\) −2.23562 + 0.394201i −0.0736263 + 0.0129823i
\(923\) 58.3629 + 33.6958i 1.92104 + 1.10911i
\(924\) −0.380483 0.659016i −0.0125170 0.0216800i
\(925\) 0 0
\(926\) −3.38790 + 1.23309i −0.111333 + 0.0405220i
\(927\) −12.8636 + 35.3424i −0.422496 + 1.16080i
\(928\) −11.4620 + 13.6599i −0.376259 + 0.448408i
\(929\) 3.75604 21.3015i 0.123232 0.698881i −0.859111 0.511789i \(-0.828983\pi\)
0.982342 0.187092i \(-0.0599061\pi\)
\(930\) 0 0
\(931\) −7.99367 + 16.2433i −0.261982 + 0.532351i
\(932\) 12.9202i 0.423214i
\(933\) 1.96487 + 0.346460i 0.0643271 + 0.0113426i
\(934\) −5.14864 4.32023i −0.168469 0.141362i
\(935\) 0 0
\(936\) 15.1798 5.52501i 0.496168 0.180591i
\(937\) −23.1939 27.6414i −0.757712 0.903006i 0.239989 0.970776i \(-0.422856\pi\)
−0.997701 + 0.0677696i \(0.978412\pi\)
\(938\) −0.698368 + 0.403203i −0.0228025 + 0.0131651i
\(939\) −0.673649 + 1.16679i −0.0219837 + 0.0380769i
\(940\) 0 0
\(941\) −8.41858 47.7441i −0.274438 1.55641i −0.740742 0.671789i \(-0.765526\pi\)
0.466305 0.884624i \(-0.345585\pi\)
\(942\) 0.0987847 + 0.0570334i 0.00321858 + 0.00185825i
\(943\) 39.0168 22.5264i 1.27056 0.733559i
\(944\) −10.1648 + 8.52928i −0.330836 + 0.277604i
\(945\) 0 0
\(946\) −3.05148 1.11065i −0.0992120 0.0361102i
\(947\) 22.6328 26.9727i 0.735466 0.876495i −0.260569 0.965455i \(-0.583910\pi\)
0.996035 + 0.0889606i \(0.0283545\pi\)
\(948\) 0.370922 + 0.0654036i 0.0120470 + 0.00212421i
\(949\) 9.12913 0.296344
\(950\) 0 0
\(951\) 1.92717 0.0624928
\(952\) −4.14128 0.730219i −0.134220 0.0236665i
\(953\) −28.6643 + 34.1607i −0.928527 + 1.10657i 0.0655452 + 0.997850i \(0.479121\pi\)
−0.994072 + 0.108725i \(0.965323\pi\)
\(954\) −1.13476 0.413019i −0.0367392 0.0133720i
\(955\) 0 0
\(956\) 3.30130 2.77012i 0.106772 0.0895920i
\(957\) 1.44957 0.836912i 0.0468581 0.0270535i
\(958\) 0.703510 + 0.406172i 0.0227294 + 0.0131228i
\(959\) 0.631553 + 3.58171i 0.0203939 + 0.115660i
\(960\) 0 0
\(961\) 7.27442 12.5997i 0.234659 0.406441i
\(962\) 9.41604 5.43635i 0.303585 0.175275i
\(963\) −28.7529 34.2664i −0.926549 1.10422i
\(964\) 0.229419 0.0835019i 0.00738910 0.00268941i
\(965\) 0 0
\(966\) −0.179908 0.150960i −0.00578843 0.00485707i
\(967\) −2.66419 0.469769i −0.0856746 0.0151067i 0.130647 0.991429i \(-0.458295\pi\)
−0.216321 + 0.976322i \(0.569406\pi\)
\(968\) 2.22529i 0.0715236i
\(969\) 0.750712 0.719836i 0.0241163 0.0231245i
\(970\) 0 0
\(971\) −1.24026 + 7.03387i −0.0398019 + 0.225728i −0.998220 0.0596403i \(-0.981005\pi\)
0.958418 + 0.285368i \(0.0921158\pi\)
\(972\) −2.70380 + 3.22227i −0.0867246 + 0.103354i
\(973\) 4.55716 12.5207i 0.146096 0.401395i
\(974\) 7.01988 2.55503i 0.224932 0.0818684i
\(975\) 0 0
\(976\) 14.7531 + 25.5531i 0.472235 + 0.817935i
\(977\) −25.0272 14.4495i −0.800692 0.462280i 0.0430210 0.999074i \(-0.486302\pi\)
−0.843713 + 0.536794i \(0.819635\pi\)
\(978\) 0.0150705 0.00265734i 0.000481903 8.49725e-5i
\(979\) −5.07105 28.7593i −0.162071 0.919152i
\(980\) 0 0
\(981\) 7.79083 + 13.4941i 0.248742 + 0.430834i
\(982\) −2.74722 3.27402i −0.0876675 0.104478i
\(983\) −3.53684 9.71738i −0.112808 0.309936i 0.870423 0.492305i \(-0.163846\pi\)
−0.983230 + 0.182369i \(0.941623\pi\)
\(984\) −0.341843 0.124421i −0.0108976 0.00396639i
\(985\) 0 0
\(986\) 0.794059 4.50333i 0.0252880 0.143415i
\(987\) 0.222371i 0.00707814i
\(988\) 22.2388 + 50.4289i 0.707511 + 1.60436i
\(989\) 44.0262 1.39995
\(990\) 0 0
\(991\) 24.2226 + 20.3251i 0.769455 + 0.645650i 0.940569 0.339602i \(-0.110292\pi\)
−0.171114 + 0.985251i \(0.554737\pi\)
\(992\) −3.40856 + 9.36494i −0.108222 + 0.297337i
\(993\) −0.424653 1.16673i −0.0134760 0.0370249i
\(994\) 2.84214 2.38484i 0.0901473 0.0756426i
\(995\) 0 0
\(996\) −0.890582 + 1.54253i −0.0282192 + 0.0488771i
\(997\) 7.75758 1.36787i 0.245685 0.0433209i −0.0494495 0.998777i \(-0.515747\pi\)
0.295134 + 0.955456i \(0.404636\pi\)
\(998\) −0.122470 + 0.0215948i −0.00387672 + 0.000683571i
\(999\) −1.90824 + 3.30518i −0.0603742 + 0.104571i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 475.2.u.b.74.3 36
5.2 odd 4 95.2.k.a.36.2 18
5.3 odd 4 475.2.l.c.226.2 18
5.4 even 2 inner 475.2.u.b.74.4 36
15.2 even 4 855.2.bs.c.226.2 18
19.9 even 9 inner 475.2.u.b.199.4 36
95.3 even 36 9025.2.a.cf.1.4 9
95.9 even 18 inner 475.2.u.b.199.3 36
95.22 even 36 1805.2.a.s.1.6 9
95.28 odd 36 475.2.l.c.351.2 18
95.47 odd 36 95.2.k.a.66.2 yes 18
95.73 odd 36 9025.2.a.cc.1.6 9
95.92 odd 36 1805.2.a.v.1.4 9
285.47 even 36 855.2.bs.c.541.2 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.k.a.36.2 18 5.2 odd 4
95.2.k.a.66.2 yes 18 95.47 odd 36
475.2.l.c.226.2 18 5.3 odd 4
475.2.l.c.351.2 18 95.28 odd 36
475.2.u.b.74.3 36 1.1 even 1 trivial
475.2.u.b.74.4 36 5.4 even 2 inner
475.2.u.b.199.3 36 95.9 even 18 inner
475.2.u.b.199.4 36 19.9 even 9 inner
855.2.bs.c.226.2 18 15.2 even 4
855.2.bs.c.541.2 18 285.47 even 36
1805.2.a.s.1.6 9 95.22 even 36
1805.2.a.v.1.4 9 95.92 odd 36
9025.2.a.cc.1.6 9 95.73 odd 36
9025.2.a.cf.1.4 9 95.3 even 36