Properties

Label 475.2.u.b.24.4
Level $475$
Weight $2$
Character 475.24
Analytic conductor $3.793$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [475,2,Mod(24,475)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(475, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 16])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("475.24"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 475 = 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 475.u (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [36,0,0,6,0,-12,0,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.79289409601\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(6\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 24.4
Character \(\chi\) \(=\) 475.24
Dual form 475.2.u.b.99.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.105338 + 0.289414i) q^{2} +(1.61894 + 0.285463i) q^{3} +(1.45942 - 1.22460i) q^{4} +(0.0879194 + 0.498616i) q^{6} +(0.0772459 - 0.0445979i) q^{7} +(1.04160 + 0.601369i) q^{8} +(-0.279590 - 0.101762i) q^{9} +(1.68341 - 2.91575i) q^{11} +(2.71230 - 1.56595i) q^{12} +(0.209636 - 0.0369645i) q^{13} +(0.0210442 + 0.0176582i) q^{14} +(0.597325 - 3.38760i) q^{16} +(0.859918 + 2.36261i) q^{17} -0.0916368i q^{18} +(-0.949628 + 4.25420i) q^{19} +(0.137788 - 0.0501507i) q^{21} +(1.02119 + 0.180063i) q^{22} +(3.83550 + 4.57098i) q^{23} +(1.51463 + 1.27092i) q^{24} +(0.0327807 + 0.0567779i) q^{26} +(-4.69462 - 2.71044i) q^{27} +(0.0581198 - 0.159683i) q^{28} +(-4.51826 - 1.64451i) q^{29} +(-4.03407 - 6.98722i) q^{31} +(3.41227 - 0.601676i) q^{32} +(3.55769 - 4.23989i) q^{33} +(-0.593190 + 0.497745i) q^{34} +(-0.532659 + 0.193872i) q^{36} +1.84372i q^{37} +(-1.33126 + 0.173294i) q^{38} +0.349941 q^{39} +(-0.523087 + 2.96657i) q^{41} +(0.0290286 + 0.0345950i) q^{42} +(-1.57346 + 1.87518i) q^{43} +(-1.11383 - 6.31683i) q^{44} +(-0.918881 + 1.59155i) q^{46} +(-2.60562 + 7.15887i) q^{47} +(1.93407 - 5.31381i) q^{48} +(-3.49602 + 6.05529i) q^{49} +(0.717721 + 4.07040i) q^{51} +(0.260681 - 0.310668i) q^{52} +(5.39920 + 6.43452i) q^{53} +(0.289917 - 1.64420i) q^{54} +0.107279 q^{56} +(-2.75181 + 6.61622i) q^{57} -1.48088i q^{58} +(9.80610 - 3.56913i) q^{59} +(-0.757296 + 0.635447i) q^{61} +(1.59726 - 1.90354i) q^{62} +(-0.0261356 + 0.00460841i) q^{63} +(-2.90628 - 5.03383i) q^{64} +(1.60184 + 0.583024i) q^{66} +(3.41324 - 9.37780i) q^{67} +(4.14824 + 2.39499i) q^{68} +(4.90462 + 8.49505i) q^{69} +(4.73200 + 3.97062i) q^{71} +(-0.230025 - 0.274133i) q^{72} +(-15.5058 - 2.73409i) q^{73} +(-0.533599 + 0.194214i) q^{74} +(3.82379 + 7.37160i) q^{76} -0.300307i q^{77} +(0.0368621 + 0.101278i) q^{78} +(0.178596 - 1.01287i) q^{79} +(-6.14281 - 5.15443i) q^{81} +(-0.913670 + 0.161105i) q^{82} +(-15.5354 + 8.96939i) q^{83} +(0.139676 - 0.241926i) q^{84} +(-0.708449 - 0.257854i) q^{86} +(-6.84536 - 3.95217i) q^{87} +(3.50689 - 2.02470i) q^{88} +(-0.113975 - 0.646383i) q^{89} +(0.0145450 - 0.0122047i) q^{91} +(11.1953 + 1.97403i) q^{92} +(-4.53634 - 12.4635i) q^{93} -2.34635 q^{94} +5.69603 q^{96} +(-5.75040 - 15.7991i) q^{97} +(-2.12075 - 0.373946i) q^{98} +(-0.767379 + 0.643907i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 6 q^{4} - 12 q^{6} - 6 q^{9} + 24 q^{14} - 6 q^{16} - 42 q^{21} + 30 q^{24} + 6 q^{26} - 30 q^{29} - 36 q^{31} + 24 q^{34} + 150 q^{36} - 72 q^{39} - 60 q^{41} - 84 q^{44} + 18 q^{46} - 18 q^{49}+ \cdots + 186 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/475\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\)
\(\chi(n)\) \(-1\) \(e\left(\frac{8}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.105338 + 0.289414i 0.0744854 + 0.204647i 0.971348 0.237663i \(-0.0763814\pi\)
−0.896862 + 0.442310i \(0.854159\pi\)
\(3\) 1.61894 + 0.285463i 0.934697 + 0.164812i 0.620198 0.784445i \(-0.287052\pi\)
0.314499 + 0.949258i \(0.398163\pi\)
\(4\) 1.45942 1.22460i 0.729712 0.612301i
\(5\) 0 0
\(6\) 0.0879194 + 0.498616i 0.0358929 + 0.203559i
\(7\) 0.0772459 0.0445979i 0.0291962 0.0168564i −0.485331 0.874331i \(-0.661301\pi\)
0.514527 + 0.857474i \(0.327968\pi\)
\(8\) 1.04160 + 0.601369i 0.368262 + 0.212616i
\(9\) −0.279590 0.101762i −0.0931966 0.0339208i
\(10\) 0 0
\(11\) 1.68341 2.91575i 0.507567 0.879133i −0.492394 0.870372i \(-0.663878\pi\)
0.999962 0.00876033i \(-0.00278854\pi\)
\(12\) 2.71230 1.56595i 0.782975 0.452051i
\(13\) 0.209636 0.0369645i 0.0581426 0.0102521i −0.144501 0.989505i \(-0.546158\pi\)
0.202644 + 0.979253i \(0.435047\pi\)
\(14\) 0.0210442 + 0.0176582i 0.00562431 + 0.00471935i
\(15\) 0 0
\(16\) 0.597325 3.38760i 0.149331 0.846899i
\(17\) 0.859918 + 2.36261i 0.208561 + 0.573016i 0.999230 0.0392271i \(-0.0124896\pi\)
−0.790670 + 0.612243i \(0.790267\pi\)
\(18\) 0.0916368i 0.0215990i
\(19\) −0.949628 + 4.25420i −0.217860 + 0.975980i
\(20\) 0 0
\(21\) 0.137788 0.0501507i 0.0300678 0.0109438i
\(22\) 1.02119 + 0.180063i 0.217718 + 0.0383896i
\(23\) 3.83550 + 4.57098i 0.799758 + 0.953114i 0.999643 0.0267049i \(-0.00850145\pi\)
−0.199885 + 0.979819i \(0.564057\pi\)
\(24\) 1.51463 + 1.27092i 0.309172 + 0.259426i
\(25\) 0 0
\(26\) 0.0327807 + 0.0567779i 0.00642883 + 0.0111351i
\(27\) −4.69462 2.71044i −0.903479 0.521624i
\(28\) 0.0581198 0.159683i 0.0109836 0.0301772i
\(29\) −4.51826 1.64451i −0.839019 0.305378i −0.113464 0.993542i \(-0.536195\pi\)
−0.725555 + 0.688164i \(0.758417\pi\)
\(30\) 0 0
\(31\) −4.03407 6.98722i −0.724541 1.25494i −0.959163 0.282855i \(-0.908718\pi\)
0.234621 0.972087i \(-0.424615\pi\)
\(32\) 3.41227 0.601676i 0.603210 0.106362i
\(33\) 3.55769 4.23989i 0.619314 0.738070i
\(34\) −0.593190 + 0.497745i −0.101731 + 0.0853626i
\(35\) 0 0
\(36\) −0.532659 + 0.193872i −0.0887765 + 0.0323120i
\(37\) 1.84372i 0.303106i 0.988449 + 0.151553i \(0.0484274\pi\)
−0.988449 + 0.151553i \(0.951573\pi\)
\(38\) −1.33126 + 0.173294i −0.215959 + 0.0281119i
\(39\) 0.349941 0.0560354
\(40\) 0 0
\(41\) −0.523087 + 2.96657i −0.0816925 + 0.463301i 0.916329 + 0.400426i \(0.131138\pi\)
−0.998021 + 0.0628748i \(0.979973\pi\)
\(42\) 0.0290286 + 0.0345950i 0.00447922 + 0.00533812i
\(43\) −1.57346 + 1.87518i −0.239951 + 0.285962i −0.872558 0.488511i \(-0.837540\pi\)
0.632607 + 0.774473i \(0.281985\pi\)
\(44\) −1.11383 6.31683i −0.167916 0.952298i
\(45\) 0 0
\(46\) −0.918881 + 1.59155i −0.135482 + 0.234661i
\(47\) −2.60562 + 7.15887i −0.380068 + 1.04423i 0.591259 + 0.806482i \(0.298631\pi\)
−0.971327 + 0.237747i \(0.923591\pi\)
\(48\) 1.93407 5.31381i 0.279159 0.766983i
\(49\) −3.49602 + 6.05529i −0.499432 + 0.865041i
\(50\) 0 0
\(51\) 0.717721 + 4.07040i 0.100501 + 0.569970i
\(52\) 0.260681 0.310668i 0.0361500 0.0430818i
\(53\) 5.39920 + 6.43452i 0.741637 + 0.883849i 0.996540 0.0831178i \(-0.0264878\pi\)
−0.254902 + 0.966967i \(0.582043\pi\)
\(54\) 0.289917 1.64420i 0.0394527 0.223747i
\(55\) 0 0
\(56\) 0.107279 0.0143358
\(57\) −2.75181 + 6.61622i −0.364486 + 0.876340i
\(58\) 1.48088i 0.194449i
\(59\) 9.80610 3.56913i 1.27665 0.464661i 0.387324 0.921944i \(-0.373400\pi\)
0.889321 + 0.457283i \(0.151177\pi\)
\(60\) 0 0
\(61\) −0.757296 + 0.635447i −0.0969618 + 0.0813606i −0.689980 0.723828i \(-0.742381\pi\)
0.593018 + 0.805189i \(0.297936\pi\)
\(62\) 1.59726 1.90354i 0.202852 0.241750i
\(63\) −0.0261356 + 0.00460841i −0.00329277 + 0.000580605i
\(64\) −2.90628 5.03383i −0.363285 0.629228i
\(65\) 0 0
\(66\) 1.60184 + 0.583024i 0.197173 + 0.0717653i
\(67\) 3.41324 9.37780i 0.416994 1.14568i −0.536403 0.843962i \(-0.680217\pi\)
0.953397 0.301719i \(-0.0975603\pi\)
\(68\) 4.14824 + 2.39499i 0.503048 + 0.290435i
\(69\) 4.90462 + 8.49505i 0.590447 + 1.02268i
\(70\) 0 0
\(71\) 4.73200 + 3.97062i 0.561585 + 0.471226i 0.878841 0.477114i \(-0.158317\pi\)
−0.317256 + 0.948340i \(0.602762\pi\)
\(72\) −0.230025 0.274133i −0.0271087 0.0323068i
\(73\) −15.5058 2.73409i −1.81482 0.320001i −0.839929 0.542696i \(-0.817403\pi\)
−0.974888 + 0.222695i \(0.928515\pi\)
\(74\) −0.533599 + 0.194214i −0.0620296 + 0.0225769i
\(75\) 0 0
\(76\) 3.82379 + 7.37160i 0.438619 + 0.845580i
\(77\) 0.300307i 0.0342231i
\(78\) 0.0368621 + 0.101278i 0.00417381 + 0.0114675i
\(79\) 0.178596 1.01287i 0.0200936 0.113957i −0.973111 0.230336i \(-0.926018\pi\)
0.993205 + 0.116379i \(0.0371287\pi\)
\(80\) 0 0
\(81\) −6.14281 5.15443i −0.682535 0.572715i
\(82\) −0.913670 + 0.161105i −0.100898 + 0.0177910i
\(83\) −15.5354 + 8.96939i −1.70524 + 0.984518i −0.764976 + 0.644059i \(0.777249\pi\)
−0.940259 + 0.340459i \(0.889418\pi\)
\(84\) 0.139676 0.241926i 0.0152399 0.0263963i
\(85\) 0 0
\(86\) −0.708449 0.257854i −0.0763940 0.0278052i
\(87\) −6.84536 3.95217i −0.733899 0.423717i
\(88\) 3.50689 2.02470i 0.373836 0.215834i
\(89\) −0.113975 0.646383i −0.0120813 0.0685164i 0.978171 0.207801i \(-0.0666307\pi\)
−0.990252 + 0.139285i \(0.955520\pi\)
\(90\) 0 0
\(91\) 0.0145450 0.0122047i 0.00152473 0.00127940i
\(92\) 11.1953 + 1.97403i 1.16719 + 0.205806i
\(93\) −4.53634 12.4635i −0.470397 1.29240i
\(94\) −2.34635 −0.242008
\(95\) 0 0
\(96\) 5.69603 0.581349
\(97\) −5.75040 15.7991i −0.583865 1.60416i −0.781518 0.623883i \(-0.785554\pi\)
0.197653 0.980272i \(-0.436668\pi\)
\(98\) −2.12075 0.373946i −0.214228 0.0377742i
\(99\) −0.767379 + 0.643907i −0.0771245 + 0.0647151i
\(100\) 0 0
\(101\) 0.638978 + 3.62382i 0.0635806 + 0.360584i 0.999954 + 0.00957849i \(0.00304897\pi\)
−0.936373 + 0.351005i \(0.885840\pi\)
\(102\) −1.10243 + 0.636488i −0.109157 + 0.0630217i
\(103\) −3.06071 1.76710i −0.301580 0.174118i 0.341572 0.939856i \(-0.389041\pi\)
−0.643153 + 0.765738i \(0.722374\pi\)
\(104\) 0.240587 + 0.0875664i 0.0235915 + 0.00858659i
\(105\) 0 0
\(106\) −1.29350 + 2.24041i −0.125636 + 0.217608i
\(107\) −1.63384 + 0.943300i −0.157950 + 0.0911923i −0.576891 0.816821i \(-0.695734\pi\)
0.418942 + 0.908013i \(0.362401\pi\)
\(108\) −10.1706 + 1.79336i −0.978671 + 0.172566i
\(109\) 10.0810 + 8.45901i 0.965589 + 0.810226i 0.981853 0.189642i \(-0.0607327\pi\)
−0.0162639 + 0.999868i \(0.505177\pi\)
\(110\) 0 0
\(111\) −0.526315 + 2.98488i −0.0499556 + 0.283312i
\(112\) −0.104939 0.288318i −0.00991580 0.0272434i
\(113\) 12.3456i 1.16138i −0.814125 0.580689i \(-0.802783\pi\)
0.814125 0.580689i \(-0.197217\pi\)
\(114\) −2.20470 0.0994730i −0.206489 0.00931650i
\(115\) 0 0
\(116\) −8.60793 + 3.13303i −0.799226 + 0.290895i
\(117\) −0.0623737 0.0109982i −0.00576645 0.00101678i
\(118\) 2.06591 + 2.46206i 0.190183 + 0.226651i
\(119\) 0.171793 + 0.144151i 0.0157482 + 0.0132143i
\(120\) 0 0
\(121\) −0.167744 0.290542i −0.0152495 0.0264129i
\(122\) −0.263680 0.152235i −0.0238724 0.0137827i
\(123\) −1.69370 + 4.65339i −0.152716 + 0.419582i
\(124\) −14.4440 5.25718i −1.29711 0.472109i
\(125\) 0 0
\(126\) −0.00408681 0.00707857i −0.000364082 0.000630609i
\(127\) −20.8898 + 3.68344i −1.85367 + 0.326852i −0.985535 0.169473i \(-0.945793\pi\)
−0.868137 + 0.496325i \(0.834682\pi\)
\(128\) 5.60512 6.67993i 0.495428 0.590428i
\(129\) −3.08264 + 2.58664i −0.271411 + 0.227741i
\(130\) 0 0
\(131\) −6.53156 + 2.37729i −0.570665 + 0.207705i −0.611204 0.791473i \(-0.709315\pi\)
0.0405392 + 0.999178i \(0.487092\pi\)
\(132\) 10.5445i 0.917785i
\(133\) 0.116374 + 0.370971i 0.0100909 + 0.0321673i
\(134\) 3.07361 0.265520
\(135\) 0 0
\(136\) −0.525106 + 2.97802i −0.0450275 + 0.255363i
\(137\) 13.5029 + 16.0922i 1.15363 + 1.37485i 0.914860 + 0.403772i \(0.132301\pi\)
0.238774 + 0.971075i \(0.423254\pi\)
\(138\) −1.94194 + 2.31432i −0.165309 + 0.197008i
\(139\) −2.72999 15.4826i −0.231555 1.31321i −0.849749 0.527188i \(-0.823246\pi\)
0.618194 0.786026i \(-0.287865\pi\)
\(140\) 0 0
\(141\) −6.26194 + 10.8460i −0.527351 + 0.913398i
\(142\) −0.650694 + 1.78777i −0.0546050 + 0.150026i
\(143\) 0.245124 0.673473i 0.0204983 0.0563187i
\(144\) −0.511736 + 0.886353i −0.0426447 + 0.0738627i
\(145\) 0 0
\(146\) −0.842068 4.77561i −0.0696901 0.395232i
\(147\) −7.38842 + 8.80518i −0.609387 + 0.726239i
\(148\) 2.25782 + 2.69077i 0.185592 + 0.221180i
\(149\) 3.38951 19.2229i 0.277679 1.57480i −0.452641 0.891693i \(-0.649518\pi\)
0.730320 0.683105i \(-0.239371\pi\)
\(150\) 0 0
\(151\) 11.2284 0.913758 0.456879 0.889529i \(-0.348967\pi\)
0.456879 + 0.889529i \(0.348967\pi\)
\(152\) −3.54748 + 3.86010i −0.287739 + 0.313096i
\(153\) 0.748068i 0.0604777i
\(154\) 0.0869131 0.0316338i 0.00700365 0.00254912i
\(155\) 0 0
\(156\) 0.510712 0.428538i 0.0408897 0.0343105i
\(157\) −2.96506 + 3.53362i −0.236637 + 0.282014i −0.871274 0.490797i \(-0.836705\pi\)
0.634636 + 0.772811i \(0.281150\pi\)
\(158\) 0.311951 0.0550055i 0.0248175 0.00437600i
\(159\) 6.90418 + 11.9584i 0.547537 + 0.948362i
\(160\) 0 0
\(161\) 0.500133 + 0.182034i 0.0394160 + 0.0143463i
\(162\) 0.844694 2.32078i 0.0663654 0.182337i
\(163\) −0.497735 0.287367i −0.0389856 0.0225084i 0.480381 0.877060i \(-0.340499\pi\)
−0.519366 + 0.854552i \(0.673832\pi\)
\(164\) 2.86947 + 4.97007i 0.224068 + 0.388097i
\(165\) 0 0
\(166\) −4.23234 3.55136i −0.328494 0.275639i
\(167\) 2.64958 + 3.15765i 0.205031 + 0.244346i 0.858755 0.512387i \(-0.171239\pi\)
−0.653724 + 0.756733i \(0.726794\pi\)
\(168\) 0.173679 + 0.0306243i 0.0133996 + 0.00236272i
\(169\) −12.1734 + 4.43076i −0.936417 + 0.340828i
\(170\) 0 0
\(171\) 0.698424 1.09279i 0.0534098 0.0835681i
\(172\) 4.66355i 0.355592i
\(173\) −2.20075 6.04652i −0.167320 0.459709i 0.827487 0.561485i \(-0.189770\pi\)
−0.994807 + 0.101776i \(0.967547\pi\)
\(174\) 0.422737 2.39746i 0.0320476 0.181751i
\(175\) 0 0
\(176\) −8.87186 7.44437i −0.668741 0.561141i
\(177\) 16.8944 2.97893i 1.26986 0.223910i
\(178\) 0.175066 0.101075i 0.0131218 0.00757587i
\(179\) 1.91516 3.31715i 0.143146 0.247936i −0.785534 0.618819i \(-0.787612\pi\)
0.928680 + 0.370883i \(0.120945\pi\)
\(180\) 0 0
\(181\) −15.6814 5.70755i −1.16559 0.424239i −0.314496 0.949259i \(-0.601836\pi\)
−0.851090 + 0.525020i \(0.824058\pi\)
\(182\) 0.00506435 + 0.00292391i 0.000375395 + 0.000216734i
\(183\) −1.40742 + 0.812572i −0.104039 + 0.0600670i
\(184\) 1.24622 + 7.06769i 0.0918729 + 0.521037i
\(185\) 0 0
\(186\) 3.12926 2.62576i 0.229449 0.192530i
\(187\) 8.33637 + 1.46993i 0.609616 + 0.107492i
\(188\) 4.96407 + 13.6387i 0.362042 + 0.994703i
\(189\) −0.483520 −0.0351709
\(190\) 0 0
\(191\) 7.92694 0.573573 0.286787 0.957994i \(-0.407413\pi\)
0.286787 + 0.957994i \(0.407413\pi\)
\(192\) −3.26813 8.97912i −0.235857 0.648012i
\(193\) 20.9438 + 3.69296i 1.50757 + 0.265825i 0.865533 0.500851i \(-0.166980\pi\)
0.642034 + 0.766676i \(0.278091\pi\)
\(194\) 3.96675 3.32850i 0.284796 0.238972i
\(195\) 0 0
\(196\) 2.31314 + 13.1185i 0.165224 + 0.937034i
\(197\) 2.50058 1.44371i 0.178159 0.102860i −0.408268 0.912862i \(-0.633867\pi\)
0.586427 + 0.810002i \(0.300534\pi\)
\(198\) −0.267190 0.154262i −0.0189884 0.0109629i
\(199\) 10.9144 + 3.97251i 0.773701 + 0.281604i 0.698544 0.715568i \(-0.253832\pi\)
0.0751574 + 0.997172i \(0.476054\pi\)
\(200\) 0 0
\(201\) 8.20286 14.2078i 0.578585 1.00214i
\(202\) −0.981477 + 0.566656i −0.0690565 + 0.0398698i
\(203\) −0.422359 + 0.0744732i −0.0296438 + 0.00522700i
\(204\) 6.03208 + 5.06152i 0.422330 + 0.354377i
\(205\) 0 0
\(206\) 0.189015 1.07196i 0.0131693 0.0746867i
\(207\) −0.607215 1.66831i −0.0422043 0.115955i
\(208\) 0.732242i 0.0507719i
\(209\) 10.8056 + 9.93045i 0.747437 + 0.686903i
\(210\) 0 0
\(211\) 22.2708 8.10590i 1.53318 0.558033i 0.568784 0.822487i \(-0.307414\pi\)
0.964398 + 0.264454i \(0.0851916\pi\)
\(212\) 15.7595 + 2.77882i 1.08236 + 0.190850i
\(213\) 6.52737 + 7.77902i 0.447248 + 0.533010i
\(214\) −0.445111 0.373492i −0.0304272 0.0255314i
\(215\) 0 0
\(216\) −3.25995 5.64639i −0.221811 0.384188i
\(217\) −0.623232 0.359823i −0.0423077 0.0244264i
\(218\) −1.38624 + 3.80866i −0.0938879 + 0.257955i
\(219\) −24.3225 8.85268i −1.64356 0.598209i
\(220\) 0 0
\(221\) 0.267602 + 0.463501i 0.0180009 + 0.0311784i
\(222\) −0.919308 + 0.162099i −0.0616999 + 0.0108794i
\(223\) −5.66673 + 6.75335i −0.379472 + 0.452237i −0.921648 0.388028i \(-0.873156\pi\)
0.542175 + 0.840265i \(0.317601\pi\)
\(224\) 0.236751 0.198657i 0.0158186 0.0132734i
\(225\) 0 0
\(226\) 3.57300 1.30047i 0.237672 0.0865057i
\(227\) 1.04512i 0.0693671i −0.999398 0.0346835i \(-0.988958\pi\)
0.999398 0.0346835i \(-0.0110423\pi\)
\(228\) 4.08618 + 13.0258i 0.270614 + 0.862651i
\(229\) 13.4837 0.891031 0.445515 0.895274i \(-0.353020\pi\)
0.445515 + 0.895274i \(0.353020\pi\)
\(230\) 0 0
\(231\) 0.0857266 0.486179i 0.00564039 0.0319883i
\(232\) −3.71727 4.43007i −0.244051 0.290848i
\(233\) 7.21068 8.59336i 0.472388 0.562970i −0.476260 0.879305i \(-0.658008\pi\)
0.948648 + 0.316335i \(0.102452\pi\)
\(234\) −0.00338731 0.0192104i −0.000221435 0.00125582i
\(235\) 0 0
\(236\) 9.94050 17.2174i 0.647071 1.12076i
\(237\) 0.578273 1.58879i 0.0375629 0.103203i
\(238\) −0.0236231 + 0.0649038i −0.00153126 + 0.00420709i
\(239\) −10.1645 + 17.6054i −0.657487 + 1.13880i 0.323777 + 0.946133i \(0.395047\pi\)
−0.981264 + 0.192667i \(0.938286\pi\)
\(240\) 0 0
\(241\) −0.667594 3.78611i −0.0430035 0.243885i 0.955727 0.294254i \(-0.0950713\pi\)
−0.998731 + 0.0503694i \(0.983960\pi\)
\(242\) 0.0664171 0.0791528i 0.00426945 0.00508814i
\(243\) 1.97995 + 2.35961i 0.127014 + 0.151369i
\(244\) −0.327046 + 1.85477i −0.0209370 + 0.118740i
\(245\) 0 0
\(246\) −1.52517 −0.0972413
\(247\) −0.0418221 + 0.926936i −0.00266107 + 0.0589795i
\(248\) 9.70387i 0.616197i
\(249\) −27.7114 + 10.0861i −1.75614 + 0.639183i
\(250\) 0 0
\(251\) −6.08068 + 5.10229i −0.383809 + 0.322054i −0.814196 0.580591i \(-0.802822\pi\)
0.430387 + 0.902645i \(0.358377\pi\)
\(252\) −0.0324994 + 0.0387313i −0.00204727 + 0.00243984i
\(253\) 19.7846 3.48855i 1.24385 0.219323i
\(254\) −3.26654 5.65781i −0.204961 0.355002i
\(255\) 0 0
\(256\) −8.40034 3.05747i −0.525021 0.191092i
\(257\) 8.28638 22.7666i 0.516890 1.42014i −0.357038 0.934090i \(-0.616213\pi\)
0.873929 0.486054i \(-0.161564\pi\)
\(258\) −1.07333 0.619688i −0.0668227 0.0385801i
\(259\) 0.0822262 + 0.142420i 0.00510928 + 0.00884954i
\(260\) 0 0
\(261\) 1.09591 + 0.919578i 0.0678351 + 0.0569204i
\(262\) −1.37605 1.63991i −0.0850124 0.101314i
\(263\) 12.1892 + 2.14928i 0.751617 + 0.132530i 0.536316 0.844017i \(-0.319816\pi\)
0.215301 + 0.976548i \(0.430927\pi\)
\(264\) 6.25543 2.27679i 0.384995 0.140127i
\(265\) 0 0
\(266\) −0.0951057 + 0.0727576i −0.00583131 + 0.00446105i
\(267\) 1.07899i 0.0660333i
\(268\) −6.50271 17.8660i −0.397216 1.09134i
\(269\) 4.23334 24.0085i 0.258111 1.46382i −0.529846 0.848094i \(-0.677750\pi\)
0.787958 0.615729i \(-0.211138\pi\)
\(270\) 0 0
\(271\) 13.3432 + 11.1963i 0.810540 + 0.680124i 0.950737 0.310000i \(-0.100329\pi\)
−0.140196 + 0.990124i \(0.544773\pi\)
\(272\) 8.51721 1.50181i 0.516432 0.0910608i
\(273\) 0.0270315 0.0156066i 0.00163602 0.000944557i
\(274\) −3.23493 + 5.60306i −0.195429 + 0.338494i
\(275\) 0 0
\(276\) 17.5610 + 6.39167i 1.05705 + 0.384733i
\(277\) −17.9994 10.3920i −1.08148 0.624393i −0.150185 0.988658i \(-0.547987\pi\)
−0.931295 + 0.364265i \(0.881320\pi\)
\(278\) 4.19330 2.42100i 0.251498 0.145202i
\(279\) 0.416850 + 2.36407i 0.0249562 + 0.141533i
\(280\) 0 0
\(281\) −4.60383 + 3.86307i −0.274641 + 0.230452i −0.769696 0.638410i \(-0.779592\pi\)
0.495055 + 0.868862i \(0.335148\pi\)
\(282\) −3.79861 0.669797i −0.226204 0.0398859i
\(283\) 3.95849 + 10.8759i 0.235308 + 0.646502i 0.999998 + 0.00210419i \(0.000669785\pi\)
−0.764690 + 0.644398i \(0.777108\pi\)
\(284\) 11.7684 0.698327
\(285\) 0 0
\(286\) 0.220734 0.0130523
\(287\) 0.0918968 + 0.252484i 0.00542450 + 0.0149037i
\(288\) −1.01526 0.179019i −0.0598251 0.0105488i
\(289\) 8.18031 6.86409i 0.481195 0.403770i
\(290\) 0 0
\(291\) −4.79951 27.2194i −0.281352 1.59563i
\(292\) −25.9777 + 14.9982i −1.52023 + 0.877706i
\(293\) 15.1289 + 8.73466i 0.883838 + 0.510284i 0.871922 0.489645i \(-0.162874\pi\)
0.0119163 + 0.999929i \(0.496207\pi\)
\(294\) −3.32663 1.21079i −0.194013 0.0706149i
\(295\) 0 0
\(296\) −1.10876 + 1.92042i −0.0644452 + 0.111622i
\(297\) −15.8059 + 9.12556i −0.917153 + 0.529519i
\(298\) 5.92042 1.04393i 0.342961 0.0604732i
\(299\) 0.973024 + 0.816464i 0.0562714 + 0.0472173i
\(300\) 0 0
\(301\) −0.0379144 + 0.215023i −0.00218535 + 0.0123937i
\(302\) 1.18278 + 3.24967i 0.0680616 + 0.186998i
\(303\) 6.04917i 0.347516i
\(304\) 13.8443 + 5.75810i 0.794024 + 0.330250i
\(305\) 0 0
\(306\) 0.216502 0.0788002i 0.0123766 0.00450470i
\(307\) 29.2028 + 5.14924i 1.66669 + 0.293883i 0.925876 0.377827i \(-0.123328\pi\)
0.740815 + 0.671709i \(0.234440\pi\)
\(308\) −0.367756 0.438275i −0.0209549 0.0249730i
\(309\) −4.45067 3.73455i −0.253190 0.212451i
\(310\) 0 0
\(311\) 5.81119 + 10.0653i 0.329522 + 0.570749i 0.982417 0.186699i \(-0.0597790\pi\)
−0.652895 + 0.757449i \(0.726446\pi\)
\(312\) 0.364499 + 0.210444i 0.0206357 + 0.0119140i
\(313\) 0.162413 0.446226i 0.00918012 0.0252222i −0.935018 0.354600i \(-0.884617\pi\)
0.944198 + 0.329378i \(0.106839\pi\)
\(314\) −1.33501 0.485905i −0.0753392 0.0274212i
\(315\) 0 0
\(316\) −0.979713 1.69691i −0.0551132 0.0954588i
\(317\) 19.9209 3.51260i 1.11887 0.197287i 0.416526 0.909124i \(-0.363247\pi\)
0.702345 + 0.711836i \(0.252136\pi\)
\(318\) −2.73366 + 3.25784i −0.153296 + 0.182691i
\(319\) −12.4011 + 10.4057i −0.694327 + 0.582609i
\(320\) 0 0
\(321\) −2.91438 + 1.06075i −0.162665 + 0.0592051i
\(322\) 0.163921i 0.00913495i
\(323\) −10.8676 + 1.41467i −0.604689 + 0.0787141i
\(324\) −15.2771 −0.848728
\(325\) 0 0
\(326\) 0.0307377 0.174322i 0.00170241 0.00965483i
\(327\) 13.9059 + 16.5724i 0.768999 + 0.916457i
\(328\) −2.32886 + 2.77542i −0.128590 + 0.153247i
\(329\) 0.117998 + 0.669199i 0.00650543 + 0.0368941i
\(330\) 0 0
\(331\) 3.00653 5.20746i 0.165254 0.286228i −0.771492 0.636240i \(-0.780489\pi\)
0.936745 + 0.350012i \(0.113822\pi\)
\(332\) −11.6889 + 32.1149i −0.641509 + 1.76253i
\(333\) 0.187621 0.515486i 0.0102816 0.0282484i
\(334\) −0.634767 + 1.09945i −0.0347329 + 0.0601591i
\(335\) 0 0
\(336\) −0.0875862 0.496726i −0.00477822 0.0270986i
\(337\) 5.69981 6.79277i 0.310488 0.370026i −0.588123 0.808772i \(-0.700133\pi\)
0.898611 + 0.438746i \(0.144577\pi\)
\(338\) −2.56465 3.05643i −0.139499 0.166248i
\(339\) 3.52422 19.9869i 0.191409 1.08554i
\(340\) 0 0
\(341\) −27.1640 −1.47101
\(342\) 0.389841 + 0.0870209i 0.0210802 + 0.00470555i
\(343\) 1.24803i 0.0673874i
\(344\) −2.76660 + 1.00696i −0.149165 + 0.0542916i
\(345\) 0 0
\(346\) 1.51813 1.27386i 0.0816150 0.0684831i
\(347\) −12.8372 + 15.2988i −0.689139 + 0.821284i −0.991251 0.131989i \(-0.957864\pi\)
0.302112 + 0.953272i \(0.402308\pi\)
\(348\) −14.8301 + 2.61495i −0.794977 + 0.140176i
\(349\) −0.405107 0.701666i −0.0216849 0.0375593i 0.854979 0.518662i \(-0.173570\pi\)
−0.876664 + 0.481103i \(0.840236\pi\)
\(350\) 0 0
\(351\) −1.08435 0.394671i −0.0578783 0.0210660i
\(352\) 3.98992 10.9622i 0.212663 0.584288i
\(353\) −18.1435 10.4751i −0.965681 0.557536i −0.0677639 0.997701i \(-0.521586\pi\)
−0.897917 + 0.440165i \(0.854920\pi\)
\(354\) 2.64177 + 4.57568i 0.140408 + 0.243195i
\(355\) 0 0
\(356\) −0.957899 0.803773i −0.0507686 0.0425999i
\(357\) 0.236973 + 0.282413i 0.0125419 + 0.0149469i
\(358\) 1.16177 + 0.204851i 0.0614015 + 0.0108267i
\(359\) 24.1518 8.79055i 1.27469 0.463948i 0.386015 0.922493i \(-0.373851\pi\)
0.888671 + 0.458545i \(0.151629\pi\)
\(360\) 0 0
\(361\) −17.1964 8.07982i −0.905074 0.425253i
\(362\) 5.13963i 0.270133i
\(363\) −0.188630 0.518256i −0.00990049 0.0272014i
\(364\) 0.00628141 0.0356236i 0.000329235 0.00186719i
\(365\) 0 0
\(366\) −0.383425 0.321731i −0.0200419 0.0168172i
\(367\) 23.9170 4.21721i 1.24846 0.220137i 0.489921 0.871767i \(-0.337026\pi\)
0.758537 + 0.651630i \(0.225915\pi\)
\(368\) 17.7757 10.2628i 0.926621 0.534985i
\(369\) 0.448136 0.776194i 0.0233290 0.0404070i
\(370\) 0 0
\(371\) 0.704033 + 0.256247i 0.0365515 + 0.0133037i
\(372\) −21.8833 12.6343i −1.13460 0.655059i
\(373\) −9.42310 + 5.44043i −0.487910 + 0.281695i −0.723707 0.690107i \(-0.757563\pi\)
0.235797 + 0.971802i \(0.424230\pi\)
\(374\) 0.452720 + 2.56750i 0.0234096 + 0.132763i
\(375\) 0 0
\(376\) −7.01914 + 5.88976i −0.361985 + 0.303741i
\(377\) −1.00798 0.177734i −0.0519135 0.00915375i
\(378\) −0.0509331 0.139938i −0.00261972 0.00719761i
\(379\) −19.3318 −0.993008 −0.496504 0.868034i \(-0.665383\pi\)
−0.496504 + 0.868034i \(0.665383\pi\)
\(380\) 0 0
\(381\) −34.8709 −1.78649
\(382\) 0.835009 + 2.29417i 0.0427228 + 0.117380i
\(383\) 1.02720 + 0.181124i 0.0524876 + 0.00925498i 0.199830 0.979831i \(-0.435961\pi\)
−0.147343 + 0.989086i \(0.547072\pi\)
\(384\) 10.9813 9.21437i 0.560385 0.470219i
\(385\) 0 0
\(386\) 1.13739 + 6.45045i 0.0578915 + 0.328319i
\(387\) 0.630747 0.364162i 0.0320627 0.0185114i
\(388\) −27.7399 16.0156i −1.40828 0.813070i
\(389\) 24.9988 + 9.09880i 1.26749 + 0.461328i 0.886275 0.463160i \(-0.153284\pi\)
0.381213 + 0.924487i \(0.375507\pi\)
\(390\) 0 0
\(391\) −7.50120 + 12.9925i −0.379352 + 0.657056i
\(392\) −7.28293 + 4.20480i −0.367843 + 0.212374i
\(393\) −11.2529 + 1.98418i −0.567632 + 0.100089i
\(394\) 0.681238 + 0.571627i 0.0343203 + 0.0287981i
\(395\) 0 0
\(396\) −0.331401 + 1.87947i −0.0166535 + 0.0944468i
\(397\) 1.26464 + 3.47457i 0.0634705 + 0.174384i 0.967374 0.253353i \(-0.0815333\pi\)
−0.903903 + 0.427737i \(0.859311\pi\)
\(398\) 3.57724i 0.179311i
\(399\) 0.0825037 + 0.633801i 0.00413035 + 0.0317298i
\(400\) 0 0
\(401\) 19.0147 6.92080i 0.949551 0.345608i 0.179620 0.983736i \(-0.442513\pi\)
0.769930 + 0.638128i \(0.220291\pi\)
\(402\) 4.97601 + 0.877404i 0.248181 + 0.0437609i
\(403\) −1.10397 1.31566i −0.0549925 0.0655375i
\(404\) 5.37028 + 4.50620i 0.267181 + 0.224192i
\(405\) 0 0
\(406\) −0.0660441 0.114392i −0.00327772 0.00567717i
\(407\) 5.37583 + 3.10374i 0.266470 + 0.153847i
\(408\) −1.70023 + 4.67135i −0.0841741 + 0.231266i
\(409\) 11.7244 + 4.26733i 0.579733 + 0.211006i 0.615208 0.788365i \(-0.289072\pi\)
−0.0354746 + 0.999371i \(0.511294\pi\)
\(410\) 0 0
\(411\) 17.2668 + 29.9069i 0.851707 + 1.47520i
\(412\) −6.63087 + 1.16920i −0.326679 + 0.0576024i
\(413\) 0.598305 0.713032i 0.0294407 0.0350860i
\(414\) 0.418870 0.351473i 0.0205863 0.0172740i
\(415\) 0 0
\(416\) 0.693095 0.252266i 0.0339818 0.0123683i
\(417\) 25.8447i 1.26562i
\(418\) −1.73577 + 4.17334i −0.0848994 + 0.204125i
\(419\) −28.9962 −1.41656 −0.708279 0.705933i \(-0.750528\pi\)
−0.708279 + 0.705933i \(0.750528\pi\)
\(420\) 0 0
\(421\) 2.53458 14.3743i 0.123528 0.700561i −0.858644 0.512573i \(-0.828692\pi\)
0.982171 0.187988i \(-0.0601965\pi\)
\(422\) 4.69193 + 5.59162i 0.228399 + 0.272196i
\(423\) 1.45701 1.73639i 0.0708422 0.0844264i
\(424\) 1.75430 + 9.94912i 0.0851963 + 0.483172i
\(425\) 0 0
\(426\) −1.56378 + 2.70854i −0.0757653 + 0.131229i
\(427\) −0.0301584 + 0.0828595i −0.00145947 + 0.00400985i
\(428\) −1.22930 + 3.37749i −0.0594207 + 0.163257i
\(429\) 0.589094 1.02034i 0.0284417 0.0492625i
\(430\) 0 0
\(431\) 2.34566 + 13.3029i 0.112986 + 0.640778i 0.987727 + 0.156187i \(0.0499204\pi\)
−0.874741 + 0.484591i \(0.838969\pi\)
\(432\) −11.9861 + 14.2845i −0.576681 + 0.687261i
\(433\) −24.4391 29.1254i −1.17447 1.39968i −0.898761 0.438438i \(-0.855532\pi\)
−0.275709 0.961241i \(-0.588913\pi\)
\(434\) 0.0384878 0.218275i 0.00184747 0.0104775i
\(435\) 0 0
\(436\) 25.0714 1.20070
\(437\) −23.0881 + 11.9763i −1.10446 + 0.572903i
\(438\) 7.97181i 0.380908i
\(439\) −22.3525 + 8.13563i −1.06682 + 0.388292i −0.814988 0.579478i \(-0.803257\pi\)
−0.251836 + 0.967770i \(0.581034\pi\)
\(440\) 0 0
\(441\) 1.59365 1.33723i 0.0758882 0.0636778i
\(442\) −0.105955 + 0.126272i −0.00503977 + 0.00600616i
\(443\) −19.0059 + 3.35126i −0.902999 + 0.159223i −0.605823 0.795600i \(-0.707156\pi\)
−0.297176 + 0.954823i \(0.596045\pi\)
\(444\) 2.88717 + 5.00073i 0.137019 + 0.237324i
\(445\) 0 0
\(446\) −2.55144 0.928648i −0.120814 0.0439727i
\(447\) 10.9748 30.1531i 0.519092 1.42619i
\(448\) −0.448997 0.259228i −0.0212131 0.0122474i
\(449\) −13.2068 22.8749i −0.623268 1.07953i −0.988873 0.148761i \(-0.952471\pi\)
0.365605 0.930770i \(-0.380862\pi\)
\(450\) 0 0
\(451\) 7.76923 + 6.51916i 0.365839 + 0.306975i
\(452\) −15.1185 18.0175i −0.711113 0.847472i
\(453\) 18.1782 + 3.20531i 0.854087 + 0.150599i
\(454\) 0.302473 0.110091i 0.0141958 0.00516683i
\(455\) 0 0
\(456\) −6.84509 + 5.23661i −0.320551 + 0.245227i
\(457\) 38.4641i 1.79927i −0.436638 0.899637i \(-0.643831\pi\)
0.436638 0.899637i \(-0.356169\pi\)
\(458\) 1.42035 + 3.90239i 0.0663687 + 0.182347i
\(459\) 2.36671 13.4223i 0.110469 0.626498i
\(460\) 0 0
\(461\) 26.0330 + 21.8442i 1.21248 + 1.01739i 0.999184 + 0.0403991i \(0.0128629\pi\)
0.213292 + 0.976989i \(0.431582\pi\)
\(462\) 0.149738 0.0264028i 0.00696642 0.00122837i
\(463\) 4.67174 2.69723i 0.217114 0.125351i −0.387499 0.921870i \(-0.626661\pi\)
0.604613 + 0.796519i \(0.293328\pi\)
\(464\) −8.26981 + 14.3237i −0.383916 + 0.664963i
\(465\) 0 0
\(466\) 3.24660 + 1.18167i 0.150396 + 0.0547396i
\(467\) −19.4240 11.2144i −0.898834 0.518942i −0.0220125 0.999758i \(-0.507007\pi\)
−0.876822 + 0.480815i \(0.840341\pi\)
\(468\) −0.104498 + 0.0603320i −0.00483043 + 0.00278885i
\(469\) −0.154572 0.876620i −0.00713746 0.0404786i
\(470\) 0 0
\(471\) −5.80898 + 4.87431i −0.267664 + 0.224597i
\(472\) 12.3604 + 2.17947i 0.568934 + 0.100318i
\(473\) 2.81878 + 7.74452i 0.129607 + 0.356093i
\(474\) 0.520734 0.0239181
\(475\) 0 0
\(476\) 0.427246 0.0195828
\(477\) −0.854770 2.34846i −0.0391372 0.107529i
\(478\) −6.16597 1.08723i −0.282025 0.0497286i
\(479\) 22.0166 18.4741i 1.00596 0.844104i 0.0181649 0.999835i \(-0.494218\pi\)
0.987800 + 0.155731i \(0.0497732\pi\)
\(480\) 0 0
\(481\) 0.0681522 + 0.386510i 0.00310747 + 0.0176233i
\(482\) 1.02543 0.592033i 0.0467071 0.0269664i
\(483\) 0.757723 + 0.437472i 0.0344776 + 0.0199057i
\(484\) −0.600609 0.218604i −0.0273004 0.00993653i
\(485\) 0 0
\(486\) −0.474341 + 0.821582i −0.0215165 + 0.0372677i
\(487\) −29.8295 + 17.2221i −1.35170 + 0.780406i −0.988488 0.151299i \(-0.951654\pi\)
−0.363215 + 0.931705i \(0.618321\pi\)
\(488\) −1.17094 + 0.206468i −0.0530059 + 0.00934637i
\(489\) −0.723772 0.607317i −0.0327301 0.0274638i
\(490\) 0 0
\(491\) −3.36638 + 19.0917i −0.151923 + 0.861596i 0.809623 + 0.586950i \(0.199672\pi\)
−0.961546 + 0.274645i \(0.911440\pi\)
\(492\) 3.22674 + 8.86538i 0.145472 + 0.399682i
\(493\) 12.0890i 0.544462i
\(494\) −0.272674 + 0.0855378i −0.0122682 + 0.00384853i
\(495\) 0 0
\(496\) −26.0796 + 9.49218i −1.17101 + 0.426212i
\(497\) 0.542609 + 0.0956766i 0.0243393 + 0.00429168i
\(498\) −5.83814 6.95763i −0.261613 0.311779i
\(499\) −8.63214 7.24323i −0.386428 0.324251i 0.428792 0.903403i \(-0.358939\pi\)
−0.815220 + 0.579152i \(0.803384\pi\)
\(500\) 0 0
\(501\) 3.38813 + 5.86842i 0.151371 + 0.262181i
\(502\) −2.11720 1.22237i −0.0944955 0.0545570i
\(503\) −3.62262 + 9.95307i −0.161525 + 0.443785i −0.993881 0.110455i \(-0.964769\pi\)
0.832356 + 0.554241i \(0.186991\pi\)
\(504\) −0.0299942 0.0109170i −0.00133605 0.000486282i
\(505\) 0 0
\(506\) 3.09371 + 5.35846i 0.137532 + 0.238213i
\(507\) −20.9729 + 3.69809i −0.931439 + 0.164238i
\(508\) −25.9764 + 30.9574i −1.15251 + 1.37351i
\(509\) 1.66949 1.40087i 0.0739990 0.0620925i −0.605038 0.796197i \(-0.706842\pi\)
0.679037 + 0.734104i \(0.262398\pi\)
\(510\) 0 0
\(511\) −1.31969 + 0.480330i −0.0583799 + 0.0212485i
\(512\) 20.1933i 0.892426i
\(513\) 15.9889 17.3979i 0.705926 0.768137i
\(514\) 7.46186 0.329129
\(515\) 0 0
\(516\) −1.33127 + 7.55002i −0.0586060 + 0.332371i
\(517\) 16.4872 + 19.6487i 0.725106 + 0.864147i
\(518\) −0.0325568 + 0.0387997i −0.00143046 + 0.00170476i
\(519\) −1.83684 10.4172i −0.0806282 0.457265i
\(520\) 0 0
\(521\) 5.72367 9.91369i 0.250759 0.434327i −0.712976 0.701188i \(-0.752653\pi\)
0.963735 + 0.266862i \(0.0859866\pi\)
\(522\) −0.150698 + 0.414039i −0.00659586 + 0.0181220i
\(523\) 3.33548 9.16414i 0.145850 0.400720i −0.845159 0.534515i \(-0.820494\pi\)
0.991009 + 0.133795i \(0.0427164\pi\)
\(524\) −6.62108 + 11.4680i −0.289243 + 0.500984i
\(525\) 0 0
\(526\) 0.661953 + 3.75412i 0.0288625 + 0.163688i
\(527\) 13.0391 15.5394i 0.567991 0.676906i
\(528\) −12.2379 14.5846i −0.532588 0.634713i
\(529\) −2.18882 + 12.4134i −0.0951661 + 0.539714i
\(530\) 0 0
\(531\) −3.10489 −0.134741
\(532\) 0.624130 + 0.398893i 0.0270595 + 0.0172942i
\(533\) 0.641237i 0.0277750i
\(534\) 0.312276 0.113659i 0.0135135 0.00491851i
\(535\) 0 0
\(536\) 9.19476 7.71532i 0.397153 0.333251i
\(537\) 4.04746 4.82357i 0.174661 0.208153i
\(538\) 7.39433 1.30382i 0.318792 0.0562117i
\(539\) 11.7705 + 20.3871i 0.506991 + 0.878133i
\(540\) 0 0
\(541\) −21.4401 7.80354i −0.921780 0.335501i −0.162834 0.986654i \(-0.552063\pi\)
−0.758947 + 0.651153i \(0.774286\pi\)
\(542\) −1.83481 + 5.04110i −0.0788118 + 0.216534i
\(543\) −23.7579 13.7166i −1.01955 0.588638i
\(544\) 4.35580 + 7.54446i 0.186753 + 0.323466i
\(545\) 0 0
\(546\) 0.00736423 + 0.00617933i 0.000315160 + 0.000264451i
\(547\) 19.8732 + 23.6840i 0.849716 + 1.01265i 0.999713 + 0.0239661i \(0.00762938\pi\)
−0.149996 + 0.988687i \(0.547926\pi\)
\(548\) 39.4130 + 6.94958i 1.68364 + 0.296871i
\(549\) 0.276397 0.100600i 0.0117963 0.00429351i
\(550\) 0 0
\(551\) 11.2867 17.6599i 0.480831 0.752337i
\(552\) 11.7979i 0.502154i
\(553\) −0.0313760 0.0862049i −0.00133424 0.00366581i
\(554\) 1.11156 6.30396i 0.0472256 0.267830i
\(555\) 0 0
\(556\) −22.9442 19.2525i −0.973051 0.816486i
\(557\) 9.67955 1.70677i 0.410136 0.0723180i 0.0352261 0.999379i \(-0.488785\pi\)
0.374910 + 0.927061i \(0.377674\pi\)
\(558\) −0.640287 + 0.369670i −0.0271055 + 0.0156494i
\(559\) −0.260539 + 0.451267i −0.0110196 + 0.0190866i
\(560\) 0 0
\(561\) 13.0765 + 4.75946i 0.552090 + 0.200944i
\(562\) −1.60299 0.925485i −0.0676179 0.0390392i
\(563\) −28.9420 + 16.7096i −1.21976 + 0.704228i −0.964866 0.262742i \(-0.915373\pi\)
−0.254892 + 0.966970i \(0.582040\pi\)
\(564\) 4.14321 + 23.4973i 0.174461 + 0.989415i
\(565\) 0 0
\(566\) −2.73065 + 2.29129i −0.114778 + 0.0963099i
\(567\) −0.704384 0.124202i −0.0295814 0.00521599i
\(568\) 2.54105 + 6.98148i 0.106620 + 0.292936i
\(569\) −37.6326 −1.57764 −0.788820 0.614624i \(-0.789308\pi\)
−0.788820 + 0.614624i \(0.789308\pi\)
\(570\) 0 0
\(571\) −2.75232 −0.115181 −0.0575904 0.998340i \(-0.518342\pi\)
−0.0575904 + 0.998340i \(0.518342\pi\)
\(572\) −0.466997 1.28306i −0.0195261 0.0536476i
\(573\) 12.8333 + 2.26285i 0.536117 + 0.0945319i
\(574\) −0.0633924 + 0.0531925i −0.00264595 + 0.00222021i
\(575\) 0 0
\(576\) 0.300313 + 1.70316i 0.0125130 + 0.0709649i
\(577\) 0.0321295 0.0185500i 0.00133757 0.000772245i −0.499331 0.866411i \(-0.666421\pi\)
0.500669 + 0.865639i \(0.333088\pi\)
\(578\) 2.84827 + 1.64445i 0.118472 + 0.0684000i
\(579\) 32.8526 + 11.9574i 1.36531 + 0.496932i
\(580\) 0 0
\(581\) −0.800032 + 1.38570i −0.0331909 + 0.0574884i
\(582\) 7.37210 4.25629i 0.305584 0.176429i
\(583\) 27.8505 4.91080i 1.15345 0.203385i
\(584\) −14.5067 12.1725i −0.600291 0.503704i
\(585\) 0 0
\(586\) −0.934287 + 5.29861i −0.0385951 + 0.218883i
\(587\) 1.23359 + 3.38927i 0.0509158 + 0.139890i 0.962544 0.271126i \(-0.0873961\pi\)
−0.911628 + 0.411016i \(0.865174\pi\)
\(588\) 21.8984i 0.903074i
\(589\) 33.5559 10.5265i 1.38265 0.433736i
\(590\) 0 0
\(591\) 4.46043 1.62346i 0.183478 0.0667804i
\(592\) 6.24578 + 1.10130i 0.256700 + 0.0452632i
\(593\) −11.4696 13.6689i −0.470998 0.561314i 0.477281 0.878751i \(-0.341622\pi\)
−0.948279 + 0.317437i \(0.897178\pi\)
\(594\) −4.30604 3.61319i −0.176679 0.148251i
\(595\) 0 0
\(596\) −18.5936 32.2051i −0.761625 1.31917i
\(597\) 16.5358 + 9.54694i 0.676764 + 0.390730i
\(598\) −0.133800 + 0.367612i −0.00547148 + 0.0150328i
\(599\) −20.6214 7.50558i −0.842568 0.306670i −0.115561 0.993300i \(-0.536867\pi\)
−0.727006 + 0.686631i \(0.759089\pi\)
\(600\) 0 0
\(601\) −5.14039 8.90342i −0.209681 0.363178i 0.741933 0.670474i \(-0.233909\pi\)
−0.951614 + 0.307296i \(0.900576\pi\)
\(602\) −0.0662246 + 0.0116772i −0.00269911 + 0.000475926i
\(603\) −1.90861 + 2.27460i −0.0777248 + 0.0926288i
\(604\) 16.3871 13.7504i 0.666780 0.559495i
\(605\) 0 0
\(606\) −1.75072 + 0.637208i −0.0711180 + 0.0258848i
\(607\) 32.2616i 1.30946i 0.755864 + 0.654729i \(0.227217\pi\)
−0.755864 + 0.654729i \(0.772783\pi\)
\(608\) −0.680743 + 15.0879i −0.0276078 + 0.611893i
\(609\) −0.705034 −0.0285694
\(610\) 0 0
\(611\) −0.281607 + 1.59707i −0.0113926 + 0.0646107i
\(612\) −0.916086 1.09175i −0.0370306 0.0441313i
\(613\) −10.5389 + 12.5598i −0.425664 + 0.507286i −0.935666 0.352887i \(-0.885200\pi\)
0.510002 + 0.860173i \(0.329645\pi\)
\(614\) 1.58591 + 8.99412i 0.0640019 + 0.362973i
\(615\) 0 0
\(616\) 0.180595 0.312800i 0.00727639 0.0126031i
\(617\) −4.36994 + 12.0063i −0.175927 + 0.483356i −0.996046 0.0888371i \(-0.971685\pi\)
0.820119 + 0.572193i \(0.193907\pi\)
\(618\) 0.612008 1.68148i 0.0246186 0.0676390i
\(619\) 2.14103 3.70838i 0.0860555 0.149052i −0.819785 0.572671i \(-0.805907\pi\)
0.905840 + 0.423619i \(0.139240\pi\)
\(620\) 0 0
\(621\) −5.61687 31.8549i −0.225397 1.27829i
\(622\) −2.30089 + 2.74210i −0.0922575 + 0.109948i
\(623\) −0.0376314 0.0448474i −0.00150767 0.00179677i
\(624\) 0.209028 1.18546i 0.00836783 0.0474563i
\(625\) 0 0
\(626\) 0.146252 0.00584542
\(627\) 14.6588 + 19.1614i 0.585418 + 0.765234i
\(628\) 8.78807i 0.350682i
\(629\) −4.35599 + 1.58545i −0.173685 + 0.0632160i
\(630\) 0 0
\(631\) −17.4565 + 14.6477i −0.694933 + 0.583118i −0.920327 0.391150i \(-0.872077\pi\)
0.225394 + 0.974268i \(0.427633\pi\)
\(632\) 0.795133 0.947603i 0.0316287 0.0376936i
\(633\) 38.3690 6.76550i 1.52503 0.268904i
\(634\) 3.11503 + 5.39540i 0.123714 + 0.214279i
\(635\) 0 0
\(636\) 24.7204 + 8.99749i 0.980228 + 0.356774i
\(637\) −0.509061 + 1.39863i −0.0201698 + 0.0554159i
\(638\) −4.31788 2.49293i −0.170946 0.0986959i
\(639\) −0.918959 1.59168i −0.0363535 0.0629661i
\(640\) 0 0
\(641\) −24.0251 20.1595i −0.948935 0.796251i 0.0301829 0.999544i \(-0.490391\pi\)
−0.979118 + 0.203293i \(0.934835\pi\)
\(642\) −0.613991 0.731726i −0.0242323 0.0288789i
\(643\) 10.9796 + 1.93601i 0.432995 + 0.0763487i 0.385898 0.922542i \(-0.373892\pi\)
0.0470972 + 0.998890i \(0.485003\pi\)
\(644\) 0.952825 0.346800i 0.0375466 0.0136658i
\(645\) 0 0
\(646\) −1.55420 2.99622i −0.0611491 0.117885i
\(647\) 17.5536i 0.690102i −0.938584 0.345051i \(-0.887862\pi\)
0.938584 0.345051i \(-0.112138\pi\)
\(648\) −3.29865 9.06297i −0.129583 0.356027i
\(649\) 6.10100 34.6005i 0.239485 1.35819i
\(650\) 0 0
\(651\) −0.906260 0.760443i −0.0355191 0.0298041i
\(652\) −1.07832 + 0.190136i −0.0422302 + 0.00744632i
\(653\) 1.81461 1.04766i 0.0710111 0.0409983i −0.464074 0.885796i \(-0.653613\pi\)
0.535085 + 0.844798i \(0.320280\pi\)
\(654\) −3.33147 + 5.77028i −0.130271 + 0.225636i
\(655\) 0 0
\(656\) 9.73711 + 3.54402i 0.380170 + 0.138371i
\(657\) 4.05704 + 2.34233i 0.158280 + 0.0913831i
\(658\) −0.181246 + 0.104642i −0.00706571 + 0.00407939i
\(659\) 2.25744 + 12.8026i 0.0879373 + 0.498717i 0.996684 + 0.0813691i \(0.0259292\pi\)
−0.908747 + 0.417348i \(0.862960\pi\)
\(660\) 0 0
\(661\) 29.1833 24.4877i 1.13510 0.952462i 0.135833 0.990732i \(-0.456629\pi\)
0.999267 + 0.0382694i \(0.0121845\pi\)
\(662\) 1.82382 + 0.321588i 0.0708846 + 0.0124989i
\(663\) 0.300920 + 0.826772i 0.0116868 + 0.0321092i
\(664\) −21.5756 −0.837298
\(665\) 0 0
\(666\) 0.168953 0.00654678
\(667\) −9.81278 26.9604i −0.379952 1.04391i
\(668\) 7.73373 + 1.36367i 0.299227 + 0.0527618i
\(669\) −11.1019 + 9.31564i −0.429226 + 0.360163i
\(670\) 0 0
\(671\) 0.577966 + 3.27781i 0.0223121 + 0.126538i
\(672\) 0.439995 0.254031i 0.0169732 0.00979947i
\(673\) 29.4013 + 16.9749i 1.13334 + 0.654333i 0.944772 0.327728i \(-0.106283\pi\)
0.188566 + 0.982061i \(0.439616\pi\)
\(674\) 2.56633 + 0.934069i 0.0988514 + 0.0359790i
\(675\) 0 0
\(676\) −12.3403 + 21.3740i −0.474626 + 0.822076i
\(677\) −14.3381 + 8.27810i −0.551058 + 0.318153i −0.749549 0.661949i \(-0.769729\pi\)
0.198491 + 0.980103i \(0.436396\pi\)
\(678\) 6.15572 1.08542i 0.236409 0.0416853i
\(679\) −1.14880 0.963959i −0.0440870 0.0369934i
\(680\) 0 0
\(681\) 0.298344 1.69199i 0.0114326 0.0648372i
\(682\) −2.86141 7.86166i −0.109569 0.301038i
\(683\) 5.33328i 0.204072i −0.994781 0.102036i \(-0.967464\pi\)
0.994781 0.102036i \(-0.0325357\pi\)
\(684\) −0.318942 2.45014i −0.0121950 0.0936835i
\(685\) 0 0
\(686\) −0.361199 + 0.131466i −0.0137906 + 0.00501938i
\(687\) 21.8294 + 3.84911i 0.832844 + 0.146853i
\(688\) 5.41248 + 6.45035i 0.206349 + 0.245917i
\(689\) 1.36972 + 1.14933i 0.0521820 + 0.0437859i
\(690\) 0 0
\(691\) 7.06510 + 12.2371i 0.268769 + 0.465522i 0.968544 0.248842i \(-0.0800498\pi\)
−0.699775 + 0.714363i \(0.746717\pi\)
\(692\) −10.6164 6.12940i −0.403576 0.233005i
\(693\) −0.0305599 + 0.0839627i −0.00116088 + 0.00318948i
\(694\) −5.77995 2.10373i −0.219404 0.0798565i
\(695\) 0 0
\(696\) −4.75342 8.23317i −0.180178 0.312078i
\(697\) −7.45866 + 1.31516i −0.282517 + 0.0498153i
\(698\) 0.160399 0.191156i 0.00607119 0.00723536i
\(699\) 14.1268 11.8538i 0.534324 0.448351i
\(700\) 0 0
\(701\) 35.8607 13.0522i 1.35444 0.492976i 0.440110 0.897944i \(-0.354939\pi\)
0.914331 + 0.404967i \(0.132717\pi\)
\(702\) 0.355400i 0.0134137i
\(703\) −7.84355 1.75085i −0.295825 0.0660345i
\(704\) −19.5699 −0.737567
\(705\) 0 0
\(706\) 1.12046 6.35442i 0.0421689 0.239152i
\(707\) 0.210973 + 0.251428i 0.00793447 + 0.00945594i
\(708\) 21.0080 25.0364i 0.789531 0.940926i
\(709\) −5.75948 32.6636i −0.216302 1.22671i −0.878633 0.477497i \(-0.841544\pi\)
0.662331 0.749211i \(-0.269567\pi\)
\(710\) 0 0
\(711\) −0.153005 + 0.265013i −0.00573815 + 0.00993878i
\(712\) 0.269998 0.741814i 0.0101186 0.0278007i
\(713\) 16.4657 45.2392i 0.616646 1.69422i
\(714\) −0.0567721 + 0.0983321i −0.00212464 + 0.00367999i
\(715\) 0 0
\(716\) −1.26716 7.18644i −0.0473561 0.268570i
\(717\) −21.4814 + 25.6006i −0.802239 + 0.956072i
\(718\) 5.08822 + 6.06391i 0.189891 + 0.226303i
\(719\) −7.35244 + 41.6978i −0.274200 + 1.55506i 0.467292 + 0.884103i \(0.345230\pi\)
−0.741492 + 0.670962i \(0.765881\pi\)
\(720\) 0 0
\(721\) −0.315236 −0.0117400
\(722\) 0.526975 5.82800i 0.0196120 0.216896i
\(723\) 6.32007i 0.235046i
\(724\) −29.8752 + 10.8737i −1.11030 + 0.404118i
\(725\) 0 0
\(726\) 0.130121 0.109184i 0.00482923 0.00405221i
\(727\) 2.70075 3.21863i 0.100165 0.119372i −0.713633 0.700520i \(-0.752952\pi\)
0.813798 + 0.581147i \(0.197396\pi\)
\(728\) 0.0224896 0.00396552i 0.000833520 0.000146972i
\(729\) 14.5602 + 25.2189i 0.539265 + 0.934034i
\(730\) 0 0
\(731\) −5.78336 2.10497i −0.213905 0.0778551i
\(732\) −1.05894 + 2.90941i −0.0391395 + 0.107535i
\(733\) 14.6668 + 8.46787i 0.541730 + 0.312768i 0.745780 0.666193i \(-0.232077\pi\)
−0.204050 + 0.978960i \(0.565410\pi\)
\(734\) 3.73990 + 6.47769i 0.138042 + 0.239096i
\(735\) 0 0
\(736\) 15.8380 + 13.2897i 0.583798 + 0.489864i
\(737\) −21.5975 25.7388i −0.795553 0.948103i
\(738\) 0.271847 + 0.0479340i 0.0100068 + 0.00176448i
\(739\) 19.5893 7.12993i 0.720605 0.262279i 0.0444223 0.999013i \(-0.485855\pi\)
0.676183 + 0.736734i \(0.263633\pi\)
\(740\) 0 0
\(741\) −0.332314 + 1.48872i −0.0122079 + 0.0546894i
\(742\) 0.230750i 0.00847109i
\(743\) 15.5106 + 42.6150i 0.569028 + 1.56339i 0.806025 + 0.591881i \(0.201615\pi\)
−0.236997 + 0.971510i \(0.576163\pi\)
\(744\) 2.77010 15.7100i 0.101557 0.575957i
\(745\) 0 0
\(746\) −2.56715 2.15410i −0.0939901 0.0788671i
\(747\) 5.25630 0.926827i 0.192318 0.0339108i
\(748\) 13.9664 8.06349i 0.510661 0.294831i
\(749\) −0.0841385 + 0.145732i −0.00307435 + 0.00532494i
\(750\) 0 0
\(751\) 8.15355 + 2.96765i 0.297527 + 0.108291i 0.486471 0.873697i \(-0.338284\pi\)
−0.188943 + 0.981988i \(0.560506\pi\)
\(752\) 22.6950 + 13.1030i 0.827601 + 0.477816i
\(753\) −11.3008 + 6.52451i −0.411824 + 0.237767i
\(754\) −0.0547399 0.310445i −0.00199351 0.0113058i
\(755\) 0 0
\(756\) −0.705661 + 0.592119i −0.0256646 + 0.0215352i
\(757\) 9.92320 + 1.74973i 0.360665 + 0.0635950i 0.351045 0.936359i \(-0.385827\pi\)
0.00962040 + 0.999954i \(0.496938\pi\)
\(758\) −2.03638 5.59490i −0.0739645 0.203216i
\(759\) 33.0259 1.19877
\(760\) 0 0
\(761\) 4.52014 0.163855 0.0819275 0.996638i \(-0.473892\pi\)
0.0819275 + 0.996638i \(0.473892\pi\)
\(762\) −3.67324 10.0921i −0.133067 0.365600i
\(763\) 1.15597 + 0.203829i 0.0418491 + 0.00737912i
\(764\) 11.5688 9.70735i 0.418543 0.351200i
\(765\) 0 0
\(766\) 0.0557839 + 0.316366i 0.00201556 + 0.0114308i
\(767\) 1.92378 1.11070i 0.0694637 0.0401049i
\(768\) −12.7269 7.34787i −0.459242 0.265143i
\(769\) −37.1897 13.5360i −1.34110 0.488119i −0.430939 0.902381i \(-0.641818\pi\)
−0.910158 + 0.414262i \(0.864040\pi\)
\(770\) 0 0
\(771\) 19.9142 34.4924i 0.717193 1.24221i
\(772\) 35.0883 20.2582i 1.26286 0.729110i
\(773\) −23.1416 + 4.08049i −0.832347 + 0.146765i −0.573554 0.819168i \(-0.694436\pi\)
−0.258793 + 0.965933i \(0.583325\pi\)
\(774\) 0.171835 + 0.144187i 0.00617649 + 0.00518269i
\(775\) 0 0
\(776\) 3.51146 19.9145i 0.126054 0.714888i
\(777\) 0.0924638 + 0.254042i 0.00331712 + 0.00911372i
\(778\) 8.19345i 0.293749i
\(779\) −12.1237 5.04246i −0.434375 0.180665i
\(780\) 0 0
\(781\) 19.5432 7.11316i 0.699312 0.254529i
\(782\) −4.55036 0.802352i −0.162721 0.0286920i
\(783\) 16.7541 + 19.9668i 0.598744 + 0.713555i
\(784\) 18.4246 + 15.4601i 0.658022 + 0.552146i
\(785\) 0 0
\(786\) −1.75961 3.04773i −0.0627631 0.108709i
\(787\) −6.51669 3.76242i −0.232295 0.134116i 0.379335 0.925259i \(-0.376153\pi\)
−0.611630 + 0.791144i \(0.709486\pi\)
\(788\) 1.88144 5.16921i 0.0670235 0.184145i
\(789\) 19.1200 + 6.95913i 0.680692 + 0.247751i
\(790\) 0 0
\(791\) −0.550589 0.953649i −0.0195767 0.0339078i
\(792\) −1.18653 + 0.209217i −0.0421615 + 0.00743421i
\(793\) −0.135268 + 0.161206i −0.00480349 + 0.00572458i
\(794\) −0.872376 + 0.732010i −0.0309595 + 0.0259781i
\(795\) 0 0
\(796\) 20.7935 7.56821i 0.737006 0.268248i
\(797\) 18.7858i 0.665426i −0.943028 0.332713i \(-0.892036\pi\)
0.943028 0.332713i \(-0.107964\pi\)
\(798\) −0.174740 + 0.0906412i −0.00618574 + 0.00320866i
\(799\) −19.1542 −0.677627
\(800\) 0 0
\(801\) −0.0339113 + 0.192320i −0.00119820 + 0.00679531i
\(802\) 4.00596 + 4.77411i 0.141455 + 0.168580i
\(803\) −34.0746 + 40.6085i −1.20247 + 1.43304i
\(804\) −5.42742 30.7804i −0.191410 1.08554i
\(805\) 0 0
\(806\) 0.264480 0.458092i 0.00931590 0.0161356i
\(807\) 13.7071 37.6599i 0.482512 1.32569i
\(808\) −1.51369 + 4.15884i −0.0532516 + 0.146308i
\(809\) −9.74651 + 16.8815i −0.342669 + 0.593520i −0.984927 0.172968i \(-0.944664\pi\)
0.642258 + 0.766488i \(0.277998\pi\)
\(810\) 0 0
\(811\) 2.64049 + 14.9750i 0.0927201 + 0.525842i 0.995422 + 0.0955756i \(0.0304692\pi\)
−0.902702 + 0.430266i \(0.858420\pi\)
\(812\) −0.525201 + 0.625910i −0.0184309 + 0.0219651i
\(813\) 18.4057 + 21.9351i 0.645517 + 0.769297i
\(814\) −0.331986 + 1.88279i −0.0116361 + 0.0659916i
\(815\) 0 0
\(816\) 14.2176 0.497715
\(817\) −6.48318 8.47454i −0.226818 0.296487i
\(818\) 3.84272i 0.134357i
\(819\) −0.00530861 + 0.00193218i −0.000185498 + 6.75157e-5i
\(820\) 0 0
\(821\) −20.5043 + 17.2051i −0.715604 + 0.600463i −0.926165 0.377118i \(-0.876915\pi\)
0.210562 + 0.977581i \(0.432471\pi\)
\(822\) −6.83664 + 8.14759i −0.238455 + 0.284180i
\(823\) 27.2284 4.80109i 0.949121 0.167356i 0.322404 0.946602i \(-0.395509\pi\)
0.626717 + 0.779247i \(0.284398\pi\)
\(824\) −2.12536 3.68123i −0.0740404 0.128242i
\(825\) 0 0
\(826\) 0.269386 + 0.0980486i 0.00937314 + 0.00341155i
\(827\) 4.38543 12.0489i 0.152496 0.418980i −0.839796 0.542903i \(-0.817325\pi\)
0.992292 + 0.123923i \(0.0395474\pi\)
\(828\) −2.92920 1.69117i −0.101797 0.0587724i
\(829\) 22.7266 + 39.3636i 0.789326 + 1.36715i 0.926380 + 0.376590i \(0.122903\pi\)
−0.137054 + 0.990564i \(0.543763\pi\)
\(830\) 0 0
\(831\) −26.1735 21.9622i −0.907949 0.761860i
\(832\) −0.795334 0.947842i −0.0275732 0.0328605i
\(833\) −17.3126 3.05267i −0.599844 0.105769i
\(834\) 7.47983 2.72243i 0.259005 0.0942702i
\(835\) 0 0
\(836\) 27.9308 + 1.26020i 0.966006 + 0.0435849i
\(837\) 43.7364i 1.51175i
\(838\) −3.05441 8.39192i −0.105513 0.289894i
\(839\) −4.04829 + 22.9590i −0.139762 + 0.792632i 0.831662 + 0.555282i \(0.187390\pi\)
−0.971424 + 0.237350i \(0.923721\pi\)
\(840\) 0 0
\(841\) −4.50505 3.78019i −0.155347 0.130351i
\(842\) 4.42712 0.780620i 0.152569 0.0269019i
\(843\) −8.55610 + 4.93987i −0.294688 + 0.170138i
\(844\) 22.5760 39.1028i 0.777098 1.34597i
\(845\) 0 0
\(846\) 0.656016 + 0.238770i 0.0225543 + 0.00820909i
\(847\) −0.0259151 0.0149621i −0.000890455 0.000514104i
\(848\) 25.0226 14.4468i 0.859281 0.496106i
\(849\) 3.30391 + 18.7374i 0.113390 + 0.643066i
\(850\) 0 0
\(851\) −8.42760 + 7.07160i −0.288894 + 0.242411i
\(852\) 19.0524 + 3.35945i 0.652725 + 0.115093i
\(853\) −15.6588 43.0221i −0.536146 1.47305i −0.851643 0.524122i \(-0.824393\pi\)
0.315497 0.948927i \(-0.397829\pi\)
\(854\) −0.0271576 −0.000929312
\(855\) 0 0
\(856\) −2.26909 −0.0775558
\(857\) −2.20568 6.06004i −0.0753444 0.207007i 0.896303 0.443443i \(-0.146243\pi\)
−0.971647 + 0.236436i \(0.924021\pi\)
\(858\) 0.357355 + 0.0630114i 0.0121999 + 0.00215117i
\(859\) 11.1359 9.34415i 0.379953 0.318818i −0.432731 0.901523i \(-0.642450\pi\)
0.812684 + 0.582705i \(0.198006\pi\)
\(860\) 0 0
\(861\) 0.0767007 + 0.434991i 0.00261395 + 0.0148245i
\(862\) −3.60296 + 2.08017i −0.122717 + 0.0708509i
\(863\) −3.95891 2.28568i −0.134763 0.0778054i 0.431103 0.902303i \(-0.358125\pi\)
−0.565866 + 0.824497i \(0.691458\pi\)
\(864\) −17.6501 6.42412i −0.600469 0.218553i
\(865\) 0 0
\(866\) 5.85494 10.1411i 0.198959 0.344607i
\(867\) 15.2029 8.77740i 0.516318 0.298096i
\(868\) −1.35020 + 0.238077i −0.0458288 + 0.00808085i
\(869\) −2.65262 2.22581i −0.0899841 0.0755056i
\(870\) 0 0
\(871\) 0.368892 2.09209i 0.0124994 0.0708879i
\(872\) 5.41346 + 14.8733i 0.183323 + 0.503675i
\(873\) 5.00244i 0.169307i
\(874\) −5.89817 5.42048i −0.199508 0.183351i
\(875\) 0 0
\(876\) −46.3379 + 16.8656i −1.56561 + 0.569836i
\(877\) 32.4562 + 5.72291i 1.09597 + 0.193249i 0.692267 0.721641i \(-0.256612\pi\)
0.403702 + 0.914890i \(0.367723\pi\)
\(878\) −4.70913 5.61213i −0.158926 0.189400i
\(879\) 21.9994 + 18.4597i 0.742020 + 0.622629i
\(880\) 0 0
\(881\) 8.12066 + 14.0654i 0.273592 + 0.473875i 0.969779 0.243985i \(-0.0784549\pi\)
−0.696187 + 0.717860i \(0.745122\pi\)
\(882\) 0.554887 + 0.320364i 0.0186840 + 0.0107872i
\(883\) 9.75238 26.7945i 0.328194 0.901705i −0.660375 0.750936i \(-0.729603\pi\)
0.988569 0.150769i \(-0.0481751\pi\)
\(884\) 0.958150 + 0.348738i 0.0322261 + 0.0117293i
\(885\) 0 0
\(886\) −2.97195 5.14757i −0.0998447 0.172936i
\(887\) −38.0483 + 6.70894i −1.27754 + 0.225264i −0.770933 0.636916i \(-0.780210\pi\)
−0.506602 + 0.862180i \(0.669099\pi\)
\(888\) −2.34322 + 2.79255i −0.0786335 + 0.0937117i
\(889\) −1.44938 + 1.21617i −0.0486106 + 0.0407891i
\(890\) 0 0
\(891\) −25.3699 + 9.23390i −0.849925 + 0.309347i
\(892\) 16.7955i 0.562355i
\(893\) −27.9809 17.8831i −0.936345 0.598435i
\(894\) 9.88282 0.330531
\(895\) 0 0
\(896\) 0.135062 0.765974i 0.00451210 0.0255894i
\(897\) 1.34220 + 1.59957i 0.0448147 + 0.0534081i
\(898\) 5.22913 6.23184i 0.174498 0.207959i
\(899\) 6.73642 + 38.2042i 0.224672 + 1.27418i
\(900\) 0 0
\(901\) −10.5594 + 18.2893i −0.351783 + 0.609306i
\(902\) −1.06834 + 2.93524i −0.0355719 + 0.0977329i
\(903\) −0.122762 + 0.337287i −0.00408528 + 0.0112242i
\(904\) 7.42428 12.8592i 0.246928 0.427691i
\(905\) 0 0
\(906\) 0.987198 + 5.59868i 0.0327975 + 0.186004i
\(907\) −18.4200 + 21.9521i −0.611627 + 0.728908i −0.979606 0.200926i \(-0.935605\pi\)
0.367980 + 0.929834i \(0.380049\pi\)
\(908\) −1.27986 1.52527i −0.0424735 0.0506180i
\(909\) 0.190117 1.07821i 0.00630579 0.0357619i
\(910\) 0 0
\(911\) −47.5952 −1.57690 −0.788450 0.615099i \(-0.789116\pi\)
−0.788450 + 0.615099i \(0.789116\pi\)
\(912\) 20.7694 + 13.2741i 0.687743 + 0.439548i
\(913\) 60.3966i 1.99884i
\(914\) 11.1321 4.05174i 0.368216 0.134020i
\(915\) 0 0
\(916\) 19.6785 16.5122i 0.650196 0.545579i
\(917\) −0.398514 + 0.474930i −0.0131601 + 0.0156836i
\(918\) 4.13391 0.728919i 0.136439 0.0240579i
\(919\) −13.6098 23.5728i −0.448945 0.777596i 0.549372 0.835578i \(-0.314867\pi\)
−0.998318 + 0.0579814i \(0.981534\pi\)
\(920\) 0 0
\(921\) 45.8077 + 16.6727i 1.50942 + 0.549383i
\(922\) −3.57977 + 9.83534i −0.117894 + 0.323910i
\(923\) 1.13877 + 0.657469i 0.0374830 + 0.0216408i
\(924\) −0.470265 0.814523i −0.0154706 0.0267958i
\(925\) 0 0
\(926\) 1.27273 + 1.06795i 0.0418245 + 0.0350949i
\(927\) 0.675919 + 0.805528i 0.0222001 + 0.0264570i
\(928\) −16.4070 2.89300i −0.538586 0.0949672i
\(929\) −30.2956 + 11.0267i −0.993967 + 0.361774i −0.787255 0.616627i \(-0.788499\pi\)
−0.206712 + 0.978402i \(0.566276\pi\)
\(930\) 0 0
\(931\) −22.4405 20.6230i −0.735457 0.675893i
\(932\) 21.3716i 0.700049i
\(933\) 6.53472 + 17.9540i 0.213937 + 0.587787i
\(934\) 1.19953 6.80288i 0.0392499 0.222597i
\(935\) 0 0
\(936\) −0.0583546 0.0489653i −0.00190738 0.00160048i
\(937\) −17.8964 + 3.15561i −0.584649 + 0.103089i −0.458146 0.888877i \(-0.651486\pi\)
−0.126503 + 0.991966i \(0.540375\pi\)
\(938\) 0.237424 0.137077i 0.00775217 0.00447572i
\(939\) 0.390318 0.676051i 0.0127376 0.0220621i
\(940\) 0 0
\(941\) −22.1364 8.05700i −0.721627 0.262651i −0.0450107 0.998987i \(-0.514332\pi\)
−0.676616 + 0.736336i \(0.736554\pi\)
\(942\) −2.02260 1.16775i −0.0659000 0.0380474i
\(943\) −15.5664 + 8.98729i −0.506913 + 0.292666i
\(944\) −6.23334 35.3510i −0.202878 1.15058i
\(945\) 0 0
\(946\) −1.94445 + 1.63159i −0.0632195 + 0.0530475i
\(947\) −8.30348 1.46413i −0.269827 0.0475777i 0.0370976 0.999312i \(-0.488189\pi\)
−0.306924 + 0.951734i \(0.599300\pi\)
\(948\) −1.10169 3.02688i −0.0357813 0.0983084i
\(949\) −3.35164 −0.108799
\(950\) 0 0
\(951\) 33.2536 1.07832
\(952\) 0.0922515 + 0.253459i 0.00298989 + 0.00821465i
\(953\) −49.3134 8.69527i −1.59742 0.281668i −0.697123 0.716952i \(-0.745537\pi\)
−0.900293 + 0.435284i \(0.856648\pi\)
\(954\) 0.589639 0.494766i 0.0190903 0.0160186i
\(955\) 0 0
\(956\) 6.72533 + 38.1413i 0.217513 + 1.23358i
\(957\) −23.0471 + 13.3062i −0.745007 + 0.430130i
\(958\) 7.66587 + 4.42589i 0.247673 + 0.142994i
\(959\) 1.76072 + 0.640851i 0.0568568 + 0.0206942i
\(960\) 0 0
\(961\) −17.0475 + 29.5272i −0.549920 + 0.952489i
\(962\) −0.104683 + 0.0604385i −0.00337510 + 0.00194862i
\(963\) 0.552799 0.0974734i 0.0178137 0.00314104i
\(964\) −5.61078 4.70801i −0.180711 0.151635i
\(965\) 0 0
\(966\) −0.0467934 + 0.265378i −0.00150555 + 0.00853841i
\(967\) 2.05501 + 5.64610i 0.0660847 + 0.181566i 0.968339 0.249637i \(-0.0803114\pi\)
−0.902255 + 0.431203i \(0.858089\pi\)
\(968\) 0.403505i 0.0129692i
\(969\) −17.9979 0.812039i −0.578175 0.0260864i
\(970\) 0 0
\(971\) −33.8031 + 12.3033i −1.08479 + 0.394832i −0.821689 0.569936i \(-0.806968\pi\)
−0.263103 + 0.964768i \(0.584746\pi\)
\(972\) 5.77917 + 1.01902i 0.185367 + 0.0326852i
\(973\) −0.901371 1.07421i −0.0288966 0.0344377i
\(974\) −8.12650 6.81894i −0.260390 0.218493i
\(975\) 0 0
\(976\) 1.70029 + 2.94498i 0.0544248 + 0.0942666i
\(977\) −29.1285 16.8174i −0.931905 0.538035i −0.0444913 0.999010i \(-0.514167\pi\)
−0.887413 + 0.460974i \(0.847500\pi\)
\(978\) 0.0995253 0.273444i 0.00318247 0.00874376i
\(979\) −2.07656 0.755805i −0.0663671 0.0241556i
\(980\) 0 0
\(981\) −1.95775 3.39092i −0.0625062 0.108264i
\(982\) −5.88002 + 1.03681i −0.187639 + 0.0330858i
\(983\) 28.9508 34.5023i 0.923388 1.10045i −0.0712938 0.997455i \(-0.522713\pi\)
0.994682 0.102996i \(-0.0328428\pi\)
\(984\) −4.56257 + 3.82845i −0.145449 + 0.122046i
\(985\) 0 0
\(986\) 3.49873 1.27343i 0.111422 0.0405544i
\(987\) 1.11708i 0.0355570i
\(988\) 1.07409 + 1.40401i 0.0341714 + 0.0446674i
\(989\) −14.6064 −0.464457
\(990\) 0 0
\(991\) −1.06445 + 6.03681i −0.0338134 + 0.191765i −0.997036 0.0769404i \(-0.975485\pi\)
0.963222 + 0.268706i \(0.0865960\pi\)
\(992\) −17.9694 21.4151i −0.570529 0.679930i
\(993\) 6.35394 7.57233i 0.201636 0.240301i
\(994\) 0.0294673 + 0.167117i 0.000934645 + 0.00530064i
\(995\) 0 0
\(996\) −28.0912 + 48.6554i −0.890104 + 1.54171i
\(997\) −15.3626 + 42.2085i −0.486539 + 1.33676i 0.417255 + 0.908789i \(0.362992\pi\)
−0.903795 + 0.427967i \(0.859230\pi\)
\(998\) 1.18700 3.26125i 0.0375738 0.103233i
\(999\) 4.99729 8.65556i 0.158107 0.273850i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 475.2.u.b.24.4 36
5.2 odd 4 475.2.l.c.176.1 18
5.3 odd 4 95.2.k.a.81.3 yes 18
5.4 even 2 inner 475.2.u.b.24.3 36
15.8 even 4 855.2.bs.c.271.1 18
19.4 even 9 inner 475.2.u.b.99.3 36
95.2 even 36 9025.2.a.cf.1.3 9
95.4 even 18 inner 475.2.u.b.99.4 36
95.17 odd 36 9025.2.a.cc.1.7 9
95.23 odd 36 95.2.k.a.61.3 18
95.42 odd 36 475.2.l.c.251.1 18
95.78 even 36 1805.2.a.s.1.7 9
95.93 odd 36 1805.2.a.v.1.3 9
285.23 even 36 855.2.bs.c.631.1 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.k.a.61.3 18 95.23 odd 36
95.2.k.a.81.3 yes 18 5.3 odd 4
475.2.l.c.176.1 18 5.2 odd 4
475.2.l.c.251.1 18 95.42 odd 36
475.2.u.b.24.3 36 5.4 even 2 inner
475.2.u.b.24.4 36 1.1 even 1 trivial
475.2.u.b.99.3 36 19.4 even 9 inner
475.2.u.b.99.4 36 95.4 even 18 inner
855.2.bs.c.271.1 18 15.8 even 4
855.2.bs.c.631.1 18 285.23 even 36
1805.2.a.s.1.7 9 95.78 even 36
1805.2.a.v.1.3 9 95.93 odd 36
9025.2.a.cc.1.7 9 95.17 odd 36
9025.2.a.cf.1.3 9 95.2 even 36