Properties

Label 475.2.u.b.424.6
Level $475$
Weight $2$
Character 475.424
Analytic conductor $3.793$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [475,2,Mod(24,475)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(475, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 16])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("475.24"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 475 = 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 475.u (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [36,0,0,6,0,-12,0,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.79289409601\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(6\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 424.6
Character \(\chi\) \(=\) 475.424
Dual form 475.2.u.b.149.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.47196 + 1.75422i) q^{2} +(-1.13116 + 3.10785i) q^{3} +(-0.563307 + 3.19467i) q^{4} +(-7.11687 + 2.59033i) q^{6} +(2.54534 + 1.46955i) q^{7} +(-2.46697 + 1.42431i) q^{8} +(-6.08105 - 5.10261i) q^{9} +(0.288800 + 0.500217i) q^{11} +(-9.29136 - 5.36437i) q^{12} +(-0.229289 - 0.629967i) q^{13} +(1.16873 + 6.62820i) q^{14} +(-0.0331972 - 0.0120828i) q^{16} +(-0.226198 - 0.269572i) q^{17} -18.1783i q^{18} +(3.86230 - 2.02056i) q^{19} +(-7.44633 + 6.24822i) q^{21} +(-0.452386 + 1.24292i) q^{22} +(4.05820 + 0.715571i) q^{23} +(-1.63598 - 9.27810i) q^{24} +(0.767594 - 1.32951i) q^{26} +(14.1442 - 8.16613i) q^{27} +(-6.12854 + 7.30371i) q^{28} +(-2.30426 - 1.93351i) q^{29} +(-0.148853 + 0.257821i) q^{31} +(1.92090 + 5.27762i) q^{32} +(-1.88128 + 0.331720i) q^{33} +(0.139933 - 0.793600i) q^{34} +(19.7266 - 16.5526i) q^{36} -8.30595i q^{37} +(9.22966 + 3.80111i) q^{38} +2.21721 q^{39} +(-2.51099 - 0.913926i) q^{41} +(-21.9215 - 3.86534i) q^{42} +(-6.49806 + 1.14578i) q^{43} +(-1.76071 + 0.640846i) q^{44} +(4.71826 + 8.17226i) q^{46} +(-7.09153 + 8.45135i) q^{47} +(0.0751029 - 0.0895041i) q^{48} +(0.819160 + 1.41883i) q^{49} +(1.09366 - 0.398058i) q^{51} +(2.14170 - 0.377639i) q^{52} +(4.04421 + 0.713104i) q^{53} +(35.1449 + 12.7917i) q^{54} -8.37237 q^{56} +(1.91071 + 14.2890i) q^{57} -6.88822i q^{58} +(-0.467725 + 0.392468i) q^{59} +(0.178325 - 1.01133i) q^{61} +(-0.671381 + 0.118383i) q^{62} +(-7.97978 - 21.9243i) q^{63} +(-6.46593 + 11.1993i) q^{64} +(-3.35108 - 2.81189i) q^{66} +(2.14429 - 2.55547i) q^{67} +(0.988612 - 0.570776i) q^{68} +(-6.81438 + 11.8028i) q^{69} +(-2.29645 - 13.0238i) q^{71} +(22.2695 + 3.92671i) q^{72} +(-2.44161 + 6.70827i) q^{73} +(14.5704 - 12.2261i) q^{74} +(4.27938 + 13.4770i) q^{76} +1.69763i q^{77} +(3.26364 + 3.88946i) q^{78} +(1.44931 + 0.527504i) q^{79} +(5.24435 + 29.7422i) q^{81} +(-2.09286 - 5.75009i) q^{82} +(11.5342 + 6.65930i) q^{83} +(-15.7664 - 27.3082i) q^{84} +(-11.5749 - 9.71246i) q^{86} +(8.61554 - 4.97418i) q^{87} +(-1.42492 - 0.822680i) q^{88} +(-6.17500 + 2.24752i) q^{89} +(0.342150 - 1.94043i) q^{91} +(-4.57203 + 12.5615i) q^{92} +(-0.632892 - 0.754252i) q^{93} -25.2640 q^{94} -18.5749 q^{96} +(7.84066 + 9.34414i) q^{97} +(-1.28316 + 3.52545i) q^{98} +(0.796200 - 4.51548i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 6 q^{4} - 12 q^{6} - 6 q^{9} + 24 q^{14} - 6 q^{16} - 42 q^{21} + 30 q^{24} + 6 q^{26} - 30 q^{29} - 36 q^{31} + 24 q^{34} + 150 q^{36} - 72 q^{39} - 60 q^{41} - 84 q^{44} + 18 q^{46} - 18 q^{49}+ \cdots + 186 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/475\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\)
\(\chi(n)\) \(-1\) \(e\left(\frac{7}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.47196 + 1.75422i 1.04084 + 1.24042i 0.970044 + 0.242928i \(0.0781078\pi\)
0.0707907 + 0.997491i \(0.477448\pi\)
\(3\) −1.13116 + 3.10785i −0.653078 + 1.79432i −0.0470226 + 0.998894i \(0.514973\pi\)
−0.606055 + 0.795423i \(0.707249\pi\)
\(4\) −0.563307 + 3.19467i −0.281653 + 1.59734i
\(5\) 0 0
\(6\) −7.11687 + 2.59033i −2.90545 + 1.05750i
\(7\) 2.54534 + 1.46955i 0.962047 + 0.555438i 0.896802 0.442431i \(-0.145884\pi\)
0.0652445 + 0.997869i \(0.479217\pi\)
\(8\) −2.46697 + 1.42431i −0.872206 + 0.503569i
\(9\) −6.08105 5.10261i −2.02702 1.70087i
\(10\) 0 0
\(11\) 0.288800 + 0.500217i 0.0870766 + 0.150821i 0.906274 0.422690i \(-0.138914\pi\)
−0.819198 + 0.573511i \(0.805581\pi\)
\(12\) −9.29136 5.36437i −2.68218 1.54856i
\(13\) −0.229289 0.629967i −0.0635934 0.174721i 0.903826 0.427900i \(-0.140746\pi\)
−0.967420 + 0.253178i \(0.918524\pi\)
\(14\) 1.16873 + 6.62820i 0.312356 + 1.77146i
\(15\) 0 0
\(16\) −0.0331972 0.0120828i −0.00829929 0.00302070i
\(17\) −0.226198 0.269572i −0.0548610 0.0653808i 0.737916 0.674892i \(-0.235810\pi\)
−0.792777 + 0.609512i \(0.791366\pi\)
\(18\) 18.1783i 4.28467i
\(19\) 3.86230 2.02056i 0.886071 0.463549i
\(20\) 0 0
\(21\) −7.44633 + 6.24822i −1.62492 + 1.36347i
\(22\) −0.452386 + 1.24292i −0.0964489 + 0.264991i
\(23\) 4.05820 + 0.715571i 0.846194 + 0.149207i 0.579903 0.814686i \(-0.303091\pi\)
0.266291 + 0.963893i \(0.414202\pi\)
\(24\) −1.63598 9.27810i −0.333943 1.89388i
\(25\) 0 0
\(26\) 0.767594 1.32951i 0.150538 0.260739i
\(27\) 14.1442 8.16613i 2.72204 1.57157i
\(28\) −6.12854 + 7.30371i −1.15818 + 1.38027i
\(29\) −2.30426 1.93351i −0.427891 0.359043i 0.403264 0.915083i \(-0.367875\pi\)
−0.831155 + 0.556041i \(0.812320\pi\)
\(30\) 0 0
\(31\) −0.148853 + 0.257821i −0.0267348 + 0.0463061i −0.879083 0.476668i \(-0.841844\pi\)
0.852348 + 0.522974i \(0.175178\pi\)
\(32\) 1.92090 + 5.27762i 0.339570 + 0.932961i
\(33\) −1.88128 + 0.331720i −0.327488 + 0.0577450i
\(34\) 0.139933 0.793600i 0.0239983 0.136101i
\(35\) 0 0
\(36\) 19.7266 16.5526i 3.28777 2.75877i
\(37\) 8.30595i 1.36549i −0.730657 0.682745i \(-0.760786\pi\)
0.730657 0.682745i \(-0.239214\pi\)
\(38\) 9.22966 + 3.80111i 1.49725 + 0.616622i
\(39\) 2.21721 0.355037
\(40\) 0 0
\(41\) −2.51099 0.913926i −0.392151 0.142731i 0.138416 0.990374i \(-0.455799\pi\)
−0.530567 + 0.847643i \(0.678021\pi\)
\(42\) −21.9215 3.86534i −3.38255 0.596436i
\(43\) −6.49806 + 1.14578i −0.990945 + 0.174730i −0.645543 0.763724i \(-0.723369\pi\)
−0.345403 + 0.938455i \(0.612258\pi\)
\(44\) −1.76071 + 0.640846i −0.265437 + 0.0966112i
\(45\) 0 0
\(46\) 4.71826 + 8.17226i 0.695669 + 1.20493i
\(47\) −7.09153 + 8.45135i −1.03441 + 1.23276i −0.0623379 + 0.998055i \(0.519856\pi\)
−0.972068 + 0.234701i \(0.924589\pi\)
\(48\) 0.0751029 0.0895041i 0.0108402 0.0129188i
\(49\) 0.819160 + 1.41883i 0.117023 + 0.202690i
\(50\) 0 0
\(51\) 1.09366 0.398058i 0.153142 0.0557393i
\(52\) 2.14170 0.377639i 0.297000 0.0523691i
\(53\) 4.04421 + 0.713104i 0.555515 + 0.0979523i 0.444356 0.895850i \(-0.353433\pi\)
0.111159 + 0.993803i \(0.464544\pi\)
\(54\) 35.1449 + 12.7917i 4.78261 + 1.74073i
\(55\) 0 0
\(56\) −8.37237 −1.11880
\(57\) 1.91071 + 14.2890i 0.253080 + 1.89263i
\(58\) 6.88822i 0.904468i
\(59\) −0.467725 + 0.392468i −0.0608926 + 0.0510950i −0.672726 0.739892i \(-0.734877\pi\)
0.611833 + 0.790987i \(0.290432\pi\)
\(60\) 0 0
\(61\) 0.178325 1.01133i 0.0228322 0.129488i −0.971261 0.238016i \(-0.923503\pi\)
0.994093 + 0.108529i \(0.0346139\pi\)
\(62\) −0.671381 + 0.118383i −0.0852655 + 0.0150346i
\(63\) −7.97978 21.9243i −1.00536 2.76220i
\(64\) −6.46593 + 11.1993i −0.808242 + 1.39992i
\(65\) 0 0
\(66\) −3.35108 2.81189i −0.412489 0.346120i
\(67\) 2.14429 2.55547i 0.261967 0.312200i −0.618988 0.785401i \(-0.712457\pi\)
0.880955 + 0.473201i \(0.156901\pi\)
\(68\) 0.988612 0.570776i 0.119887 0.0692167i
\(69\) −6.81438 + 11.8028i −0.820355 + 1.42090i
\(70\) 0 0
\(71\) −2.29645 13.0238i −0.272538 1.54564i −0.746675 0.665189i \(-0.768351\pi\)
0.474137 0.880451i \(-0.342760\pi\)
\(72\) 22.2695 + 3.92671i 2.62448 + 0.462767i
\(73\) −2.44161 + 6.70827i −0.285769 + 0.785143i 0.710878 + 0.703316i \(0.248298\pi\)
−0.996647 + 0.0818275i \(0.973924\pi\)
\(74\) 14.5704 12.2261i 1.69378 1.42125i
\(75\) 0 0
\(76\) 4.27938 + 13.4770i 0.490878 + 1.54591i
\(77\) 1.69763i 0.193463i
\(78\) 3.26364 + 3.88946i 0.369535 + 0.440395i
\(79\) 1.44931 + 0.527504i 0.163060 + 0.0593489i 0.422260 0.906475i \(-0.361237\pi\)
−0.259201 + 0.965824i \(0.583459\pi\)
\(80\) 0 0
\(81\) 5.24435 + 29.7422i 0.582706 + 3.30469i
\(82\) −2.09286 5.75009i −0.231118 0.634991i
\(83\) 11.5342 + 6.65930i 1.26605 + 0.730953i 0.974238 0.225524i \(-0.0724093\pi\)
0.291809 + 0.956476i \(0.405743\pi\)
\(84\) −15.7664 27.3082i −1.72026 2.97957i
\(85\) 0 0
\(86\) −11.5749 9.71246i −1.24815 1.04732i
\(87\) 8.61554 4.97418i 0.923683 0.533288i
\(88\) −1.42492 0.822680i −0.151897 0.0876980i
\(89\) −6.17500 + 2.24752i −0.654549 + 0.238236i −0.647881 0.761741i \(-0.724345\pi\)
−0.00666773 + 0.999978i \(0.502122\pi\)
\(90\) 0 0
\(91\) 0.342150 1.94043i 0.0358671 0.203412i
\(92\) −4.57203 + 12.5615i −0.476667 + 1.30963i
\(93\) −0.632892 0.754252i −0.0656279 0.0782123i
\(94\) −25.2640 −2.60578
\(95\) 0 0
\(96\) −18.5749 −1.89579
\(97\) 7.84066 + 9.34414i 0.796099 + 0.948754i 0.999540 0.0303336i \(-0.00965696\pi\)
−0.203441 + 0.979087i \(0.565213\pi\)
\(98\) −1.28316 + 3.52545i −0.129618 + 0.356124i
\(99\) 0.796200 4.51548i 0.0800211 0.453822i
\(100\) 0 0
\(101\) 0.545793 0.198653i 0.0543085 0.0197667i −0.314723 0.949184i \(-0.601912\pi\)
0.369032 + 0.929417i \(0.379689\pi\)
\(102\) 2.30810 + 1.33258i 0.228536 + 0.131945i
\(103\) 5.60414 3.23555i 0.552193 0.318809i −0.197813 0.980240i \(-0.563384\pi\)
0.750006 + 0.661431i \(0.230051\pi\)
\(104\) 1.46292 + 1.22753i 0.143451 + 0.120370i
\(105\) 0 0
\(106\) 4.70199 + 8.14409i 0.456698 + 0.791024i
\(107\) −15.9165 9.18942i −1.53871 0.888374i −0.998915 0.0465776i \(-0.985169\pi\)
−0.539795 0.841797i \(-0.681498\pi\)
\(108\) 18.1206 + 49.7860i 1.74366 + 4.79066i
\(109\) 0.435803 + 2.47156i 0.0417424 + 0.236733i 0.998540 0.0540230i \(-0.0172044\pi\)
−0.956797 + 0.290756i \(0.906093\pi\)
\(110\) 0 0
\(111\) 25.8136 + 9.39539i 2.45012 + 0.891771i
\(112\) −0.0667417 0.0795397i −0.00630650 0.00751579i
\(113\) 11.3386i 1.06665i 0.845911 + 0.533325i \(0.179058\pi\)
−0.845911 + 0.533325i \(0.820942\pi\)
\(114\) −22.2535 + 24.3847i −2.08423 + 2.28384i
\(115\) 0 0
\(116\) 7.47492 6.27220i 0.694029 0.582359i
\(117\) −1.82015 + 5.00083i −0.168273 + 0.462327i
\(118\) −1.37695 0.242793i −0.126758 0.0223509i
\(119\) −0.179600 1.01856i −0.0164639 0.0933713i
\(120\) 0 0
\(121\) 5.33319 9.23735i 0.484835 0.839759i
\(122\) 2.03658 1.17582i 0.184383 0.106454i
\(123\) 5.68068 6.76997i 0.512210 0.610428i
\(124\) −0.739805 0.620770i −0.0664364 0.0557468i
\(125\) 0 0
\(126\) 26.7140 46.2700i 2.37987 4.12206i
\(127\) −6.56408 18.0347i −0.582468 1.60032i −0.783949 0.620826i \(-0.786797\pi\)
0.201480 0.979493i \(-0.435425\pi\)
\(128\) −18.1017 + 3.19181i −1.59998 + 0.282119i
\(129\) 3.78945 21.4911i 0.333643 1.89218i
\(130\) 0 0
\(131\) −5.24756 + 4.40322i −0.458481 + 0.384711i −0.842572 0.538584i \(-0.818959\pi\)
0.384091 + 0.923295i \(0.374515\pi\)
\(132\) 6.19692i 0.539373i
\(133\) 12.8002 + 0.532827i 1.10991 + 0.0462019i
\(134\) 7.63916 0.659923
\(135\) 0 0
\(136\) 0.941977 + 0.342852i 0.0807738 + 0.0293993i
\(137\) 13.0406 + 2.29941i 1.11413 + 0.196452i 0.700264 0.713884i \(-0.253066\pi\)
0.413870 + 0.910336i \(0.364177\pi\)
\(138\) −30.7353 + 5.41946i −2.61636 + 0.461335i
\(139\) 2.73439 0.995237i 0.231928 0.0844149i −0.223442 0.974717i \(-0.571729\pi\)
0.455370 + 0.890302i \(0.349507\pi\)
\(140\) 0 0
\(141\) −18.2438 31.5992i −1.53641 2.66114i
\(142\) 19.4663 23.1990i 1.63357 1.94682i
\(143\) 0.248901 0.296629i 0.0208142 0.0248054i
\(144\) 0.140220 + 0.242868i 0.0116850 + 0.0202390i
\(145\) 0 0
\(146\) −15.3617 + 5.59121i −1.27134 + 0.462732i
\(147\) −5.33610 + 0.940899i −0.440114 + 0.0776040i
\(148\) 26.5348 + 4.67880i 2.18115 + 0.384595i
\(149\) −8.32247 3.02913i −0.681804 0.248156i −0.0221819 0.999754i \(-0.507061\pi\)
−0.659622 + 0.751598i \(0.729284\pi\)
\(150\) 0 0
\(151\) 8.37160 0.681271 0.340636 0.940195i \(-0.389358\pi\)
0.340636 + 0.940195i \(0.389358\pi\)
\(152\) −6.65027 + 10.4858i −0.539408 + 0.850508i
\(153\) 2.79348i 0.225839i
\(154\) −2.97801 + 2.49884i −0.239975 + 0.201363i
\(155\) 0 0
\(156\) −1.24897 + 7.08324i −0.0999973 + 0.567113i
\(157\) 15.6255 2.75519i 1.24705 0.219888i 0.489115 0.872219i \(-0.337320\pi\)
0.757934 + 0.652331i \(0.226209\pi\)
\(158\) 1.20797 + 3.31887i 0.0961008 + 0.264035i
\(159\) −6.79088 + 11.7622i −0.538552 + 0.932799i
\(160\) 0 0
\(161\) 9.27793 + 7.78511i 0.731203 + 0.613552i
\(162\) −44.4548 + 52.9791i −3.49270 + 4.16243i
\(163\) −8.42002 + 4.86130i −0.659507 + 0.380766i −0.792089 0.610406i \(-0.791006\pi\)
0.132582 + 0.991172i \(0.457673\pi\)
\(164\) 4.33415 7.50697i 0.338440 0.586195i
\(165\) 0 0
\(166\) 5.29612 + 30.0358i 0.411059 + 2.33123i
\(167\) 0.277863 + 0.0489947i 0.0215017 + 0.00379132i 0.184389 0.982853i \(-0.440969\pi\)
−0.162887 + 0.986645i \(0.552081\pi\)
\(168\) 9.47052 26.0200i 0.730666 2.00749i
\(169\) 9.61429 8.06735i 0.739561 0.620565i
\(170\) 0 0
\(171\) −33.7969 7.42063i −2.58452 0.567470i
\(172\) 21.4046i 1.63208i
\(173\) −9.72470 11.5894i −0.739355 0.881129i 0.257002 0.966411i \(-0.417265\pi\)
−0.996357 + 0.0852817i \(0.972821\pi\)
\(174\) 21.4075 + 7.79171i 1.62290 + 0.590688i
\(175\) 0 0
\(176\) −0.00354334 0.0200953i −0.000267089 0.00151474i
\(177\) −0.690657 1.89756i −0.0519129 0.142630i
\(178\) −13.0320 7.52403i −0.976790 0.563950i
\(179\) −7.22664 12.5169i −0.540145 0.935558i −0.998895 0.0469929i \(-0.985036\pi\)
0.458751 0.888565i \(-0.348297\pi\)
\(180\) 0 0
\(181\) −5.33540 4.47693i −0.396577 0.332768i 0.422592 0.906320i \(-0.361120\pi\)
−0.819169 + 0.573552i \(0.805565\pi\)
\(182\) 3.90757 2.25604i 0.289648 0.167229i
\(183\) 2.94135 + 1.69819i 0.217431 + 0.125534i
\(184\) −11.0307 + 4.01483i −0.813192 + 0.295978i
\(185\) 0 0
\(186\) 0.391527 2.22046i 0.0287082 0.162812i
\(187\) 0.0695184 0.191000i 0.00508369 0.0139673i
\(188\) −23.0046 27.4158i −1.67778 1.99950i
\(189\) 48.0022 3.49165
\(190\) 0 0
\(191\) 5.49050 0.397279 0.198639 0.980073i \(-0.436348\pi\)
0.198639 + 0.980073i \(0.436348\pi\)
\(192\) −27.4918 32.7634i −1.98405 2.36450i
\(193\) 2.21521 6.08625i 0.159455 0.438098i −0.834078 0.551647i \(-0.814000\pi\)
0.993532 + 0.113549i \(0.0362219\pi\)
\(194\) −4.85048 + 27.5085i −0.348244 + 1.97499i
\(195\) 0 0
\(196\) −4.99412 + 1.81771i −0.356723 + 0.129837i
\(197\) 8.04931 + 4.64727i 0.573490 + 0.331104i 0.758542 0.651624i \(-0.225912\pi\)
−0.185052 + 0.982729i \(0.559245\pi\)
\(198\) 9.09310 5.24991i 0.646219 0.373095i
\(199\) 18.6201 + 15.6242i 1.31995 + 1.10757i 0.986317 + 0.164863i \(0.0527181\pi\)
0.333630 + 0.942704i \(0.391726\pi\)
\(200\) 0 0
\(201\) 5.51646 + 9.55478i 0.389101 + 0.673942i
\(202\) 1.15187 + 0.665031i 0.0810451 + 0.0467914i
\(203\) −3.02374 8.30765i −0.212225 0.583083i
\(204\) 0.655601 + 3.71810i 0.0459012 + 0.260319i
\(205\) 0 0
\(206\) 13.9250 + 5.06827i 0.970198 + 0.353123i
\(207\) −21.0269 25.0588i −1.46147 1.74171i
\(208\) 0.0236836i 0.00164216i
\(209\) 2.12615 + 1.34845i 0.147069 + 0.0932739i
\(210\) 0 0
\(211\) 18.3601 15.4060i 1.26396 1.06059i 0.268715 0.963220i \(-0.413401\pi\)
0.995248 0.0973716i \(-0.0310435\pi\)
\(212\) −4.55626 + 12.5182i −0.312925 + 0.859755i
\(213\) 43.0736 + 7.59504i 2.95136 + 0.520404i
\(214\) −7.30832 41.4475i −0.499586 2.83330i
\(215\) 0 0
\(216\) −23.2622 + 40.2913i −1.58279 + 2.74147i
\(217\) −0.757764 + 0.437495i −0.0514403 + 0.0296991i
\(218\) −3.69417 + 4.40254i −0.250201 + 0.298178i
\(219\) −18.0864 15.1763i −1.22217 1.02552i
\(220\) 0 0
\(221\) −0.117957 + 0.204307i −0.00793463 + 0.0137432i
\(222\) 21.5152 + 59.1124i 1.44400 + 3.96736i
\(223\) 20.2565 3.57177i 1.35648 0.239183i 0.552336 0.833622i \(-0.313737\pi\)
0.804141 + 0.594438i \(0.202626\pi\)
\(224\) −2.86640 + 16.2562i −0.191520 + 1.08616i
\(225\) 0 0
\(226\) −19.8904 + 16.6901i −1.32309 + 1.11021i
\(227\) 12.6949i 0.842593i 0.906923 + 0.421297i \(0.138425\pi\)
−0.906923 + 0.421297i \(0.861575\pi\)
\(228\) −46.7250 1.94500i −3.09444 0.128811i
\(229\) −5.76019 −0.380644 −0.190322 0.981722i \(-0.560953\pi\)
−0.190322 + 0.981722i \(0.560953\pi\)
\(230\) 0 0
\(231\) −5.27596 1.92029i −0.347133 0.126346i
\(232\) 8.43845 + 1.48793i 0.554012 + 0.0976872i
\(233\) −2.73631 + 0.482485i −0.179262 + 0.0316087i −0.262558 0.964916i \(-0.584566\pi\)
0.0832967 + 0.996525i \(0.473455\pi\)
\(234\) −11.4517 + 4.16810i −0.748624 + 0.272477i
\(235\) 0 0
\(236\) −0.990333 1.71531i −0.0644652 0.111657i
\(237\) −3.27881 + 3.90753i −0.212981 + 0.253821i
\(238\) 1.52241 1.81434i 0.0986834 0.117606i
\(239\) 9.72936 + 16.8518i 0.629340 + 1.09005i 0.987684 + 0.156460i \(0.0500081\pi\)
−0.358344 + 0.933590i \(0.616659\pi\)
\(240\) 0 0
\(241\) 6.80304 2.47610i 0.438222 0.159500i −0.113481 0.993540i \(-0.536200\pi\)
0.551704 + 0.834040i \(0.313978\pi\)
\(242\) 24.0546 4.24147i 1.54629 0.272652i
\(243\) −50.1140 8.83644i −3.21481 0.566858i
\(244\) 3.13042 + 1.13938i 0.200404 + 0.0729412i
\(245\) 0 0
\(246\) 20.2378 1.29031
\(247\) −2.15847 1.96983i −0.137340 0.125337i
\(248\) 0.848051i 0.0538513i
\(249\) −33.7432 + 28.3139i −2.13839 + 1.79432i
\(250\) 0 0
\(251\) 2.57969 14.6301i 0.162829 0.923446i −0.788447 0.615103i \(-0.789114\pi\)
0.951275 0.308343i \(-0.0997745\pi\)
\(252\) 74.5359 13.1427i 4.69532 0.827911i
\(253\) 0.814070 + 2.23664i 0.0511801 + 0.140616i
\(254\) 21.9746 38.0612i 1.37881 2.38817i
\(255\) 0 0
\(256\) −12.4313 10.4311i −0.776958 0.651946i
\(257\) −12.6988 + 15.1338i −0.792128 + 0.944021i −0.999413 0.0342591i \(-0.989093\pi\)
0.207285 + 0.978281i \(0.433537\pi\)
\(258\) 43.2779 24.9865i 2.69436 1.55559i
\(259\) 12.2060 21.1414i 0.758445 1.31367i
\(260\) 0 0
\(261\) 4.14641 + 23.5155i 0.256657 + 1.45557i
\(262\) −15.4484 2.72397i −0.954407 0.168288i
\(263\) −4.05337 + 11.1365i −0.249942 + 0.686709i 0.749746 + 0.661725i \(0.230176\pi\)
−0.999688 + 0.0249835i \(0.992047\pi\)
\(264\) 4.16859 3.49786i 0.256559 0.215278i
\(265\) 0 0
\(266\) 17.9067 + 23.2386i 1.09793 + 1.42485i
\(267\) 21.7333i 1.33005i
\(268\) 6.95598 + 8.28982i 0.424904 + 0.506381i
\(269\) −10.2199 3.71975i −0.623120 0.226797i 0.0111138 0.999938i \(-0.496462\pi\)
−0.634234 + 0.773141i \(0.718685\pi\)
\(270\) 0 0
\(271\) −1.01974 5.78324i −0.0619448 0.351307i −0.999989 0.00478962i \(-0.998475\pi\)
0.938044 0.346517i \(-0.112636\pi\)
\(272\) 0.00425195 + 0.0116821i 0.000257812 + 0.000708333i
\(273\) 5.64353 + 3.25830i 0.341562 + 0.197201i
\(274\) 15.1616 + 26.2607i 0.915947 + 1.58647i
\(275\) 0 0
\(276\) −33.8676 28.4183i −2.03859 1.71058i
\(277\) −20.6224 + 11.9064i −1.23908 + 0.715385i −0.968907 0.247426i \(-0.920415\pi\)
−0.270176 + 0.962811i \(0.587082\pi\)
\(278\) 5.77079 + 3.33176i 0.346109 + 0.199826i
\(279\) 2.22075 0.808285i 0.132953 0.0483908i
\(280\) 0 0
\(281\) −1.23971 + 7.03074i −0.0739549 + 0.419419i 0.925243 + 0.379375i \(0.123861\pi\)
−0.999198 + 0.0400440i \(0.987250\pi\)
\(282\) 28.5777 78.5166i 1.70178 4.67559i
\(283\) −17.1844 20.4796i −1.02151 1.21739i −0.975853 0.218428i \(-0.929907\pi\)
−0.0456547 0.998957i \(-0.514537\pi\)
\(284\) 42.9003 2.54567
\(285\) 0 0
\(286\) 0.886725 0.0524332
\(287\) −5.04825 6.01628i −0.297989 0.355130i
\(288\) 15.2486 41.8951i 0.898530 2.46869i
\(289\) 2.93052 16.6198i 0.172383 0.977634i
\(290\) 0 0
\(291\) −37.9092 + 13.7978i −2.22228 + 0.808843i
\(292\) −20.0553 11.5789i −1.17365 0.677607i
\(293\) −0.929566 + 0.536685i −0.0543058 + 0.0313535i −0.526907 0.849923i \(-0.676648\pi\)
0.472601 + 0.881276i \(0.343315\pi\)
\(294\) −9.50508 7.97571i −0.554348 0.465153i
\(295\) 0 0
\(296\) 11.8302 + 20.4906i 0.687618 + 1.19099i
\(297\) 8.16967 + 4.71676i 0.474053 + 0.273694i
\(298\) −6.93662 19.0582i −0.401827 1.10401i
\(299\) −0.479716 2.72061i −0.0277427 0.157337i
\(300\) 0 0
\(301\) −18.2235 6.63283i −1.05039 0.382310i
\(302\) 12.3227 + 14.6856i 0.709091 + 0.845062i
\(303\) 1.92095i 0.110356i
\(304\) −0.152631 + 0.0204097i −0.00875400 + 0.00117058i
\(305\) 0 0
\(306\) −4.90037 + 4.11190i −0.280135 + 0.235062i
\(307\) −8.88231 + 24.4039i −0.506940 + 1.39281i 0.377438 + 0.926035i \(0.376805\pi\)
−0.884378 + 0.466772i \(0.845417\pi\)
\(308\) −5.42336 0.956284i −0.309025 0.0544894i
\(309\) 3.71640 + 21.0768i 0.211419 + 1.19901i
\(310\) 0 0
\(311\) −9.52546 + 16.4986i −0.540139 + 0.935548i 0.458756 + 0.888562i \(0.348295\pi\)
−0.998896 + 0.0469862i \(0.985038\pi\)
\(312\) −5.46978 + 3.15798i −0.309666 + 0.178785i
\(313\) −9.89844 + 11.7965i −0.559493 + 0.666777i −0.969439 0.245332i \(-0.921103\pi\)
0.409946 + 0.912110i \(0.365547\pi\)
\(314\) 27.8333 + 23.3549i 1.57073 + 1.31800i
\(315\) 0 0
\(316\) −2.50161 + 4.33291i −0.140726 + 0.243745i
\(317\) −8.73532 24.0001i −0.490624 1.34798i −0.900110 0.435663i \(-0.856514\pi\)
0.409485 0.912317i \(-0.365708\pi\)
\(318\) −30.6293 + 5.40077i −1.71761 + 0.302860i
\(319\) 0.301700 1.71103i 0.0168920 0.0957991i
\(320\) 0 0
\(321\) 46.5635 39.0714i 2.59892 2.18075i
\(322\) 27.7349i 1.54560i
\(323\) −1.41833 0.584120i −0.0789180 0.0325013i
\(324\) −97.9707 −5.44282
\(325\) 0 0
\(326\) −20.9217 7.61489i −1.15875 0.421750i
\(327\) −8.17420 1.44133i −0.452034 0.0797058i
\(328\) 7.49625 1.32179i 0.413911 0.0729837i
\(329\) −30.4700 + 11.0902i −1.67987 + 0.611421i
\(330\) 0 0
\(331\) −2.26589 3.92464i −0.124545 0.215718i 0.797010 0.603966i \(-0.206414\pi\)
−0.921555 + 0.388248i \(0.873080\pi\)
\(332\) −27.7716 + 33.0969i −1.52416 + 1.81643i
\(333\) −42.3820 + 50.5089i −2.32252 + 2.76787i
\(334\) 0.323056 + 0.559550i 0.0176768 + 0.0306172i
\(335\) 0 0
\(336\) 0.322693 0.117451i 0.0176043 0.00640746i
\(337\) −20.0306 + 3.53193i −1.09114 + 0.192397i −0.690135 0.723681i \(-0.742449\pi\)
−0.401001 + 0.916078i \(0.631338\pi\)
\(338\) 28.3038 + 4.99072i 1.53952 + 0.271459i
\(339\) −35.2388 12.8259i −1.91391 0.696605i
\(340\) 0 0
\(341\) −0.171955 −0.00931191
\(342\) −36.7305 70.2101i −1.98616 3.79653i
\(343\) 15.7585i 0.850880i
\(344\) 14.3986 12.0819i 0.776320 0.651410i
\(345\) 0 0
\(346\) 6.01601 34.1185i 0.323423 1.83422i
\(347\) −26.8521 + 4.73475i −1.44150 + 0.254175i −0.839080 0.544008i \(-0.816906\pi\)
−0.602416 + 0.798182i \(0.705795\pi\)
\(348\) 11.0377 + 30.3258i 0.591682 + 1.62563i
\(349\) 6.31115 10.9312i 0.337828 0.585135i −0.646196 0.763171i \(-0.723641\pi\)
0.984024 + 0.178036i \(0.0569745\pi\)
\(350\) 0 0
\(351\) −8.38750 7.03795i −0.447692 0.375658i
\(352\) −2.08520 + 2.48504i −0.111142 + 0.132453i
\(353\) −26.6728 + 15.3996i −1.41965 + 0.819636i −0.996268 0.0863140i \(-0.972491\pi\)
−0.423384 + 0.905950i \(0.639158\pi\)
\(354\) 2.31212 4.00471i 0.122888 0.212848i
\(355\) 0 0
\(356\) −3.70166 20.9931i −0.196187 1.11263i
\(357\) 3.36869 + 0.593991i 0.178290 + 0.0314373i
\(358\) 11.3200 31.1015i 0.598282 1.64377i
\(359\) 13.2039 11.0794i 0.696877 0.584749i −0.224007 0.974588i \(-0.571914\pi\)
0.920883 + 0.389839i \(0.127469\pi\)
\(360\) 0 0
\(361\) 10.8347 15.6080i 0.570245 0.821475i
\(362\) 15.9493i 0.838278i
\(363\) 22.6756 + 27.0237i 1.19016 + 1.41838i
\(364\) 6.00630 + 2.18612i 0.314816 + 0.114584i
\(365\) 0 0
\(366\) 1.35056 + 7.65943i 0.0705951 + 0.400365i
\(367\) 10.2927 + 28.2788i 0.537272 + 1.47614i 0.850248 + 0.526383i \(0.176452\pi\)
−0.312975 + 0.949761i \(0.601326\pi\)
\(368\) −0.126075 0.0727893i −0.00657210 0.00379440i
\(369\) 10.6061 + 18.3702i 0.552129 + 0.956315i
\(370\) 0 0
\(371\) 9.24594 + 7.75826i 0.480025 + 0.402789i
\(372\) 2.76610 1.59701i 0.143416 0.0828010i
\(373\) −5.31178 3.06676i −0.275034 0.158791i 0.356139 0.934433i \(-0.384093\pi\)
−0.631173 + 0.775642i \(0.717426\pi\)
\(374\) 0.437385 0.159195i 0.0226166 0.00823178i
\(375\) 0 0
\(376\) 5.45728 30.9498i 0.281438 1.59611i
\(377\) −0.689702 + 1.89494i −0.0355215 + 0.0975944i
\(378\) 70.6575 + 84.2063i 3.63423 + 4.33110i
\(379\) −30.8958 −1.58701 −0.793505 0.608564i \(-0.791746\pi\)
−0.793505 + 0.608564i \(0.791746\pi\)
\(380\) 0 0
\(381\) 63.4741 3.25187
\(382\) 8.08181 + 9.63153i 0.413501 + 0.492792i
\(383\) −1.59079 + 4.37066i −0.0812855 + 0.223330i −0.973677 0.227932i \(-0.926804\pi\)
0.892392 + 0.451262i \(0.149026\pi\)
\(384\) 10.5563 59.8677i 0.538698 3.05511i
\(385\) 0 0
\(386\) 13.9373 5.07277i 0.709391 0.258197i
\(387\) 45.3615 + 26.1895i 2.30586 + 1.33129i
\(388\) −34.2681 + 19.7847i −1.73970 + 1.00442i
\(389\) 12.3923 + 10.3984i 0.628315 + 0.527219i 0.900405 0.435053i \(-0.143270\pi\)
−0.272090 + 0.962272i \(0.587715\pi\)
\(390\) 0 0
\(391\) −0.725059 1.25584i −0.0366678 0.0635105i
\(392\) −4.04169 2.33347i −0.204136 0.117858i
\(393\) −7.74870 21.2894i −0.390870 1.07391i
\(394\) 3.69596 + 20.9609i 0.186200 + 1.05599i
\(395\) 0 0
\(396\) 13.9770 + 5.08720i 0.702368 + 0.255641i
\(397\) −6.38613 7.61069i −0.320511 0.381970i 0.581600 0.813475i \(-0.302427\pi\)
−0.902110 + 0.431506i \(0.857983\pi\)
\(398\) 55.6619i 2.79008i
\(399\) −16.1350 + 39.1782i −0.807762 + 1.96137i
\(400\) 0 0
\(401\) −9.90801 + 8.31381i −0.494783 + 0.415172i −0.855737 0.517412i \(-0.826896\pi\)
0.360954 + 0.932584i \(0.382451\pi\)
\(402\) −8.64114 + 23.7413i −0.430981 + 1.18411i
\(403\) 0.196550 + 0.0346570i 0.00979083 + 0.00172639i
\(404\) 0.327180 + 1.85553i 0.0162778 + 0.0923162i
\(405\) 0 0
\(406\) 10.1226 17.5329i 0.502376 0.870141i
\(407\) 4.15478 2.39876i 0.205945 0.118902i
\(408\) −2.13106 + 2.53970i −0.105503 + 0.125734i
\(409\) 4.78036 + 4.01120i 0.236373 + 0.198341i 0.753278 0.657702i \(-0.228471\pi\)
−0.516905 + 0.856043i \(0.672916\pi\)
\(410\) 0 0
\(411\) −21.8973 + 37.9272i −1.08011 + 1.87081i
\(412\) 7.17968 + 19.7260i 0.353717 + 0.971830i
\(413\) −1.76727 + 0.311617i −0.0869616 + 0.0153337i
\(414\) 13.0079 73.7714i 0.639302 3.62566i
\(415\) 0 0
\(416\) 2.88429 2.42020i 0.141414 0.118660i
\(417\) 9.62385i 0.471282i
\(418\) 0.764149 + 5.71459i 0.0373758 + 0.279510i
\(419\) 30.5403 1.49199 0.745995 0.665951i \(-0.231974\pi\)
0.745995 + 0.665951i \(0.231974\pi\)
\(420\) 0 0
\(421\) −34.3641 12.5075i −1.67480 0.609578i −0.682219 0.731148i \(-0.738985\pi\)
−0.992583 + 0.121569i \(0.961207\pi\)
\(422\) 54.0509 + 9.53063i 2.63115 + 0.463944i
\(423\) 86.2478 15.2078i 4.19351 0.739430i
\(424\) −10.9926 + 4.00099i −0.533850 + 0.194305i
\(425\) 0 0
\(426\) 50.0794 + 86.7401i 2.42636 + 4.20257i
\(427\) 1.94010 2.31212i 0.0938880 0.111891i
\(428\) 38.3230 45.6716i 1.85241 2.20762i
\(429\) 0.640329 + 1.10908i 0.0309154 + 0.0535470i
\(430\) 0 0
\(431\) −22.4618 + 8.17542i −1.08195 + 0.393796i −0.820631 0.571458i \(-0.806378\pi\)
−0.261314 + 0.965254i \(0.584156\pi\)
\(432\) −0.568216 + 0.100192i −0.0273383 + 0.00482048i
\(433\) 14.4318 + 2.54471i 0.693547 + 0.122291i 0.509300 0.860589i \(-0.329904\pi\)
0.184247 + 0.982880i \(0.441015\pi\)
\(434\) −1.88286 0.685305i −0.0903802 0.0328957i
\(435\) 0 0
\(436\) −8.14132 −0.389898
\(437\) 17.1198 5.43611i 0.818953 0.260044i
\(438\) 54.0664i 2.58339i
\(439\) 13.0414 10.9430i 0.622433 0.522283i −0.276134 0.961119i \(-0.589053\pi\)
0.898567 + 0.438836i \(0.144609\pi\)
\(440\) 0 0
\(441\) 2.25836 12.8078i 0.107541 0.609896i
\(442\) −0.532027 + 0.0938107i −0.0253059 + 0.00446212i
\(443\) −12.3097 33.8207i −0.584854 1.60687i −0.779780 0.626054i \(-0.784669\pi\)
0.194926 0.980818i \(-0.437553\pi\)
\(444\) −44.5562 + 77.1736i −2.11454 + 3.66250i
\(445\) 0 0
\(446\) 36.0825 + 30.2768i 1.70856 + 1.43365i
\(447\) 18.8282 22.4385i 0.890542 1.06131i
\(448\) −32.9160 + 19.0040i −1.55513 + 0.897856i
\(449\) 1.77883 3.08102i 0.0839481 0.145402i −0.820994 0.570936i \(-0.806580\pi\)
0.904942 + 0.425534i \(0.139914\pi\)
\(450\) 0 0
\(451\) −0.268014 1.51998i −0.0126203 0.0715731i
\(452\) −36.2232 6.38713i −1.70380 0.300425i
\(453\) −9.46966 + 26.0177i −0.444923 + 1.22242i
\(454\) −22.2697 + 18.6865i −1.04517 + 0.877001i
\(455\) 0 0
\(456\) −25.0656 32.5292i −1.17380 1.52332i
\(457\) 4.61695i 0.215972i −0.994152 0.107986i \(-0.965560\pi\)
0.994152 0.107986i \(-0.0344401\pi\)
\(458\) −8.47879 10.1046i −0.396188 0.472158i
\(459\) −5.40074 1.96571i −0.252085 0.0917514i
\(460\) 0 0
\(461\) −5.06596 28.7305i −0.235945 1.33811i −0.840614 0.541634i \(-0.817806\pi\)
0.604669 0.796477i \(-0.293305\pi\)
\(462\) −4.39741 12.0818i −0.204586 0.562096i
\(463\) −15.2747 8.81888i −0.709877 0.409848i 0.101138 0.994872i \(-0.467752\pi\)
−0.811016 + 0.585024i \(0.801085\pi\)
\(464\) 0.0531328 + 0.0920288i 0.00246663 + 0.00427233i
\(465\) 0 0
\(466\) −4.87413 4.08988i −0.225790 0.189460i
\(467\) 14.6735 8.47175i 0.679009 0.392026i −0.120473 0.992717i \(-0.538441\pi\)
0.799482 + 0.600691i \(0.205108\pi\)
\(468\) −14.9507 8.63180i −0.691097 0.399005i
\(469\) 9.21333 3.35338i 0.425432 0.154845i
\(470\) 0 0
\(471\) −9.11226 + 51.6782i −0.419871 + 2.38120i
\(472\) 0.594870 1.63439i 0.0273811 0.0752290i
\(473\) −2.44978 2.91954i −0.112641 0.134240i
\(474\) −11.6809 −0.536523
\(475\) 0 0
\(476\) 3.35514 0.153782
\(477\) −20.9544 24.9724i −0.959434 1.14341i
\(478\) −15.2404 + 41.8726i −0.697078 + 1.91521i
\(479\) 2.51117 14.2416i 0.114738 0.650714i −0.872141 0.489255i \(-0.837269\pi\)
0.986879 0.161459i \(-0.0516201\pi\)
\(480\) 0 0
\(481\) −5.23248 + 1.90447i −0.238580 + 0.0868362i
\(482\) 14.3574 + 8.28927i 0.653964 + 0.377566i
\(483\) −34.6898 + 20.0282i −1.57844 + 0.911312i
\(484\) 26.5061 + 22.2412i 1.20482 + 1.01097i
\(485\) 0 0
\(486\) −58.2649 100.918i −2.64295 4.57772i
\(487\) 0.287462 + 0.165966i 0.0130261 + 0.00752064i 0.506499 0.862241i \(-0.330939\pi\)
−0.493473 + 0.869761i \(0.664273\pi\)
\(488\) 1.00052 + 2.74891i 0.0452915 + 0.124437i
\(489\) −5.58376 31.6671i −0.252506 1.43203i
\(490\) 0 0
\(491\) 3.14034 + 1.14299i 0.141721 + 0.0515824i 0.411907 0.911226i \(-0.364863\pi\)
−0.270186 + 0.962808i \(0.587085\pi\)
\(492\) 18.4279 + 21.9615i 0.830792 + 0.990100i
\(493\) 1.05852i 0.0476733i
\(494\) 0.278313 6.68594i 0.0125219 0.300815i
\(495\) 0 0
\(496\) 0.00805671 0.00676038i 0.000361757 0.000303550i
\(497\) 13.2939 36.5247i 0.596313 1.63836i
\(498\) −99.3375 17.5159i −4.45142 0.784905i
\(499\) 2.44695 + 13.8773i 0.109540 + 0.621235i 0.989309 + 0.145833i \(0.0465862\pi\)
−0.879769 + 0.475402i \(0.842303\pi\)
\(500\) 0 0
\(501\) −0.466576 + 0.808133i −0.0208451 + 0.0361047i
\(502\) 29.4617 17.0097i 1.31494 0.759180i
\(503\) −2.38217 + 2.83896i −0.106216 + 0.126583i −0.816533 0.577299i \(-0.804107\pi\)
0.710318 + 0.703881i \(0.248551\pi\)
\(504\) 50.9128 + 42.7209i 2.26784 + 1.90294i
\(505\) 0 0
\(506\) −2.72527 + 4.72030i −0.121153 + 0.209843i
\(507\) 14.1967 + 39.0052i 0.630500 + 1.73228i
\(508\) 61.3124 10.8110i 2.72030 0.479662i
\(509\) −6.13731 + 34.8064i −0.272032 + 1.54277i 0.476204 + 0.879335i \(0.342012\pi\)
−0.748236 + 0.663433i \(0.769099\pi\)
\(510\) 0 0
\(511\) −16.0729 + 13.4867i −0.711021 + 0.596618i
\(512\) 0.399682i 0.0176636i
\(513\) 38.1287 60.1192i 1.68342 2.65433i
\(514\) −45.2401 −1.99546
\(515\) 0 0
\(516\) 66.5222 + 24.2121i 2.92848 + 1.06588i
\(517\) −6.27554 1.10655i −0.275998 0.0486659i
\(518\) 55.0535 9.70742i 2.41891 0.426520i
\(519\) 47.0185 17.1133i 2.06388 0.751191i
\(520\) 0 0
\(521\) −2.52454 4.37264i −0.110602 0.191569i 0.805411 0.592717i \(-0.201945\pi\)
−0.916013 + 0.401148i \(0.868611\pi\)
\(522\) −35.1479 + 41.8876i −1.53838 + 1.83337i
\(523\) 15.0194 17.8994i 0.656752 0.782686i −0.330164 0.943924i \(-0.607104\pi\)
0.986916 + 0.161238i \(0.0515485\pi\)
\(524\) −11.1109 19.2446i −0.485380 0.840704i
\(525\) 0 0
\(526\) −25.5023 + 9.28209i −1.11195 + 0.404718i
\(527\) 0.103172 0.0181920i 0.00449423 0.000792454i
\(528\) 0.0664612 + 0.0117189i 0.00289235 + 0.000510000i
\(529\) −5.65596 2.05860i −0.245911 0.0895043i
\(530\) 0 0
\(531\) 4.84687 0.210336
\(532\) −8.91262 + 40.5922i −0.386411 + 1.75989i
\(533\) 1.79139i 0.0775939i
\(534\) 38.1249 31.9906i 1.64982 1.38437i
\(535\) 0 0
\(536\) −1.65014 + 9.35839i −0.0712751 + 0.404221i
\(537\) 47.0752 8.30062i 2.03144 0.358198i
\(538\) −8.51811 23.4033i −0.367242 1.00899i
\(539\) −0.473147 + 0.819515i −0.0203799 + 0.0352990i
\(540\) 0 0
\(541\) 24.3992 + 20.4734i 1.04900 + 0.880219i 0.992988 0.118211i \(-0.0377160\pi\)
0.0560152 + 0.998430i \(0.482160\pi\)
\(542\) 8.64403 10.3016i 0.371293 0.442490i
\(543\) 19.9488 11.5175i 0.856086 0.494262i
\(544\) 0.988197 1.71161i 0.0423686 0.0733845i
\(545\) 0 0
\(546\) 2.59131 + 14.6961i 0.110898 + 0.628934i
\(547\) 29.2567 + 5.15875i 1.25093 + 0.220572i 0.759593 0.650399i \(-0.225398\pi\)
0.491334 + 0.870971i \(0.336510\pi\)
\(548\) −14.6917 + 40.3651i −0.627599 + 1.72431i
\(549\) −6.24483 + 5.24003i −0.266523 + 0.223639i
\(550\) 0 0
\(551\) −12.8065 2.81186i −0.545576 0.119789i
\(552\) 38.8231i 1.65242i
\(553\) 2.91378 + 3.47251i 0.123906 + 0.147666i
\(554\) −51.2418 18.6505i −2.17706 0.792384i
\(555\) 0 0
\(556\) 1.63915 + 9.29611i 0.0695156 + 0.394243i
\(557\) 7.40274 + 20.3389i 0.313664 + 0.861785i 0.991909 + 0.126950i \(0.0405186\pi\)
−0.678245 + 0.734836i \(0.737259\pi\)
\(558\) 4.68676 + 2.70590i 0.198407 + 0.114550i
\(559\) 2.21174 + 3.83085i 0.0935467 + 0.162028i
\(560\) 0 0
\(561\) 0.514963 + 0.432105i 0.0217418 + 0.0182435i
\(562\) −14.1583 + 8.17427i −0.597230 + 0.344811i
\(563\) −5.13413 2.96419i −0.216378 0.124926i 0.387894 0.921704i \(-0.373203\pi\)
−0.604272 + 0.796778i \(0.706536\pi\)
\(564\) 111.226 40.4830i 4.68346 1.70464i
\(565\) 0 0
\(566\) 10.6308 60.2904i 0.446847 2.53420i
\(567\) −30.3590 + 83.4107i −1.27496 + 3.50292i
\(568\) 24.2151 + 28.8585i 1.01605 + 1.21088i
\(569\) 5.27877 0.221297 0.110649 0.993860i \(-0.464707\pi\)
0.110649 + 0.993860i \(0.464707\pi\)
\(570\) 0 0
\(571\) 16.5322 0.691852 0.345926 0.938262i \(-0.387565\pi\)
0.345926 + 0.938262i \(0.387565\pi\)
\(572\) 0.807424 + 0.962251i 0.0337601 + 0.0402337i
\(573\) −6.21065 + 17.0636i −0.259454 + 0.712843i
\(574\) 3.12301 17.7115i 0.130352 0.739263i
\(575\) 0 0
\(576\) 96.4654 35.1105i 4.01939 1.46294i
\(577\) −31.4050 18.1317i −1.30741 0.754832i −0.325745 0.945458i \(-0.605615\pi\)
−0.981663 + 0.190625i \(0.938948\pi\)
\(578\) 33.4683 19.3229i 1.39210 0.803728i
\(579\) 16.4094 + 13.7691i 0.681950 + 0.572224i
\(580\) 0 0
\(581\) 19.5723 + 33.9003i 0.811998 + 1.40642i
\(582\) −80.0054 46.1911i −3.31633 1.91468i
\(583\) 0.811263 + 2.22893i 0.0335991 + 0.0923127i
\(584\) −3.53125 20.0267i −0.146124 0.828711i
\(585\) 0 0
\(586\) −2.30975 0.840680i −0.0954148 0.0347282i
\(587\) −17.1315 20.4165i −0.707093 0.842680i 0.286217 0.958165i \(-0.407602\pi\)
−0.993309 + 0.115485i \(0.963158\pi\)
\(588\) 17.5771i 0.724867i
\(589\) −0.0539709 + 1.29655i −0.00222383 + 0.0534234i
\(590\) 0 0
\(591\) −23.5481 + 19.7592i −0.968640 + 0.812785i
\(592\) −0.100359 + 0.275734i −0.00412473 + 0.0113326i
\(593\) 27.2630 + 4.80721i 1.11956 + 0.197408i 0.702647 0.711539i \(-0.252001\pi\)
0.416911 + 0.908947i \(0.363113\pi\)
\(594\) 3.75123 + 21.2743i 0.153915 + 0.872895i
\(595\) 0 0
\(596\) 14.3652 24.8812i 0.588421 1.01918i
\(597\) −69.6199 + 40.1951i −2.84935 + 1.64507i
\(598\) 4.06641 4.84616i 0.166288 0.198174i
\(599\) 26.3171 + 22.0826i 1.07529 + 0.902272i 0.995521 0.0945415i \(-0.0301385\pi\)
0.0797652 + 0.996814i \(0.474583\pi\)
\(600\) 0 0
\(601\) −8.44516 + 14.6274i −0.344485 + 0.596666i −0.985260 0.171063i \(-0.945280\pi\)
0.640775 + 0.767729i \(0.278613\pi\)
\(602\) −15.1890 41.7313i −0.619056 1.70084i
\(603\) −26.0791 + 4.59845i −1.06202 + 0.187263i
\(604\) −4.71578 + 26.7445i −0.191882 + 1.08822i
\(605\) 0 0
\(606\) −3.36977 + 2.82757i −0.136887 + 0.114862i
\(607\) 4.71187i 0.191249i −0.995417 0.0956245i \(-0.969515\pi\)
0.995417 0.0956245i \(-0.0304848\pi\)
\(608\) 18.0828 + 16.5024i 0.733356 + 0.669262i
\(609\) 29.2393 1.18483
\(610\) 0 0
\(611\) 6.95008 + 2.52962i 0.281170 + 0.102338i
\(612\) −8.92424 1.57359i −0.360741 0.0636084i
\(613\) −40.4229 + 7.12765i −1.63267 + 0.287883i −0.913464 0.406919i \(-0.866603\pi\)
−0.719201 + 0.694802i \(0.755492\pi\)
\(614\) −55.8842 + 20.3402i −2.25530 + 0.820864i
\(615\) 0 0
\(616\) −2.41794 4.18800i −0.0974216 0.168739i
\(617\) 4.16404 4.96251i 0.167638 0.199783i −0.675685 0.737191i \(-0.736152\pi\)
0.843323 + 0.537408i \(0.180596\pi\)
\(618\) −31.5028 + 37.5436i −1.26723 + 1.51022i
\(619\) −18.3222 31.7349i −0.736429 1.27553i −0.954093 0.299509i \(-0.903177\pi\)
0.217664 0.976024i \(-0.430156\pi\)
\(620\) 0 0
\(621\) 63.2433 23.0187i 2.53787 0.923708i
\(622\) −42.9632 + 7.57557i −1.72267 + 0.303753i
\(623\) −19.0203 3.35379i −0.762032 0.134367i
\(624\) −0.0736049 0.0267900i −0.00294656 0.00107246i
\(625\) 0 0
\(626\) −35.2637 −1.40942
\(627\) −6.59579 + 5.08244i −0.263410 + 0.202973i
\(628\) 51.4703i 2.05389i
\(629\) −2.23905 + 1.87879i −0.0892769 + 0.0749122i
\(630\) 0 0
\(631\) −2.62539 + 14.8893i −0.104515 + 0.592734i 0.886898 + 0.461965i \(0.152856\pi\)
−0.991413 + 0.130769i \(0.958256\pi\)
\(632\) −4.32673 + 0.762919i −0.172108 + 0.0303473i
\(633\) 27.1111 + 74.4872i 1.07757 + 2.96060i
\(634\) 29.2433 50.6509i 1.16140 2.01160i
\(635\) 0 0
\(636\) −33.7509 28.3203i −1.33831 1.12297i
\(637\) 0.705990 0.841366i 0.0279723 0.0333361i
\(638\) 3.44561 1.98932i 0.136413 0.0787580i
\(639\) −52.4905 + 90.9162i −2.07649 + 3.59659i
\(640\) 0 0
\(641\) −1.83609 10.4130i −0.0725210 0.411287i −0.999358 0.0358234i \(-0.988595\pi\)
0.926837 0.375464i \(-0.122517\pi\)
\(642\) 137.080 + 24.1708i 5.41010 + 0.953946i
\(643\) 1.19500 3.28323i 0.0471261 0.129478i −0.913897 0.405946i \(-0.866942\pi\)
0.961023 + 0.276469i \(0.0891642\pi\)
\(644\) −30.0972 + 25.2545i −1.18599 + 0.995168i
\(645\) 0 0
\(646\) −1.06306 3.34786i −0.0418254 0.131720i
\(647\) 21.5689i 0.847961i 0.905671 + 0.423981i \(0.139368\pi\)
−0.905671 + 0.423981i \(0.860632\pi\)
\(648\) −55.2997 65.9036i −2.17238 2.58894i
\(649\) −0.331398 0.120619i −0.0130085 0.00473471i
\(650\) 0 0
\(651\) −0.502513 2.84989i −0.0196950 0.111696i
\(652\) −10.7872 29.6376i −0.422459 1.16070i
\(653\) −24.2297 13.9890i −0.948181 0.547432i −0.0556654 0.998449i \(-0.517728\pi\)
−0.892515 + 0.451017i \(0.851061\pi\)
\(654\) −9.50371 16.4609i −0.371625 0.643673i
\(655\) 0 0
\(656\) 0.0723150 + 0.0606795i 0.00282343 + 0.00236914i
\(657\) 49.0772 28.3347i 1.91468 1.10544i
\(658\) −64.3053 37.1267i −2.50688 1.44735i
\(659\) 5.32402 1.93779i 0.207395 0.0754854i −0.236234 0.971696i \(-0.575913\pi\)
0.443629 + 0.896211i \(0.353691\pi\)
\(660\) 0 0
\(661\) −0.0226150 + 0.128256i −0.000879623 + 0.00498859i −0.985244 0.171153i \(-0.945251\pi\)
0.984365 + 0.176142i \(0.0563618\pi\)
\(662\) 3.54936 9.75178i 0.137950 0.379014i
\(663\) −0.501527 0.597696i −0.0194777 0.0232126i
\(664\) −37.9395 −1.47234
\(665\) 0 0
\(666\) −150.988 −5.85068
\(667\) −7.96760 9.49542i −0.308507 0.367664i
\(668\) −0.313044 + 0.860080i −0.0121120 + 0.0332775i
\(669\) −11.8129 + 66.9944i −0.456714 + 2.59015i
\(670\) 0 0
\(671\) 0.557385 0.202871i 0.0215176 0.00783177i
\(672\) −47.2794 27.2968i −1.82384 1.05300i
\(673\) 35.8812 20.7160i 1.38312 0.798543i 0.390590 0.920565i \(-0.372271\pi\)
0.992528 + 0.122021i \(0.0389376\pi\)
\(674\) −35.6801 29.9391i −1.37434 1.15321i
\(675\) 0 0
\(676\) 20.3567 + 35.2589i 0.782951 + 1.35611i
\(677\) −16.6833 9.63213i −0.641193 0.370193i 0.143881 0.989595i \(-0.454042\pi\)
−0.785074 + 0.619402i \(0.787375\pi\)
\(678\) −29.3708 80.6956i −1.12798 3.09910i
\(679\) 6.22544 + 35.3062i 0.238911 + 1.35493i
\(680\) 0 0
\(681\) −39.4540 14.3601i −1.51188 0.550279i
\(682\) −0.253112 0.301647i −0.00969216 0.0115507i
\(683\) 14.0647i 0.538170i −0.963116 0.269085i \(-0.913279\pi\)
0.963116 0.269085i \(-0.0867213\pi\)
\(684\) 42.7445 103.790i 1.63438 3.96851i
\(685\) 0 0
\(686\) 27.6439 23.1960i 1.05545 0.885626i
\(687\) 6.51572 17.9018i 0.248590 0.682996i
\(688\) 0.229561 + 0.0404779i 0.00875195 + 0.00154320i
\(689\) −0.478063 2.71123i −0.0182127 0.103290i
\(690\) 0 0
\(691\) 5.66284 9.80833i 0.215425 0.373126i −0.737979 0.674823i \(-0.764220\pi\)
0.953404 + 0.301697i \(0.0975531\pi\)
\(692\) 42.5025 24.5388i 1.61570 0.932825i
\(693\) 8.66232 10.3234i 0.329054 0.392152i
\(694\) −47.8311 40.1350i −1.81564 1.52350i
\(695\) 0 0
\(696\) −14.1695 + 24.5423i −0.537094 + 0.930275i
\(697\) 0.321612 + 0.883620i 0.0121819 + 0.0334695i
\(698\) 28.4655 5.01924i 1.07744 0.189981i
\(699\) 1.59572 9.04980i 0.0603558 0.342295i
\(700\) 0 0
\(701\) −11.8225 + 9.92029i −0.446531 + 0.374684i −0.838147 0.545445i \(-0.816361\pi\)
0.391615 + 0.920129i \(0.371916\pi\)
\(702\) 25.0731i 0.946323i
\(703\) −16.7827 32.0800i −0.632972 1.20992i
\(704\) −7.46945 −0.281516
\(705\) 0 0
\(706\) −66.2756 24.1224i −2.49432 0.907857i
\(707\) 1.68116 + 0.296434i 0.0632265 + 0.0111485i
\(708\) 6.45114 1.13751i 0.242449 0.0427503i
\(709\) 17.9320 6.52671i 0.673450 0.245116i 0.0174175 0.999848i \(-0.494456\pi\)
0.656033 + 0.754733i \(0.272233\pi\)
\(710\) 0 0
\(711\) −6.12166 10.6030i −0.229580 0.397644i
\(712\) 12.0324 14.3397i 0.450933 0.537401i
\(713\) −0.788566 + 0.939777i −0.0295320 + 0.0351949i
\(714\) 3.91660 + 6.78374i 0.146575 + 0.253875i
\(715\) 0 0
\(716\) 44.0582 16.0359i 1.64653 0.599289i
\(717\) −63.3782 + 11.1753i −2.36690 + 0.417349i
\(718\) 38.8714 + 6.85407i 1.45067 + 0.255792i
\(719\) −10.7312 3.90584i −0.400207 0.145663i 0.134072 0.990972i \(-0.457195\pi\)
−0.534279 + 0.845308i \(0.679417\pi\)
\(720\) 0 0
\(721\) 19.0192 0.708314
\(722\) 43.3281 3.96810i 1.61250 0.147677i
\(723\) 23.9437i 0.890475i
\(724\) 17.3078 14.5230i 0.643239 0.539742i
\(725\) 0 0
\(726\) −14.0278 + 79.5558i −0.520622 + 2.95259i
\(727\) 10.7592 1.89714i 0.399036 0.0703609i 0.0294711 0.999566i \(-0.490618\pi\)
0.369565 + 0.929205i \(0.379507\pi\)
\(728\) 1.91969 + 5.27432i 0.0711486 + 0.195479i
\(729\) 38.8479 67.2865i 1.43881 2.49209i
\(730\) 0 0
\(731\) 1.77872 + 1.49252i 0.0657883 + 0.0552029i
\(732\) −7.08203 + 8.44003i −0.261759 + 0.311953i
\(733\) −20.4147 + 11.7865i −0.754036 + 0.435343i −0.827150 0.561981i \(-0.810039\pi\)
0.0731146 + 0.997324i \(0.476706\pi\)
\(734\) −34.4568 + 59.6810i −1.27182 + 2.20286i
\(735\) 0 0
\(736\) 4.01888 + 22.7922i 0.148138 + 0.840132i
\(737\) 1.89756 + 0.334591i 0.0698975 + 0.0123248i
\(738\) −16.6136 + 45.6456i −0.611557 + 1.68024i
\(739\) 1.72100 1.44409i 0.0633081 0.0531218i −0.610585 0.791951i \(-0.709065\pi\)
0.673893 + 0.738829i \(0.264621\pi\)
\(740\) 0 0
\(741\) 8.56350 4.48000i 0.314588 0.164577i
\(742\) 27.6393i 1.01467i
\(743\) 17.3031 + 20.6210i 0.634788 + 0.756511i 0.983537 0.180705i \(-0.0578381\pi\)
−0.348750 + 0.937216i \(0.613394\pi\)
\(744\) 2.63561 + 0.959285i 0.0966263 + 0.0351691i
\(745\) 0 0
\(746\) −2.43899 13.8322i −0.0892976 0.506432i
\(747\) −36.1605 99.3502i −1.32304 3.63503i
\(748\) 0.571023 + 0.329680i 0.0208787 + 0.0120543i
\(749\) −27.0086 46.7803i −0.986874 1.70932i
\(750\) 0 0
\(751\) −26.1495 21.9420i −0.954209 0.800676i 0.0257926 0.999667i \(-0.491789\pi\)
−0.980001 + 0.198991i \(0.936234\pi\)
\(752\) 0.337534 0.194876i 0.0123086 0.00710638i
\(753\) 42.5502 + 24.5664i 1.55062 + 0.895248i
\(754\) −4.33935 + 1.57940i −0.158030 + 0.0575182i
\(755\) 0 0
\(756\) −27.0400 + 153.351i −0.983434 + 5.57733i
\(757\) 6.44514 17.7079i 0.234253 0.643604i −0.765747 0.643142i \(-0.777631\pi\)
1.00000 0.000462353i \(-0.000147171\pi\)
\(758\) −45.4775 54.1979i −1.65182 1.96856i
\(759\) −7.87198 −0.285735
\(760\) 0 0
\(761\) −10.8012 −0.391544 −0.195772 0.980649i \(-0.562721\pi\)
−0.195772 + 0.980649i \(0.562721\pi\)
\(762\) 93.4315 + 111.347i 3.38467 + 4.03369i
\(763\) −2.52282 + 6.93139i −0.0913322 + 0.250933i
\(764\) −3.09283 + 17.5403i −0.111895 + 0.634587i
\(765\) 0 0
\(766\) −10.0087 + 3.64286i −0.361628 + 0.131622i
\(767\) 0.354486 + 0.204663i 0.0127998 + 0.00738994i
\(768\) 46.4802 26.8354i 1.67721 0.968338i
\(769\) −37.4804 31.4498i −1.35158 1.13411i −0.978486 0.206313i \(-0.933854\pi\)
−0.373091 0.927795i \(-0.621702\pi\)
\(770\) 0 0
\(771\) −32.6692 56.5847i −1.17655 2.03785i
\(772\) 18.1957 + 10.5053i 0.654878 + 0.378094i
\(773\) −9.15095 25.1420i −0.329137 0.904296i −0.988331 0.152323i \(-0.951325\pi\)
0.659194 0.751973i \(-0.270898\pi\)
\(774\) 20.8284 + 118.124i 0.748662 + 4.24588i
\(775\) 0 0
\(776\) −32.6516 11.8842i −1.17212 0.426619i
\(777\) 51.8974 + 61.8489i 1.86181 + 2.21882i
\(778\) 37.0448i 1.32812i
\(779\) −11.5448 + 1.54376i −0.413636 + 0.0553110i
\(780\) 0 0
\(781\) 5.85150 4.91000i 0.209383 0.175693i
\(782\) 1.13575 3.12046i 0.0406145 0.111587i
\(783\) −48.3811 8.53090i −1.72900 0.304869i
\(784\) −0.0100504 0.0569988i −0.000358944 0.00203567i
\(785\) 0 0
\(786\) 25.9404 44.9301i 0.925263 1.60260i
\(787\) 18.9093 10.9173i 0.674045 0.389160i −0.123563 0.992337i \(-0.539432\pi\)
0.797607 + 0.603177i \(0.206099\pi\)
\(788\) −19.3807 + 23.0971i −0.690410 + 0.822799i
\(789\) −30.0257 25.1945i −1.06894 0.896949i
\(790\) 0 0
\(791\) −16.6627 + 28.8607i −0.592458 + 1.02617i
\(792\) 4.46722 + 12.2736i 0.158736 + 0.436123i
\(793\) −0.677993 + 0.119548i −0.0240762 + 0.00424529i
\(794\) 3.95066 22.4053i 0.140204 0.795135i
\(795\) 0 0
\(796\) −60.4029 + 50.6840i −2.14092 + 1.79645i
\(797\) 13.0244i 0.461347i −0.973031 0.230673i \(-0.925907\pi\)
0.973031 0.230673i \(-0.0740929\pi\)
\(798\) −92.4773 + 29.3646i −3.27366 + 1.03949i
\(799\) 3.88234 0.137347
\(800\) 0 0
\(801\) 49.0187 + 17.8413i 1.73199 + 0.630393i
\(802\) −29.1685 5.14319i −1.02997 0.181612i
\(803\) −4.06072 + 0.716015i −0.143300 + 0.0252676i
\(804\) −33.6318 + 12.2410i −1.18610 + 0.431706i
\(805\) 0 0
\(806\) 0.228518 + 0.395804i 0.00804919 + 0.0139416i
\(807\) 23.1208 27.5543i 0.813892 0.969959i
\(808\) −1.06351 + 1.26745i −0.0374143 + 0.0445886i
\(809\) −4.51134 7.81388i −0.158610 0.274721i 0.775757 0.631031i \(-0.217368\pi\)
−0.934368 + 0.356310i \(0.884035\pi\)
\(810\) 0 0
\(811\) 21.0062 7.64565i 0.737629 0.268475i 0.0542386 0.998528i \(-0.482727\pi\)
0.683391 + 0.730053i \(0.260505\pi\)
\(812\) 28.2435 4.98009i 0.991153 0.174767i
\(813\) 19.1269 + 3.37259i 0.670810 + 0.118282i
\(814\) 10.3236 + 3.75749i 0.361843 + 0.131700i
\(815\) 0 0
\(816\) −0.0411159 −0.00143934
\(817\) −22.7823 + 17.5551i −0.797052 + 0.614175i
\(818\) 14.2901i 0.499642i
\(819\) −11.9819 + 10.0540i −0.418681 + 0.351315i
\(820\) 0 0
\(821\) −6.05598 + 34.3451i −0.211355 + 1.19865i 0.675766 + 0.737116i \(0.263813\pi\)
−0.887121 + 0.461537i \(0.847298\pi\)
\(822\) −98.7645 + 17.4148i −3.44481 + 0.607412i
\(823\) −1.72647 4.74344i −0.0601809 0.165346i 0.905958 0.423367i \(-0.139152\pi\)
−0.966139 + 0.258021i \(0.916930\pi\)
\(824\) −9.21684 + 15.9640i −0.321084 + 0.556134i
\(825\) 0 0
\(826\) −3.14800 2.64149i −0.109533 0.0919090i
\(827\) −32.2938 + 38.4862i −1.12296 + 1.33830i −0.188569 + 0.982060i \(0.560385\pi\)
−0.934395 + 0.356237i \(0.884059\pi\)
\(828\) 91.8993 53.0581i 3.19372 1.84390i
\(829\) 8.13553 14.0911i 0.282559 0.489406i −0.689456 0.724328i \(-0.742150\pi\)
0.972014 + 0.234922i \(0.0754835\pi\)
\(830\) 0 0
\(831\) −13.6758 77.5595i −0.474409 2.69051i
\(832\) 8.53778 + 1.50544i 0.295994 + 0.0521918i
\(833\) 0.197184 0.541758i 0.00683201 0.0187708i
\(834\) −16.8823 + 14.1659i −0.584587 + 0.490527i
\(835\) 0 0
\(836\) −5.50551 + 6.03276i −0.190412 + 0.208648i
\(837\) 4.86222i 0.168063i
\(838\) 44.9542 + 53.5743i 1.55292 + 1.85069i
\(839\) −20.3201 7.39592i −0.701528 0.255335i −0.0334650 0.999440i \(-0.510654\pi\)
−0.668063 + 0.744105i \(0.732876\pi\)
\(840\) 0 0
\(841\) −3.46462 19.6488i −0.119470 0.677545i
\(842\) −28.6418 78.6926i −0.987061 2.71193i
\(843\) −20.4482 11.8058i −0.704272 0.406612i
\(844\) 38.8746 + 67.3329i 1.33812 + 2.31769i
\(845\) 0 0
\(846\) 153.631 + 128.912i 5.28196 + 4.43209i
\(847\) 27.1495 15.6748i 0.932869 0.538592i
\(848\) −0.125640 0.0725383i −0.00431450 0.00249098i
\(849\) 83.0858 30.2408i 2.85150 1.03786i
\(850\) 0 0
\(851\) 5.94350 33.7072i 0.203740 1.15547i
\(852\) −48.5273 + 133.328i −1.66252 + 4.56773i
\(853\) 25.3918 + 30.2607i 0.869397 + 1.03611i 0.999007 + 0.0445424i \(0.0141830\pi\)
−0.129610 + 0.991565i \(0.541373\pi\)
\(854\) 6.91172 0.236514
\(855\) 0 0
\(856\) 52.3542 1.78943
\(857\) −8.00863 9.54432i −0.273570 0.326028i 0.611714 0.791079i \(-0.290480\pi\)
−0.885284 + 0.465051i \(0.846036\pi\)
\(858\) −1.00303 + 2.75581i −0.0342429 + 0.0940817i
\(859\) −5.73773 + 32.5403i −0.195769 + 1.11026i 0.715551 + 0.698561i \(0.246176\pi\)
−0.911319 + 0.411700i \(0.864935\pi\)
\(860\) 0 0
\(861\) 24.4081 8.88381i 0.831825 0.302759i
\(862\) −47.4044 27.3689i −1.61460 0.932189i
\(863\) 7.67835 4.43310i 0.261374 0.150904i −0.363587 0.931560i \(-0.618448\pi\)
0.624961 + 0.780656i \(0.285115\pi\)
\(864\) 70.2673 + 58.9612i 2.39054 + 2.00590i
\(865\) 0 0
\(866\) 16.7791 + 29.0622i 0.570176 + 0.987573i
\(867\) 48.3368 + 27.9073i 1.64161 + 0.947781i
\(868\) −0.970799 2.66725i −0.0329511 0.0905323i
\(869\) 0.154694 + 0.877311i 0.00524762 + 0.0297607i
\(870\) 0 0
\(871\) −2.10152 0.764892i −0.0712074 0.0259174i
\(872\) −4.59538 5.47656i −0.155619 0.185460i
\(873\) 96.8300i 3.27720i
\(874\) 34.7359 + 22.0302i 1.17496 + 0.745181i
\(875\) 0 0
\(876\) 58.6715 49.2312i 1.98232 1.66337i
\(877\) 3.79669 10.4313i 0.128205 0.352241i −0.858938 0.512080i \(-0.828875\pi\)
0.987143 + 0.159839i \(0.0510974\pi\)
\(878\) 38.3930 + 6.76972i 1.29570 + 0.228467i
\(879\) −0.616444 3.49603i −0.0207921 0.117918i
\(880\) 0 0
\(881\) −20.9588 + 36.3016i −0.706119 + 1.22303i 0.260168 + 0.965563i \(0.416222\pi\)
−0.966286 + 0.257470i \(0.917111\pi\)
\(882\) 25.7919 14.8910i 0.868458 0.501405i
\(883\) 17.0960 20.3742i 0.575325 0.685646i −0.397390 0.917650i \(-0.630084\pi\)
0.972715 + 0.232004i \(0.0745283\pi\)
\(884\) −0.586248 0.491921i −0.0197177 0.0165451i
\(885\) 0 0
\(886\) 41.2094 71.3768i 1.38446 2.39795i
\(887\) −7.11802 19.5566i −0.239000 0.656646i −0.999969 0.00785834i \(-0.997499\pi\)
0.760970 0.648788i \(-0.224724\pi\)
\(888\) −77.0634 + 13.5884i −2.58608 + 0.455996i
\(889\) 9.79506 55.5506i 0.328516 1.86311i
\(890\) 0 0
\(891\) −13.3630 + 11.2129i −0.447676 + 0.375645i
\(892\) 66.7249i 2.23412i
\(893\) −10.3131 + 46.9705i −0.345114 + 1.57181i
\(894\) 67.0764 2.24337
\(895\) 0 0
\(896\) −50.7654 18.4771i −1.69595 0.617276i
\(897\) 8.99787 + 1.58657i 0.300430 + 0.0529739i
\(898\) 8.02315 1.41470i 0.267736 0.0472091i
\(899\) 0.841496 0.306280i 0.0280655 0.0102150i
\(900\) 0 0
\(901\) −0.722559 1.25151i −0.0240719 0.0416938i
\(902\) 2.27187 2.70751i 0.0756450 0.0901502i
\(903\) 41.2276 49.1332i 1.37197 1.63505i
\(904\) −16.1497 27.9721i −0.537131 0.930338i
\(905\) 0 0
\(906\) −59.5796 + 21.6852i −1.97940 + 0.720443i
\(907\) 0.792997 0.139827i 0.0263310 0.00464287i −0.160467 0.987041i \(-0.551300\pi\)
0.186798 + 0.982398i \(0.440189\pi\)
\(908\) −40.5562 7.15115i −1.34590 0.237319i
\(909\) −4.33264 1.57695i −0.143705 0.0523042i
\(910\) 0 0
\(911\) 33.6958 1.11639 0.558196 0.829709i \(-0.311494\pi\)
0.558196 + 0.829709i \(0.311494\pi\)
\(912\) 0.109221 0.497441i 0.00361666 0.0164719i
\(913\) 7.69283i 0.254595i
\(914\) 8.09913 6.79598i 0.267895 0.224791i
\(915\) 0 0
\(916\) 3.24475 18.4019i 0.107210 0.608016i
\(917\) −19.8276 + 3.49613i −0.654764 + 0.115453i
\(918\) −4.50141 12.3675i −0.148569 0.408189i
\(919\) −7.14677 + 12.3786i −0.235750 + 0.408331i −0.959490 0.281741i \(-0.909088\pi\)
0.723740 + 0.690072i \(0.242421\pi\)
\(920\) 0 0
\(921\) −65.7964 55.2097i −2.16806 1.81922i
\(922\) 42.9426 51.1770i 1.41424 1.68542i
\(923\) −7.67801 + 4.43290i −0.252725 + 0.145911i
\(924\) 9.10669 15.7733i 0.299588 0.518902i
\(925\) 0 0
\(926\) −7.01363 39.7763i −0.230482 1.30713i
\(927\) −50.5888 8.92017i −1.66155 0.292977i
\(928\) 5.77806 15.8751i 0.189674 0.521125i
\(929\) −11.3513 + 9.52484i −0.372423 + 0.312500i −0.809719 0.586818i \(-0.800381\pi\)
0.437296 + 0.899317i \(0.355936\pi\)
\(930\) 0 0
\(931\) 6.03067 + 3.82476i 0.197647 + 0.125352i
\(932\) 9.01339i 0.295244i
\(933\) −40.5002 48.2663i −1.32592 1.58017i
\(934\) 36.4602 + 13.2704i 1.19301 + 0.434221i
\(935\) 0 0
\(936\) −2.63245 14.9294i −0.0860444 0.487982i
\(937\) 16.6085 + 45.6316i 0.542577 + 1.49072i 0.843531 + 0.537080i \(0.180473\pi\)
−0.300954 + 0.953639i \(0.597305\pi\)
\(938\) 19.4442 + 11.2261i 0.634877 + 0.366546i
\(939\) −25.4650 44.1066i −0.831017 1.43936i
\(940\) 0 0
\(941\) 14.5770 + 12.2315i 0.475195 + 0.398736i 0.848685 0.528898i \(-0.177395\pi\)
−0.373490 + 0.927634i \(0.621839\pi\)
\(942\) −104.068 + 60.0835i −3.39071 + 1.95763i
\(943\) −9.53613 5.50569i −0.310539 0.179290i
\(944\) 0.0202693 0.00737740i 0.000659708 0.000240114i
\(945\) 0 0
\(946\) 1.51551 8.59490i 0.0492736 0.279444i
\(947\) −13.8679 + 38.1018i −0.450646 + 1.23814i 0.481624 + 0.876378i \(0.340047\pi\)
−0.932270 + 0.361763i \(0.882175\pi\)
\(948\) −10.6363 12.6758i −0.345451 0.411692i
\(949\) 4.78582 0.155354
\(950\) 0 0
\(951\) 84.4697 2.73912
\(952\) 1.89381 + 2.25696i 0.0613788 + 0.0731484i
\(953\) 12.9385 35.5481i 0.419118 1.15152i −0.533088 0.846060i \(-0.678968\pi\)
0.952206 0.305457i \(-0.0988093\pi\)
\(954\) 12.9630 73.5170i 0.419694 2.38020i
\(955\) 0 0
\(956\) −59.3164 + 21.5894i −1.91843 + 0.698251i
\(957\) 4.97634 + 2.87309i 0.160862 + 0.0928738i
\(958\) 28.6792 16.5579i 0.926582 0.534962i
\(959\) 29.8136 + 25.0166i 0.962732 + 0.807828i
\(960\) 0 0
\(961\) 15.4557 + 26.7700i 0.498570 + 0.863549i
\(962\) −11.0429 6.37560i −0.356036 0.205558i
\(963\) 49.8993 + 137.097i 1.60798 + 4.41789i
\(964\) 4.07814 + 23.1283i 0.131348 + 0.744911i
\(965\) 0 0
\(966\) −86.1958 31.3727i −2.77330 1.00940i
\(967\) 18.0465 + 21.5070i 0.580336 + 0.691618i 0.973718 0.227758i \(-0.0731394\pi\)
−0.393382 + 0.919375i \(0.628695\pi\)
\(968\) 30.3844i 0.976591i
\(969\) 3.41972 3.74722i 0.109857 0.120378i
\(970\) 0 0
\(971\) −26.9547 + 22.6176i −0.865016 + 0.725835i −0.963043 0.269349i \(-0.913191\pi\)
0.0980264 + 0.995184i \(0.468747\pi\)
\(972\) 56.4590 155.120i 1.81092 4.97548i
\(973\) 8.42250 + 1.48511i 0.270013 + 0.0476106i
\(974\) 0.131992 + 0.748566i 0.00422931 + 0.0239856i
\(975\) 0 0
\(976\) −0.0181396 + 0.0314187i −0.000580633 + 0.00100569i
\(977\) 46.1619 26.6516i 1.47685 0.852659i 0.477191 0.878799i \(-0.341655\pi\)
0.999658 + 0.0261400i \(0.00832156\pi\)
\(978\) 47.3318 56.4079i 1.51350 1.80372i
\(979\) −2.90759 2.43976i −0.0929269 0.0779749i
\(980\) 0 0
\(981\) 9.96127 17.2534i 0.318039 0.550859i
\(982\) 2.61741 + 7.19127i 0.0835249 + 0.229483i
\(983\) −50.0417 + 8.82370i −1.59608 + 0.281432i −0.899789 0.436325i \(-0.856280\pi\)
−0.696293 + 0.717757i \(0.745169\pi\)
\(984\) −4.37156 + 24.7924i −0.139360 + 0.790352i
\(985\) 0 0
\(986\) −1.85687 + 1.55810i −0.0591349 + 0.0496200i
\(987\) 107.241i 3.41352i
\(988\) 7.50883 5.78599i 0.238888 0.184077i
\(989\) −27.1903 −0.864603
\(990\) 0 0
\(991\) 52.8203 + 19.2250i 1.67789 + 0.610703i 0.993018 0.117960i \(-0.0376354\pi\)
0.684873 + 0.728662i \(0.259858\pi\)
\(992\) −1.64662 0.290343i −0.0522801 0.00921840i
\(993\) 14.7603 2.60263i 0.468403 0.0825920i
\(994\) 83.6404 30.4426i 2.65291 0.965581i
\(995\) 0 0
\(996\) −71.4458 123.748i −2.26385 3.92110i
\(997\) −24.0867 + 28.7054i −0.762834 + 0.909110i −0.998024 0.0628394i \(-0.979984\pi\)
0.235190 + 0.971949i \(0.424429\pi\)
\(998\) −20.7420 + 24.7194i −0.656578 + 0.782479i
\(999\) −67.8275 117.481i −2.14597 3.71693i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 475.2.u.b.424.6 36
5.2 odd 4 475.2.l.c.101.1 18
5.3 odd 4 95.2.k.a.6.3 18
5.4 even 2 inner 475.2.u.b.424.1 36
15.8 even 4 855.2.bs.c.766.1 18
19.16 even 9 inner 475.2.u.b.149.1 36
95.23 odd 36 1805.2.a.v.1.8 9
95.42 odd 36 9025.2.a.cc.1.2 9
95.53 even 36 1805.2.a.s.1.2 9
95.54 even 18 inner 475.2.u.b.149.6 36
95.72 even 36 9025.2.a.cf.1.8 9
95.73 odd 36 95.2.k.a.16.3 yes 18
95.92 odd 36 475.2.l.c.301.1 18
285.263 even 36 855.2.bs.c.586.1 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.k.a.6.3 18 5.3 odd 4
95.2.k.a.16.3 yes 18 95.73 odd 36
475.2.l.c.101.1 18 5.2 odd 4
475.2.l.c.301.1 18 95.92 odd 36
475.2.u.b.149.1 36 19.16 even 9 inner
475.2.u.b.149.6 36 95.54 even 18 inner
475.2.u.b.424.1 36 5.4 even 2 inner
475.2.u.b.424.6 36 1.1 even 1 trivial
855.2.bs.c.586.1 18 285.263 even 36
855.2.bs.c.766.1 18 15.8 even 4
1805.2.a.s.1.2 9 95.53 even 36
1805.2.a.v.1.8 9 95.23 odd 36
9025.2.a.cc.1.2 9 95.42 odd 36
9025.2.a.cf.1.8 9 95.72 even 36