Properties

Label 475.2.g.c.18.4
Level $475$
Weight $2$
Character 475.18
Analytic conductor $3.793$
Analytic rank $0$
Dimension $16$
CM discriminant -95
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [475,2,Mod(18,475)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("475.18"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(475, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([3, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 475 = 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 475.g (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.79289409601\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 96x^{12} + 2394x^{8} + 9184x^{4} + 2025 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{4}]$

Embedding invariants

Embedding label 18.4
Root \(-0.492178 + 0.492178i\) of defining polynomial
Character \(\chi\) \(=\) 475.18
Dual form 475.2.g.c.132.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.492178 - 0.492178i) q^{2} +(1.61999 - 1.61999i) q^{3} -1.51552i q^{4} -1.59464 q^{6} +(-1.73026 + 1.73026i) q^{8} -2.24873i q^{9} -6.27978 q^{11} +(-2.45513 - 2.45513i) q^{12} +(5.09266 - 5.09266i) q^{13} -1.32785 q^{16} +(-1.10678 + 1.10678i) q^{18} -4.35890i q^{19} +(3.09076 + 3.09076i) q^{22} +5.60601i q^{24} -5.01299 q^{26} +(1.21705 + 1.21705i) q^{27} +(4.11406 + 4.11406i) q^{32} +(-10.1732 + 10.1732i) q^{33} -3.40800 q^{36} +(3.80924 + 3.80924i) q^{37} +(-2.14535 + 2.14535i) q^{38} -16.5001i q^{39} +9.51714i q^{44} +(-2.15111 + 2.15111i) q^{48} +7.00000i q^{49} +(-7.71804 - 7.71804i) q^{52} +(10.2892 - 10.2892i) q^{53} -1.19801i q^{54} +(-7.06137 - 7.06137i) q^{57} +11.8083 q^{61} -1.39399i q^{64} +10.0140 q^{66} +(-2.13960 - 2.13960i) q^{67} +(3.89089 + 3.89089i) q^{72} -3.74965i q^{74} -6.60601 q^{76} +(-8.12098 + 8.12098i) q^{78} +10.6894 q^{81} +(10.8657 - 10.8657i) q^{88} +13.3295 q^{96} +(-13.5292 - 13.5292i) q^{97} +(3.44524 - 3.44524i) q^{98} +14.1215i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 64 q^{16} - 48 q^{26} + 208 q^{36} - 208 q^{66} - 144 q^{81} + 304 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/475\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.492178 0.492178i −0.348022 0.348022i 0.511350 0.859372i \(-0.329145\pi\)
−0.859372 + 0.511350i \(0.829145\pi\)
\(3\) 1.61999 1.61999i 0.935301 0.935301i −0.0627292 0.998031i \(-0.519980\pi\)
0.998031 + 0.0627292i \(0.0199805\pi\)
\(4\) 1.51552i 0.757761i
\(5\) 0 0
\(6\) −1.59464 −0.651011
\(7\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(8\) −1.73026 + 1.73026i −0.611740 + 0.611740i
\(9\) 2.24873i 0.749577i
\(10\) 0 0
\(11\) −6.27978 −1.89342 −0.946712 0.322081i \(-0.895618\pi\)
−0.946712 + 0.322081i \(0.895618\pi\)
\(12\) −2.45513 2.45513i −0.708735 0.708735i
\(13\) 5.09266 5.09266i 1.41245 1.41245i 0.670921 0.741529i \(-0.265899\pi\)
0.741529 0.670921i \(-0.234101\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −1.32785 −0.331963
\(17\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(18\) −1.10678 + 1.10678i −0.260869 + 0.260869i
\(19\) 4.35890i 1.00000i
\(20\) 0 0
\(21\) 0 0
\(22\) 3.09076 + 3.09076i 0.658953 + 0.658953i
\(23\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(24\) 5.60601i 1.14432i
\(25\) 0 0
\(26\) −5.01299 −0.983127
\(27\) 1.21705 + 1.21705i 0.234221 + 0.234221i
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 4.11406 + 4.11406i 0.727270 + 0.727270i
\(33\) −10.1732 + 10.1732i −1.77092 + 1.77092i
\(34\) 0 0
\(35\) 0 0
\(36\) −3.40800 −0.568001
\(37\) 3.80924 + 3.80924i 0.626236 + 0.626236i 0.947119 0.320883i \(-0.103980\pi\)
−0.320883 + 0.947119i \(0.603980\pi\)
\(38\) −2.14535 + 2.14535i −0.348022 + 0.348022i
\(39\) 16.5001i 2.64213i
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(44\) 9.51714i 1.43476i
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(48\) −2.15111 + 2.15111i −0.310486 + 0.310486i
\(49\) 7.00000i 1.00000i
\(50\) 0 0
\(51\) 0 0
\(52\) −7.71804 7.71804i −1.07030 1.07030i
\(53\) 10.2892 10.2892i 1.41333 1.41333i 0.681680 0.731651i \(-0.261250\pi\)
0.731651 0.681680i \(-0.238750\pi\)
\(54\) 1.19801i 0.163028i
\(55\) 0 0
\(56\) 0 0
\(57\) −7.06137 7.06137i −0.935301 0.935301i
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 11.8083 1.51190 0.755948 0.654632i \(-0.227176\pi\)
0.755948 + 0.654632i \(0.227176\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 1.39399i 0.174249i
\(65\) 0 0
\(66\) 10.0140 1.23264
\(67\) −2.13960 2.13960i −0.261393 0.261393i 0.564227 0.825620i \(-0.309174\pi\)
−0.825620 + 0.564227i \(0.809174\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 3.89089 + 3.89089i 0.458546 + 0.458546i
\(73\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(74\) 3.74965i 0.435888i
\(75\) 0 0
\(76\) −6.60601 −0.757761
\(77\) 0 0
\(78\) −8.12098 + 8.12098i −0.919520 + 0.919520i
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 10.6894 1.18771
\(82\) 0 0
\(83\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 10.8657 10.8657i 1.15828 1.15828i
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 13.3295 1.36043
\(97\) −13.5292 13.5292i −1.37368 1.37368i −0.854920 0.518760i \(-0.826394\pi\)
−0.518760 0.854920i \(-0.673606\pi\)
\(98\) 3.44524 3.44524i 0.348022 0.348022i
\(99\) 14.1215i 1.41927i
\(100\) 0 0
\(101\) −14.8134 −1.47398 −0.736992 0.675901i \(-0.763755\pi\)
−0.736992 + 0.675901i \(0.763755\pi\)
\(102\) 0 0
\(103\) −8.04573 + 8.04573i −0.792769 + 0.792769i −0.981943 0.189175i \(-0.939419\pi\)
0.189175 + 0.981943i \(0.439419\pi\)
\(104\) 17.6233i 1.72810i
\(105\) 0 0
\(106\) −10.1282 −0.983740
\(107\) 14.2936 + 14.2936i 1.38182 + 1.38182i 0.841393 + 0.540424i \(0.181736\pi\)
0.540424 + 0.841393i \(0.318264\pi\)
\(108\) 1.84446 1.84446i 0.177483 0.177483i
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) 12.3419 1.17144
\(112\) 0 0
\(113\) 13.3093 13.3093i 1.25203 1.25203i 0.297223 0.954808i \(-0.403940\pi\)
0.954808 0.297223i \(-0.0960604\pi\)
\(114\) 6.95090i 0.651011i
\(115\) 0 0
\(116\) 0 0
\(117\) −11.4520 11.4520i −1.05874 1.05874i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 28.4356 2.58505
\(122\) −5.81177 5.81177i −0.526173 0.526173i
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 12.4785 + 12.4785i 1.10728 + 1.10728i 0.993506 + 0.113778i \(0.0362951\pi\)
0.113778 + 0.993506i \(0.463705\pi\)
\(128\) 7.54203 7.54203i 0.666628 0.666628i
\(129\) 0 0
\(130\) 0 0
\(131\) 12.0000 1.04844 0.524222 0.851581i \(-0.324356\pi\)
0.524222 + 0.851581i \(0.324356\pi\)
\(132\) 15.4177 + 15.4177i 1.34194 + 1.34194i
\(133\) 0 0
\(134\) 2.10612i 0.181941i
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(138\) 0 0
\(139\) 9.28485i 0.787531i 0.919211 + 0.393765i \(0.128828\pi\)
−0.919211 + 0.393765i \(0.871172\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −31.9808 + 31.9808i −2.67437 + 2.67437i
\(144\) 2.98599i 0.248832i
\(145\) 0 0
\(146\) 0 0
\(147\) 11.3399 + 11.3399i 0.935301 + 0.935301i
\(148\) 5.77299 5.77299i 0.474537 0.474537i
\(149\) 10.3057i 0.844280i 0.906531 + 0.422140i \(0.138721\pi\)
−0.906531 + 0.422140i \(0.861279\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 7.54203 + 7.54203i 0.611740 + 0.611740i
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) −25.0063 −2.00211
\(157\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(158\) 0 0
\(159\) 33.3368i 2.64378i
\(160\) 0 0
\(161\) 0 0
\(162\) −5.26108 5.26108i −0.413350 0.413350i
\(163\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −5.99850 5.99850i −0.464178 0.464178i 0.435844 0.900022i \(-0.356450\pi\)
−0.900022 + 0.435844i \(0.856450\pi\)
\(168\) 0 0
\(169\) 38.8704i 2.99003i
\(170\) 0 0
\(171\) −9.80199 −0.749577
\(172\) 0 0
\(173\) −11.3406 + 11.3406i −0.862207 + 0.862207i −0.991594 0.129387i \(-0.958699\pi\)
0.129387 + 0.991594i \(0.458699\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 8.33863 0.628548
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 19.1293 19.1293i 1.41408 1.41408i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −26.1534 −1.89239 −0.946197 0.323592i \(-0.895109\pi\)
−0.946197 + 0.323592i \(0.895109\pi\)
\(192\) −2.25825 2.25825i −0.162975 0.162975i
\(193\) −5.91069 + 5.91069i −0.425461 + 0.425461i −0.887079 0.461618i \(-0.847269\pi\)
0.461618 + 0.887079i \(0.347269\pi\)
\(194\) 13.3175i 0.956142i
\(195\) 0 0
\(196\) 10.6087 0.757761
\(197\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(198\) 6.95030 6.95030i 0.493936 0.493936i
\(199\) 8.71780i 0.617988i −0.951064 0.308994i \(-0.900008\pi\)
0.951064 0.308994i \(-0.0999924\pi\)
\(200\) 0 0
\(201\) −6.93224 −0.488963
\(202\) 7.29080 + 7.29080i 0.512979 + 0.512979i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 7.91985 0.551802
\(207\) 0 0
\(208\) −6.76231 + 6.76231i −0.468882 + 0.468882i
\(209\) 27.3729i 1.89342i
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) −15.5935 15.5935i −1.07097 1.07097i
\(213\) 0 0
\(214\) 14.0700i 0.961806i
\(215\) 0 0
\(216\) −4.21162 −0.286564
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) −6.07439 6.07439i −0.407686 0.407686i
\(223\) 2.75852 2.75852i 0.184724 0.184724i −0.608687 0.793411i \(-0.708303\pi\)
0.793411 + 0.608687i \(0.208303\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −13.1010 −0.871469
\(227\) −10.3562 10.3562i −0.687365 0.687365i 0.274283 0.961649i \(-0.411559\pi\)
−0.961649 + 0.274283i \(0.911559\pi\)
\(228\) −10.7017 + 10.7017i −0.708735 + 0.708735i
\(229\) 16.3159i 1.07818i −0.842247 0.539092i \(-0.818767\pi\)
0.842247 0.539092i \(-0.181233\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(234\) 11.2729i 0.736930i
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 24.0000i 1.55243i 0.630468 + 0.776215i \(0.282863\pi\)
−0.630468 + 0.776215i \(0.717137\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) −13.9954 13.9954i −0.899656 0.899656i
\(243\) 13.6656 13.6656i 0.876647 0.876647i
\(244\) 17.8957i 1.14566i
\(245\) 0 0
\(246\) 0 0
\(247\) −22.1984 22.1984i −1.41245 1.41245i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −26.1534 −1.65079 −0.825394 0.564557i \(-0.809047\pi\)
−0.825394 + 0.564557i \(0.809047\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 12.2832i 0.770718i
\(255\) 0 0
\(256\) −10.2120 −0.638251
\(257\) 20.0091 + 20.0091i 1.24814 + 1.24814i 0.956542 + 0.291593i \(0.0941854\pi\)
0.291593 + 0.956542i \(0.405815\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) −5.90613 5.90613i −0.364882 0.364882i
\(263\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(264\) 35.2045i 2.16669i
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −3.24260 + 3.24260i −0.198074 + 0.198074i
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) −32.9014 −1.99862 −0.999309 0.0371559i \(-0.988170\pi\)
−0.999309 + 0.0371559i \(0.988170\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(278\) 4.56979 4.56979i 0.274078 0.274078i
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 31.4804 1.86148
\(287\) 0 0
\(288\) 9.25142 9.25142i 0.545145 0.545145i
\(289\) 17.0000i 1.00000i
\(290\) 0 0
\(291\) −43.8343 −2.56961
\(292\) 0 0
\(293\) 9.15067 9.15067i 0.534588 0.534588i −0.387346 0.921934i \(-0.626608\pi\)
0.921934 + 0.387346i \(0.126608\pi\)
\(294\) 11.1625i 0.651011i
\(295\) 0 0
\(296\) −13.1820 −0.766186
\(297\) −7.64278 7.64278i −0.443479 0.443479i
\(298\) 5.07226 5.07226i 0.293828 0.293828i
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −23.9975 + 23.9975i −1.37862 + 1.37862i
\(304\) 5.78798i 0.331963i
\(305\) 0 0
\(306\) 0 0
\(307\) 22.5102 + 22.5102i 1.28473 + 1.28473i 0.937946 + 0.346781i \(0.112725\pi\)
0.346781 + 0.937946i \(0.387275\pi\)
\(308\) 0 0
\(309\) 26.0680i 1.48296i
\(310\) 0 0
\(311\) 10.7874 0.611697 0.305848 0.952080i \(-0.401060\pi\)
0.305848 + 0.952080i \(0.401060\pi\)
\(312\) 28.5495 + 28.5495i 1.61630 + 1.61630i
\(313\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 19.2154 + 19.2154i 1.07924 + 1.07924i 0.996577 + 0.0826672i \(0.0263439\pi\)
0.0826672 + 0.996577i \(0.473656\pi\)
\(318\) −16.4076 + 16.4076i −0.920094 + 0.920094i
\(319\) 0 0
\(320\) 0 0
\(321\) 46.3110 2.58483
\(322\) 0 0
\(323\) 0 0
\(324\) 16.2000i 0.900002i
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 8.56597 8.56597i 0.469412 0.469412i
\(334\) 5.90465i 0.323088i
\(335\) 0 0
\(336\) 0 0
\(337\) 10.9988 + 10.9988i 0.599142 + 0.599142i 0.940084 0.340942i \(-0.110746\pi\)
−0.340942 + 0.940084i \(0.610746\pi\)
\(338\) −19.1311 + 19.1311i −1.04060 + 1.04060i
\(339\) 43.1218i 2.34205i
\(340\) 0 0
\(341\) 0 0
\(342\) 4.82432 + 4.82432i 0.260869 + 0.260869i
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 11.1631 0.600134
\(347\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(348\) 0 0
\(349\) 34.8712i 1.86661i 0.359082 + 0.933306i \(0.383090\pi\)
−0.359082 + 0.933306i \(0.616910\pi\)
\(350\) 0 0
\(351\) 12.3960 0.661650
\(352\) −25.8354 25.8354i −1.37703 1.37703i
\(353\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 1.77217i 0.0935314i 0.998906 + 0.0467657i \(0.0148914\pi\)
−0.998906 + 0.0467657i \(0.985109\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) 46.0654 46.0654i 2.41780 2.41780i
\(364\) 0 0
\(365\) 0 0
\(366\) −18.8300 −0.984261
\(367\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −23.2491 + 23.2491i −1.20379 + 1.20379i −0.230790 + 0.973004i \(0.574131\pi\)
−0.973004 + 0.230790i \(0.925869\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) 40.4299 2.07129
\(382\) 12.8721 + 12.8721i 0.658595 + 0.658595i
\(383\) 8.38750 8.38750i 0.428581 0.428581i −0.459564 0.888145i \(-0.651994\pi\)
0.888145 + 0.459564i \(0.151994\pi\)
\(384\) 24.4360i 1.24700i
\(385\) 0 0
\(386\) 5.81822 0.296140
\(387\) 0 0
\(388\) −20.5038 + 20.5038i −1.04092 + 1.04092i
\(389\) 6.00000i 0.304212i −0.988364 0.152106i \(-0.951394\pi\)
0.988364 0.152106i \(-0.0486055\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −12.1118 12.1118i −0.611740 0.611740i
\(393\) 19.4399 19.4399i 0.980612 0.980612i
\(394\) 0 0
\(395\) 0 0
\(396\) 21.4015 1.07547
\(397\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(398\) −4.29070 + 4.29070i −0.215074 + 0.215074i
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 3.41189 + 3.41189i 0.170170 + 0.170170i
\(403\) 0 0
\(404\) 22.4500i 1.11693i
\(405\) 0 0
\(406\) 0 0
\(407\) −23.9212 23.9212i −1.18573 1.18573i
\(408\) 0 0
\(409\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 12.1935 + 12.1935i 0.600730 + 0.600730i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 41.9030 2.05447
\(417\) 15.0414 + 15.0414i 0.736579 + 0.736579i
\(418\) 13.4723 13.4723i 0.658953 0.658953i
\(419\) 36.0000i 1.75872i −0.476162 0.879358i \(-0.657972\pi\)
0.476162 0.879358i \(-0.342028\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 35.6060i 1.72918i
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 21.6623 21.6623i 1.04709 1.04709i
\(429\) 103.617i 5.00268i
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) −1.61606 1.61606i −0.0777527 0.0777527i
\(433\) −19.5572 + 19.5572i −0.939858 + 0.939858i −0.998291 0.0584337i \(-0.981389\pi\)
0.0584337 + 0.998291i \(0.481389\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 15.7411 0.749577
\(442\) 0 0
\(443\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(444\) 18.7044i 0.887670i
\(445\) 0 0
\(446\) −2.71536 −0.128576
\(447\) 16.6952 + 16.6952i 0.789656 + 0.789656i
\(448\) 0 0
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −20.1705 20.1705i −0.948741 0.948741i
\(453\) 0 0
\(454\) 10.1942i 0.478437i
\(455\) 0 0
\(456\) 24.4360 1.14432
\(457\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(458\) −8.03032 + 8.03032i −0.375232 + 0.375232i
\(459\) 0 0
\(460\) 0 0
\(461\) −18.0000 −0.838344 −0.419172 0.907907i \(-0.637680\pi\)
−0.419172 + 0.907907i \(0.637680\pi\)
\(462\) 0 0
\(463\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(468\) −17.3558 + 17.3558i −0.802272 + 0.802272i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −23.1377 23.1377i −1.05940 1.05940i
\(478\) 11.8123 11.8123i 0.540280 0.540280i
\(479\) 35.9065i 1.64061i 0.571927 + 0.820305i \(0.306196\pi\)
−0.571927 + 0.820305i \(0.693804\pi\)
\(480\) 0 0
\(481\) 38.7984 1.76905
\(482\) 0 0
\(483\) 0 0
\(484\) 43.0948i 1.95885i
\(485\) 0 0
\(486\) −13.4518 −0.610185
\(487\) −28.4164 28.4164i −1.28767 1.28767i −0.936200 0.351469i \(-0.885682\pi\)
−0.351469 0.936200i \(-0.614318\pi\)
\(488\) −20.4314 + 20.4314i −0.924887 + 0.924887i
\(489\) 0 0
\(490\) 0 0
\(491\) −26.1534 −1.18029 −0.590143 0.807299i \(-0.700929\pi\)
−0.590143 + 0.807299i \(0.700929\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 21.8511i 0.983127i
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 28.3938i 1.27108i 0.772067 + 0.635541i \(0.219223\pi\)
−0.772067 + 0.635541i \(0.780777\pi\)
\(500\) 0 0
\(501\) −19.4350 −0.868292
\(502\) 12.8721 + 12.8721i 0.574510 + 0.574510i
\(503\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −62.9696 62.9696i −2.79658 2.79658i
\(508\) 18.9114 18.9114i 0.839057 0.839057i
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −10.0579 10.0579i −0.444502 0.444502i
\(513\) 5.30498 5.30498i 0.234221 0.234221i
\(514\) 19.6961i 0.868758i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 36.7432i 1.61285i
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 20.0969 20.0969i 0.878778 0.878778i −0.114630 0.993408i \(-0.536568\pi\)
0.993408 + 0.114630i \(0.0365684\pi\)
\(524\) 18.1863i 0.794471i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 13.5085 13.5085i 0.587881 0.587881i
\(529\) 23.0000i 1.00000i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 7.40412 0.319809
\(537\) 0 0
\(538\) 0 0
\(539\) 43.9584i 1.89342i
\(540\) 0 0
\(541\) −7.30067 −0.313881 −0.156940 0.987608i \(-0.550163\pi\)
−0.156940 + 0.987608i \(0.550163\pi\)
\(542\) 16.1933 + 16.1933i 0.695563 + 0.695563i
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 29.8169 + 29.8169i 1.27488 + 1.27488i 0.943497 + 0.331380i \(0.107514\pi\)
0.331380 + 0.943497i \(0.392486\pi\)
\(548\) 0 0
\(549\) 26.5537i 1.13328i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 14.0714 0.596760
\(557\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −16.8570 + 16.8570i −0.710436 + 0.710436i −0.966626 0.256190i \(-0.917533\pi\)
0.256190 + 0.966626i \(0.417533\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) 46.9635 1.96536 0.982681 0.185306i \(-0.0593276\pi\)
0.982681 + 0.185306i \(0.0593276\pi\)
\(572\) 48.4676 + 48.4676i 2.02653 + 2.02653i
\(573\) −42.3682 + 42.3682i −1.76996 + 1.76996i
\(574\) 0 0
\(575\) 0 0
\(576\) −3.13471 −0.130613
\(577\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(578\) 8.36702 8.36702i 0.348022 0.348022i
\(579\) 19.1505i 0.795869i
\(580\) 0 0
\(581\) 0 0
\(582\) 21.5742 + 21.5742i 0.894281 + 0.894281i
\(583\) −64.6139 + 64.6139i −2.67603 + 2.67603i
\(584\) 0 0
\(585\) 0 0
\(586\) −9.00751 −0.372097
\(587\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(588\) 17.1859 17.1859i 0.708735 0.708735i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −5.05812 5.05812i −0.207887 0.207887i
\(593\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(594\) 7.52321i 0.308681i
\(595\) 0 0
\(596\) 15.6186 0.639763
\(597\) −14.1227 14.1227i −0.578005 0.578005i
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) −4.81137 + 4.81137i −0.195934 + 0.195934i
\(604\) 0 0
\(605\) 0 0
\(606\) 23.6220 0.959580
\(607\) −3.76654 3.76654i −0.152879 0.152879i 0.626524 0.779402i \(-0.284477\pi\)
−0.779402 + 0.626524i \(0.784477\pi\)
\(608\) 17.9328 17.9328i 0.727270 0.727270i
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(614\) 22.1581i 0.894227i
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(618\) 12.8301 12.8301i 0.516101 0.516101i
\(619\) 0.269629i 0.0108373i −0.999985 0.00541866i \(-0.998275\pi\)
0.999985 0.00541866i \(-0.00172482\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −5.30931 5.30931i −0.212884 0.212884i
\(623\) 0 0
\(624\) 21.9097i 0.877091i
\(625\) 0 0
\(626\) 0 0
\(627\) 44.3438 + 44.3438i 1.77092 + 1.77092i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −42.4559 −1.69014 −0.845071 0.534654i \(-0.820442\pi\)
−0.845071 + 0.534654i \(0.820442\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 18.9148i 0.751202i
\(635\) 0 0
\(636\) −50.5227 −2.00335
\(637\) 35.6486 + 35.6486i 1.41245 + 1.41245i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) −22.7933 22.7933i −0.899578 0.899578i
\(643\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(648\) −18.4955 + 18.4955i −0.726570 + 0.726570i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) −8.43195 −0.326731
\(667\) 0 0
\(668\) −9.09086 + 9.09086i −0.351736 + 0.351736i
\(669\) 8.93754i 0.345545i
\(670\) 0 0
\(671\) −74.1534 −2.86266
\(672\) 0 0
\(673\) 29.7425 29.7425i 1.14649 1.14649i 0.159251 0.987238i \(-0.449092\pi\)
0.987238 0.159251i \(-0.0509078\pi\)
\(674\) 10.8267i 0.417029i
\(675\) 0 0
\(676\) −58.9089 −2.26573
\(677\) −29.7291 29.7291i −1.14258 1.14258i −0.987976 0.154605i \(-0.950590\pi\)
−0.154605 0.987976i \(-0.549410\pi\)
\(678\) −21.2236 + 21.2236i −0.815086 + 0.815086i
\(679\) 0 0
\(680\) 0 0
\(681\) −33.5539 −1.28579
\(682\) 0 0
\(683\) 36.2968 36.2968i 1.38886 1.38886i 0.561137 0.827723i \(-0.310364\pi\)
0.827723 0.561137i \(-0.189636\pi\)
\(684\) 14.8551i 0.568001i
\(685\) 0 0
\(686\) 0 0
\(687\) −26.4316 26.4316i −1.00843 1.00843i
\(688\) 0 0
\(689\) 104.799i 3.99252i
\(690\) 0 0
\(691\) 37.4090 1.42311 0.711553 0.702632i \(-0.247992\pi\)
0.711553 + 0.702632i \(0.247992\pi\)
\(692\) 17.1869 + 17.1869i 0.653347 + 0.653347i
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 17.1628 17.1628i 0.649622 0.649622i
\(699\) 0 0
\(700\) 0 0
\(701\) 19.3210 0.729743 0.364871 0.931058i \(-0.381113\pi\)
0.364871 + 0.931058i \(0.381113\pi\)
\(702\) −6.10104 6.10104i −0.230269 0.230269i
\(703\) 16.6041 16.6041i 0.626236 0.626236i
\(704\) 8.75395i 0.329927i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 34.8712i 1.30962i 0.755796 + 0.654808i \(0.227250\pi\)
−0.755796 + 0.654808i \(0.772750\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 38.8797 + 38.8797i 1.45199 + 1.45199i
\(718\) 0.872220 0.872220i 0.0325510 0.0325510i
\(719\) 26.8913i 1.00288i −0.865194 0.501438i \(-0.832805\pi\)
0.865194 0.501438i \(-0.167195\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 9.35137 + 9.35137i 0.348022 + 0.348022i
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) −45.3447 −1.68290
\(727\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(728\) 0 0
\(729\) 12.2080i 0.452147i
\(730\) 0 0
\(731\) 0 0
\(732\) −28.9909 28.9909i −1.07153 1.07153i
\(733\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 13.4362 + 13.4362i 0.494928 + 0.494928i
\(738\) 0 0
\(739\) 8.71780i 0.320689i −0.987061 0.160345i \(-0.948739\pi\)
0.987061 0.160345i \(-0.0512606\pi\)
\(740\) 0 0
\(741\) −71.9223 −2.64213
\(742\) 0 0
\(743\) 35.1583 35.1583i 1.28983 1.28983i 0.354947 0.934887i \(-0.384499\pi\)
0.934887 0.354947i \(-0.115501\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 22.8854 0.837893
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) −42.3682 + 42.3682i −1.54398 + 1.54398i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −31.8805 −1.15567 −0.577834 0.816154i \(-0.696102\pi\)
−0.577834 + 0.816154i \(0.696102\pi\)
\(762\) −19.8987 19.8987i −0.720854 0.720854i
\(763\) 0 0
\(764\) 39.6361i 1.43398i
\(765\) 0 0
\(766\) −8.25627 −0.298311
\(767\) 0 0
\(768\) −16.5434 + 16.5434i −0.596957 + 0.596957i
\(769\) 53.9946i 1.94709i 0.228488 + 0.973547i \(0.426622\pi\)
−0.228488 + 0.973547i \(0.573378\pi\)
\(770\) 0 0
\(771\) 64.8292 2.33477
\(772\) 8.95779 + 8.95779i 0.322398 + 0.322398i
\(773\) 23.1528 23.1528i 0.832749 0.832749i −0.155143 0.987892i \(-0.549584\pi\)
0.987892 + 0.155143i \(0.0495838\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 46.8180 1.68067
\(777\) 0 0
\(778\) −2.95307 + 2.95307i −0.105873 + 0.105873i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 9.29498i 0.331963i
\(785\) 0 0
\(786\) −19.1357 −0.682549
\(787\) −39.5368 39.5368i −1.40934 1.40934i −0.763350 0.645986i \(-0.776447\pi\)
−0.645986 0.763350i \(-0.723553\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) −24.4339 24.4339i −0.868222 0.868222i
\(793\) 60.1356 60.1356i 2.13548 2.13548i
\(794\) 0 0
\(795\) 0 0
\(796\) −13.2120 −0.468288
\(797\) −32.0061 32.0061i −1.13372 1.13372i −0.989554 0.144161i \(-0.953952\pi\)
−0.144161 0.989554i \(-0.546048\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 10.5060i 0.370517i
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 25.6310 25.6310i 0.901695 0.901695i
\(809\) 52.3068i 1.83901i −0.393080 0.919504i \(-0.628590\pi\)
0.393080 0.919504i \(-0.371410\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) −53.3000 + 53.3000i −1.86931 + 1.86931i
\(814\) 23.5469i 0.825320i
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 42.0000 1.46581 0.732905 0.680331i \(-0.238164\pi\)
0.732905 + 0.680331i \(0.238164\pi\)
\(822\) 0 0
\(823\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(824\) 27.8424i 0.969936i
\(825\) 0 0
\(826\) 0 0
\(827\) −7.13702 7.13702i −0.248179 0.248179i 0.572044 0.820223i \(-0.306151\pi\)
−0.820223 + 0.572044i \(0.806151\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −7.09912 7.09912i −0.246118 0.246118i
\(833\) 0 0
\(834\) 14.8060i 0.512691i
\(835\) 0 0
\(836\) 41.4843 1.43476
\(837\) 0 0
\(838\) −17.7184 + 17.7184i −0.612072 + 0.612072i
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) −13.6626 + 13.6626i −0.469174 + 0.469174i
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −49.4634 −1.69062
\(857\) 22.2862 + 22.2862i 0.761282 + 0.761282i 0.976554 0.215272i \(-0.0690639\pi\)
−0.215272 + 0.976554i \(0.569064\pi\)
\(858\) 50.9980 50.9980i 1.74104 1.74104i
\(859\) 4.00000i 0.136478i 0.997669 + 0.0682391i \(0.0217381\pi\)
−0.997669 + 0.0682391i \(0.978262\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −13.4414 + 13.4414i −0.457550 + 0.457550i −0.897850 0.440301i \(-0.854872\pi\)
0.440301 + 0.897850i \(0.354872\pi\)
\(864\) 10.0140i 0.340684i
\(865\) 0 0
\(866\) 19.2512 0.654182
\(867\) 27.5398 + 27.5398i 0.935301 + 0.935301i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −21.7925 −0.738409
\(872\) 0 0
\(873\) −30.4235 + 30.4235i −1.02968 + 1.02968i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 38.4861 + 38.4861i 1.29958 + 1.29958i 0.928666 + 0.370917i \(0.120956\pi\)
0.370917 + 0.928666i \(0.379044\pi\)
\(878\) 0 0
\(879\) 29.6480i 1.00000i
\(880\) 0 0
\(881\) 47.9844 1.61664 0.808318 0.588746i \(-0.200378\pi\)
0.808318 + 0.588746i \(0.200378\pi\)
\(882\) −7.74743 7.74743i −0.260869 0.260869i
\(883\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 4.45008 + 4.45008i 0.149419 + 0.149419i 0.777858 0.628440i \(-0.216306\pi\)
−0.628440 + 0.777858i \(0.716306\pi\)
\(888\) −21.3547 + 21.3547i −0.716615 + 0.716615i
\(889\) 0 0
\(890\) 0 0
\(891\) −67.1271 −2.24884
\(892\) −4.18060 4.18060i −0.139977 0.139977i
\(893\) 0 0
\(894\) 16.4340i 0.549635i
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 46.0570i 1.53183i
\(905\) 0 0
\(906\) 0 0
\(907\) −26.7894 26.7894i −0.889528 0.889528i 0.104949 0.994478i \(-0.466532\pi\)
−0.994478 + 0.104949i \(0.966532\pi\)
\(908\) −15.6951 + 15.6951i −0.520859 + 0.520859i
\(909\) 33.3113i 1.10487i
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 9.37647 + 9.37647i 0.310486 + 0.310486i
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) −24.7271 −0.817007
\(917\) 0 0
\(918\) 0 0
\(919\) 16.0000i 0.527791i −0.964551 0.263896i \(-0.914993\pi\)
0.964551 0.263896i \(-0.0850075\pi\)
\(920\) 0 0
\(921\) 72.9327 2.40321
\(922\) 8.85920 + 8.85920i 0.291762 + 0.291762i
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 18.0927 + 18.0927i 0.594241 + 0.594241i
\(928\) 0 0
\(929\) 52.3068i 1.71613i −0.513541 0.858065i \(-0.671667\pi\)
0.513541 0.858065i \(-0.328333\pi\)
\(930\) 0 0
\(931\) 30.5123 1.00000
\(932\) 0 0
\(933\) 17.4755 17.4755i 0.572121 0.572121i
\(934\) 0 0
\(935\) 0 0
\(936\) 39.6300 1.29535
\(937\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 62.2575 2.01884
\(952\) 0 0
\(953\) −41.7261 + 41.7261i −1.35164 + 1.35164i −0.467812 + 0.883828i \(0.654957\pi\)
−0.883828 + 0.467812i \(0.845043\pi\)
\(954\) 22.7757i 0.737389i
\(955\) 0 0
\(956\) 36.3725 1.17637
\(957\) 0 0
\(958\) 17.6724 17.6724i 0.570968 0.570968i
\(959\) 0 0
\(960\) 0 0
\(961\) 31.0000 1.00000
\(962\) −19.0957 19.0957i −0.615669 0.615669i
\(963\) 32.1425 32.1425i 1.03578 1.03578i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(968\) −49.2010 + 49.2010i −1.58138 + 1.58138i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) −20.7105 20.7105i −0.664289 0.664289i
\(973\) 0 0
\(974\) 27.9718i 0.896274i
\(975\) 0 0
\(976\) −15.6797 −0.501894
\(977\) 43.8652 + 43.8652i 1.40337 + 1.40337i 0.789071 + 0.614302i \(0.210562\pi\)
0.614302 + 0.789071i \(0.289438\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 12.8721 + 12.8721i 0.410766 + 0.410766i
\(983\) −40.9122 + 40.9122i −1.30490 + 1.30490i −0.379846 + 0.925050i \(0.624023\pi\)
−0.925050 + 0.379846i \(0.875977\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) −33.6422 + 33.6422i −1.07030 + 1.07030i
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(998\) 13.9748 13.9748i 0.442364 0.442364i
\(999\) 9.27205i 0.293355i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 475.2.g.c.18.4 16
5.2 odd 4 inner 475.2.g.c.132.5 yes 16
5.3 odd 4 inner 475.2.g.c.132.4 yes 16
5.4 even 2 inner 475.2.g.c.18.5 yes 16
19.18 odd 2 inner 475.2.g.c.18.5 yes 16
95.18 even 4 inner 475.2.g.c.132.5 yes 16
95.37 even 4 inner 475.2.g.c.132.4 yes 16
95.94 odd 2 CM 475.2.g.c.18.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
475.2.g.c.18.4 16 1.1 even 1 trivial
475.2.g.c.18.4 16 95.94 odd 2 CM
475.2.g.c.18.5 yes 16 5.4 even 2 inner
475.2.g.c.18.5 yes 16 19.18 odd 2 inner
475.2.g.c.132.4 yes 16 5.3 odd 4 inner
475.2.g.c.132.4 yes 16 95.37 even 4 inner
475.2.g.c.132.5 yes 16 5.2 odd 4 inner
475.2.g.c.132.5 yes 16 95.18 even 4 inner