Properties

Label 475.2.bc.a.396.19
Level $475$
Weight $2$
Character 475.396
Analytic conductor $3.793$
Analytic rank $0$
Dimension $1152$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 475 = 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 475.bc (of order \(45\), degree \(24\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.79289409601\)
Analytic rank: \(0\)
Dimension: \(1152\)
Relative dimension: \(48\) over \(\Q(\zeta_{45})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{45}]$

Embedding invariants

Embedding label 396.19
Character \(\chi\) \(=\) 475.396
Dual form 475.2.bc.a.6.19

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.730424 + 0.456420i) q^{2} +(-0.0193247 - 0.00554125i) q^{3} +(-0.551542 + 1.13083i) q^{4} +(2.18285 + 0.484947i) q^{5} +(0.0166443 - 0.00477268i) q^{6} +(-1.43830 - 2.49120i) q^{7} +(-0.293334 - 2.79088i) q^{8} +(-2.54380 - 1.58954i) q^{9} +O(q^{10})\) \(q+(-0.730424 + 0.456420i) q^{2} +(-0.0193247 - 0.00554125i) q^{3} +(-0.551542 + 1.13083i) q^{4} +(2.18285 + 0.484947i) q^{5} +(0.0166443 - 0.00477268i) q^{6} +(-1.43830 - 2.49120i) q^{7} +(-0.293334 - 2.79088i) q^{8} +(-2.54380 - 1.58954i) q^{9} +(-1.81574 + 0.642078i) q^{10} +(-3.60347 - 4.00206i) q^{11} +(0.0169246 - 0.0187966i) q^{12} +(-0.125533 + 3.59480i) q^{13} +(2.18760 + 1.16317i) q^{14} +(-0.0394956 - 0.0214671i) q^{15} +(-0.0611315 - 0.0782447i) q^{16} +(-5.24372 - 0.366677i) q^{17} +2.58355 q^{18} +(0.594850 - 4.31812i) q^{19} +(-1.75232 + 2.20096i) q^{20} +(0.0139902 + 0.0561115i) q^{21} +(4.45868 + 1.27851i) q^{22} +(2.99557 + 0.421000i) q^{23} +(-0.00979642 + 0.0555583i) q^{24} +(4.52965 + 2.11713i) q^{25} +(-1.54904 - 2.68302i) q^{26} +(0.0807055 + 0.0896325i) q^{27} +(3.61040 - 0.252464i) q^{28} +(-0.511373 + 0.0357587i) q^{29} +(0.0386465 - 0.00234643i) q^{30} +(-5.07994 - 2.26173i) q^{31} +(5.35440 + 1.94884i) q^{32} +(0.0474594 + 0.0973061i) q^{33} +(3.99750 - 2.12551i) q^{34} +(-1.93148 - 6.13541i) q^{35} +(3.20051 - 1.99990i) q^{36} +(-1.40573 - 4.32640i) q^{37} +(1.53638 + 3.42556i) q^{38} +(0.0223456 - 0.0687726i) q^{39} +(0.713127 - 6.23433i) q^{40} +(0.686032 + 0.878080i) q^{41} +(-0.0358292 - 0.0345998i) q^{42} +(-0.503268 + 2.85417i) q^{43} +(6.51311 - 1.86760i) q^{44} +(-4.78189 - 4.70334i) q^{45} +(-2.38019 + 1.05973i) q^{46} +(-9.90282 + 0.692472i) q^{47} +(0.000747770 + 0.00185080i) q^{48} +(-0.637385 + 1.10398i) q^{49} +(-4.27487 + 0.521020i) q^{50} +(0.0993013 + 0.0361427i) q^{51} +(-3.99586 - 2.12464i) q^{52} +(0.270621 - 0.554856i) q^{53} +(-0.0998593 - 0.0286342i) q^{54} +(-5.92504 - 10.4834i) q^{55} +(-6.53075 + 4.74487i) q^{56} +(-0.0354231 + 0.0801499i) q^{57} +(0.357198 - 0.259520i) q^{58} +(3.60708 - 8.92784i) q^{59} +(0.0460591 - 0.0328227i) q^{60} +(-0.622108 - 0.0874316i) q^{61} +(4.74281 - 0.666558i) q^{62} +(-0.301134 + 8.62335i) q^{63} +(-4.60622 + 0.979083i) q^{64} +(-2.01730 + 7.78602i) q^{65} +(-0.0790779 - 0.0494134i) q^{66} +(-1.23554 + 4.95548i) q^{67} +(3.30678 - 5.72751i) q^{68} +(-0.0555555 - 0.0247349i) q^{69} +(4.21112 + 3.59988i) q^{70} +(9.96193 - 9.62012i) q^{71} +(-3.69005 + 7.56572i) q^{72} +(0.267579 + 7.66246i) q^{73} +(3.00143 + 2.51850i) q^{74} +(-0.0758024 - 0.0660128i) q^{75} +(4.55497 + 3.05430i) q^{76} +(-4.78708 + 14.7331i) q^{77} +(0.0150674 + 0.0604321i) q^{78} +(6.42532 + 1.84243i) q^{79} +(-0.0954962 - 0.200442i) q^{80} +(3.94375 + 8.08588i) q^{81} +(-0.901867 - 0.328253i) q^{82} +(14.9484 + 6.65544i) q^{83} +(-0.0711687 - 0.0151274i) q^{84} +(-11.2684 - 3.34333i) q^{85} +(-0.935102 - 2.31446i) q^{86} +(0.0100803 + 0.00214262i) q^{87} +(-10.1123 + 11.2308i) q^{88} +(4.87579 - 6.24073i) q^{89} +(5.63950 + 1.25289i) q^{90} +(9.13591 - 4.85765i) q^{91} +(-2.12826 + 3.15528i) q^{92} +(0.0856352 + 0.0718565i) q^{93} +(6.91720 - 5.02564i) q^{94} +(3.39253 - 9.13733i) q^{95} +(-0.0926729 - 0.0673308i) q^{96} +(2.07869 + 8.33719i) q^{97} +(-0.0383183 - 1.09729i) q^{98} +(2.80507 + 15.9083i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 1152 q - 18 q^{2} - 18 q^{3} - 18 q^{4} - 24 q^{5} - 18 q^{6} - 30 q^{7} - 9 q^{8} - 18 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 1152 q - 18 q^{2} - 18 q^{3} - 18 q^{4} - 24 q^{5} - 18 q^{6} - 30 q^{7} - 9 q^{8} - 18 q^{9} - 33 q^{10} - 9 q^{12} - 18 q^{13} - 18 q^{14} + 27 q^{15} - 30 q^{16} - 36 q^{17} - 144 q^{18} - 18 q^{19} - 54 q^{20} + 9 q^{21} + 6 q^{22} - 24 q^{23} - 120 q^{24} - 90 q^{25} - 24 q^{26} - 9 q^{27} + 54 q^{28} + 9 q^{30} - 45 q^{31} - 138 q^{32} + 54 q^{33} - 18 q^{34} + 45 q^{35} - 72 q^{36} - 36 q^{37} + 93 q^{38} - 36 q^{39} + 57 q^{40} - 18 q^{41} + 36 q^{42} - 252 q^{43} - 42 q^{44} - 90 q^{45} - 69 q^{46} - 18 q^{47} + 6 q^{48} - 486 q^{49} + 21 q^{50} + 12 q^{51} - 36 q^{53} - 120 q^{54} - 3 q^{55} + 234 q^{56} + 90 q^{57} + 180 q^{58} + 18 q^{59} + 69 q^{60} - 90 q^{61} - 144 q^{62} - 27 q^{63} + 93 q^{64} - 72 q^{65} + 42 q^{66} + 54 q^{67} - 48 q^{68} - 57 q^{69} + 12 q^{70} - 60 q^{71} - 318 q^{72} - 36 q^{73} - 66 q^{74} - 132 q^{75} - 48 q^{76} + 222 q^{77} - 39 q^{78} + 6 q^{79} + 129 q^{80} - 84 q^{81} + 120 q^{82} + 45 q^{83} - 63 q^{84} - 18 q^{85} + 72 q^{86} - 33 q^{87} - 45 q^{88} + 18 q^{89} + 57 q^{90} + 45 q^{91} + 324 q^{92} - 78 q^{93} - 24 q^{94} + 81 q^{95} - 132 q^{96} - 96 q^{97} - 153 q^{98} - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/475\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{2}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.730424 + 0.456420i −0.516488 + 0.322737i −0.762996 0.646403i \(-0.776272\pi\)
0.246508 + 0.969141i \(0.420717\pi\)
\(3\) −0.0193247 0.00554125i −0.0111571 0.00319924i 0.270054 0.962845i \(-0.412958\pi\)
−0.281211 + 0.959646i \(0.590736\pi\)
\(4\) −0.551542 + 1.13083i −0.275771 + 0.565414i
\(5\) 2.18285 + 0.484947i 0.976199 + 0.216875i
\(6\) 0.0166443 0.00477268i 0.00679502 0.00194844i
\(7\) −1.43830 2.49120i −0.543624 0.941585i −0.998692 0.0511283i \(-0.983718\pi\)
0.455068 0.890457i \(-0.349615\pi\)
\(8\) −0.293334 2.79088i −0.103709 0.986726i
\(9\) −2.54380 1.58954i −0.847934 0.529848i
\(10\) −1.81574 + 0.642078i −0.574189 + 0.203043i
\(11\) −3.60347 4.00206i −1.08649 1.20667i −0.977125 0.212664i \(-0.931786\pi\)
−0.109362 0.994002i \(-0.534881\pi\)
\(12\) 0.0169246 0.0187966i 0.00488570 0.00542612i
\(13\) −0.125533 + 3.59480i −0.0348166 + 0.997017i 0.848774 + 0.528756i \(0.177341\pi\)
−0.883590 + 0.468261i \(0.844881\pi\)
\(14\) 2.18760 + 1.16317i 0.584660 + 0.310869i
\(15\) −0.0394956 0.0214671i −0.0101977 0.00554279i
\(16\) −0.0611315 0.0782447i −0.0152829 0.0195612i
\(17\) −5.24372 0.366677i −1.27179 0.0889322i −0.582148 0.813083i \(-0.697788\pi\)
−0.689642 + 0.724151i \(0.742232\pi\)
\(18\) 2.58355 0.608949
\(19\) 0.594850 4.31812i 0.136468 0.990644i
\(20\) −1.75232 + 2.20096i −0.391831 + 0.492149i
\(21\) 0.0139902 + 0.0561115i 0.00305291 + 0.0122445i
\(22\) 4.45868 + 1.27851i 0.950594 + 0.272578i
\(23\) 2.99557 + 0.421000i 0.624620 + 0.0877846i 0.444381 0.895838i \(-0.353424\pi\)
0.180240 + 0.983623i \(0.442313\pi\)
\(24\) −0.00979642 + 0.0555583i −0.00199969 + 0.0113408i
\(25\) 4.52965 + 2.11713i 0.905931 + 0.423426i
\(26\) −1.54904 2.68302i −0.303792 0.526184i
\(27\) 0.0807055 + 0.0896325i 0.0155318 + 0.0172498i
\(28\) 3.61040 0.252464i 0.682301 0.0477112i
\(29\) −0.511373 + 0.0357587i −0.0949596 + 0.00664022i −0.117157 0.993113i \(-0.537378\pi\)
0.0221976 + 0.999754i \(0.492934\pi\)
\(30\) 0.0386465 0.00234643i 0.00705586 0.000428398i
\(31\) −5.07994 2.26173i −0.912384 0.406219i −0.103798 0.994598i \(-0.533100\pi\)
−0.808585 + 0.588379i \(0.799766\pi\)
\(32\) 5.35440 + 1.94884i 0.946533 + 0.344510i
\(33\) 0.0474594 + 0.0973061i 0.00826162 + 0.0169388i
\(34\) 3.99750 2.12551i 0.685566 0.364522i
\(35\) −1.93148 6.13541i −0.326480 1.03707i
\(36\) 3.20051 1.99990i 0.533419 0.333317i
\(37\) −1.40573 4.32640i −0.231101 0.711256i −0.997615 0.0690278i \(-0.978010\pi\)
0.766514 0.642228i \(-0.221990\pi\)
\(38\) 1.53638 + 3.42556i 0.249234 + 0.555699i
\(39\) 0.0223456 0.0687726i 0.00357815 0.0110124i
\(40\) 0.713127 6.23433i 0.112755 0.985733i
\(41\) 0.686032 + 0.878080i 0.107140 + 0.137133i 0.838592 0.544760i \(-0.183379\pi\)
−0.731452 + 0.681893i \(0.761157\pi\)
\(42\) −0.0358292 0.0345998i −0.00552856 0.00533887i
\(43\) −0.503268 + 2.85417i −0.0767476 + 0.435257i 0.922087 + 0.386984i \(0.126483\pi\)
−0.998834 + 0.0482736i \(0.984628\pi\)
\(44\) 6.51311 1.86760i 0.981888 0.281552i
\(45\) −4.78189 4.70334i −0.712842 0.701133i
\(46\) −2.38019 + 1.05973i −0.350940 + 0.156249i
\(47\) −9.90282 + 0.692472i −1.44447 + 0.101007i −0.770355 0.637615i \(-0.779921\pi\)
−0.674119 + 0.738623i \(0.735477\pi\)
\(48\) 0.000747770 0.00185080i 0.000107931 0.000267139i
\(49\) −0.637385 + 1.10398i −0.0910550 + 0.157712i
\(50\) −4.27487 + 0.521020i −0.604558 + 0.0736834i
\(51\) 0.0993013 + 0.0361427i 0.0139050 + 0.00506099i
\(52\) −3.99586 2.12464i −0.554126 0.294634i
\(53\) 0.270621 0.554856i 0.0371727 0.0762153i −0.879399 0.476085i \(-0.842056\pi\)
0.916572 + 0.399869i \(0.130944\pi\)
\(54\) −0.0998593 0.0286342i −0.0135891 0.00389662i
\(55\) −5.92504 10.4834i −0.798933 1.41358i
\(56\) −6.53075 + 4.74487i −0.872708 + 0.634059i
\(57\) −0.0354231 + 0.0801499i −0.00469190 + 0.0106161i
\(58\) 0.357198 0.259520i 0.0469024 0.0340766i
\(59\) 3.60708 8.92784i 0.469602 1.16231i −0.487647 0.873041i \(-0.662145\pi\)
0.957249 0.289265i \(-0.0934108\pi\)
\(60\) 0.0460591 0.0328227i 0.00594620 0.00423739i
\(61\) −0.622108 0.0874316i −0.0796528 0.0111945i 0.0992341 0.995064i \(-0.468361\pi\)
−0.178887 + 0.983870i \(0.557250\pi\)
\(62\) 4.74281 0.666558i 0.602337 0.0846530i
\(63\) −0.301134 + 8.62335i −0.0379393 + 1.08644i
\(64\) −4.60622 + 0.979083i −0.575778 + 0.122385i
\(65\) −2.01730 + 7.78602i −0.250216 + 0.965737i
\(66\) −0.0790779 0.0494134i −0.00973382 0.00608237i
\(67\) −1.23554 + 4.95548i −0.150945 + 0.605409i 0.846397 + 0.532552i \(0.178767\pi\)
−0.997342 + 0.0728564i \(0.976789\pi\)
\(68\) 3.30678 5.72751i 0.401006 0.694563i
\(69\) −0.0555555 0.0247349i −0.00668810 0.00297773i
\(70\) 4.21112 + 3.59988i 0.503325 + 0.430269i
\(71\) 9.96193 9.62012i 1.18226 1.14170i 0.195302 0.980743i \(-0.437431\pi\)
0.986962 0.160955i \(-0.0514575\pi\)
\(72\) −3.69005 + 7.56572i −0.434876 + 0.891629i
\(73\) 0.267579 + 7.66246i 0.0313178 + 0.896823i 0.908804 + 0.417222i \(0.136996\pi\)
−0.877487 + 0.479601i \(0.840781\pi\)
\(74\) 3.00143 + 2.51850i 0.348910 + 0.292770i
\(75\) −0.0758024 0.0660128i −0.00875291 0.00762250i
\(76\) 4.55497 + 3.05430i 0.522490 + 0.350352i
\(77\) −4.78708 + 14.7331i −0.545538 + 1.67899i
\(78\) 0.0150674 + 0.0604321i 0.00170605 + 0.00684259i
\(79\) 6.42532 + 1.84243i 0.722905 + 0.207290i 0.616861 0.787072i \(-0.288404\pi\)
0.106044 + 0.994361i \(0.466182\pi\)
\(80\) −0.0954962 0.200442i −0.0106768 0.0224101i
\(81\) 3.94375 + 8.08588i 0.438194 + 0.898431i
\(82\) −0.901867 0.328253i −0.0995946 0.0362495i
\(83\) 14.9484 + 6.65544i 1.64080 + 0.730530i 0.999329 0.0366200i \(-0.0116591\pi\)
0.641468 + 0.767150i \(0.278326\pi\)
\(84\) −0.0711687 0.0151274i −0.00776514 0.00165053i
\(85\) −11.2684 3.34333i −1.22223 0.362635i
\(86\) −0.935102 2.31446i −0.100835 0.249575i
\(87\) 0.0100803 + 0.00214262i 0.00108072 + 0.000229713i
\(88\) −10.1123 + 11.2308i −1.07797 + 1.19721i
\(89\) 4.87579 6.24073i 0.516833 0.661516i −0.456818 0.889560i \(-0.651011\pi\)
0.973651 + 0.228045i \(0.0732332\pi\)
\(90\) 5.63950 + 1.25289i 0.594456 + 0.132066i
\(91\) 9.13591 4.85765i 0.957704 0.509220i
\(92\) −2.12826 + 3.15528i −0.221887 + 0.328961i
\(93\) 0.0856352 + 0.0718565i 0.00887995 + 0.00745117i
\(94\) 6.91720 5.02564i 0.713455 0.518355i
\(95\) 3.39253 9.13733i 0.348066 0.937470i
\(96\) −0.0926729 0.0673308i −0.00945839 0.00687192i
\(97\) 2.07869 + 8.33719i 0.211059 + 0.846513i 0.978644 + 0.205565i \(0.0659031\pi\)
−0.767584 + 0.640948i \(0.778541\pi\)
\(98\) −0.0383183 1.09729i −0.00387073 0.110843i
\(99\) 2.80507 + 15.9083i 0.281920 + 1.59885i
\(100\) −4.89240 + 3.95457i −0.489240 + 0.395457i
\(101\) −13.4660 4.90122i −1.33992 0.487689i −0.430129 0.902767i \(-0.641532\pi\)
−0.909786 + 0.415078i \(0.863754\pi\)
\(102\) −0.0890283 + 0.0189235i −0.00881511 + 0.00187371i
\(103\) −8.09253 + 3.60303i −0.797380 + 0.355017i −0.764649 0.644448i \(-0.777087\pi\)
−0.0327319 + 0.999464i \(0.510421\pi\)
\(104\) 10.0695 0.704127i 0.987394 0.0690453i
\(105\) 0.00332733 + 0.129267i 0.000324714 + 0.0126152i
\(106\) 0.0555788 + 0.528797i 0.00539829 + 0.0513613i
\(107\) −5.91677 10.2481i −0.571995 0.990725i −0.996361 0.0852341i \(-0.972836\pi\)
0.424366 0.905491i \(-0.360497\pi\)
\(108\) −0.145871 + 0.0418279i −0.0140365 + 0.00402490i
\(109\) −18.2508 + 2.56499i −1.74811 + 0.245681i −0.939473 0.342623i \(-0.888685\pi\)
−0.808640 + 0.588304i \(0.799796\pi\)
\(110\) 9.11262 + 4.95301i 0.868854 + 0.472251i
\(111\) 0.00319161 + 0.0913957i 0.000302934 + 0.00867489i
\(112\) −0.106998 + 0.264830i −0.0101104 + 0.0250241i
\(113\) −4.91880 15.1385i −0.462722 1.42411i −0.861825 0.507206i \(-0.830678\pi\)
0.399103 0.916906i \(-0.369322\pi\)
\(114\) −0.0107081 0.0747112i −0.00100291 0.00699735i
\(115\) 6.33472 + 2.37167i 0.590715 + 0.221160i
\(116\) 0.241607 0.597997i 0.0224326 0.0555227i
\(117\) 6.03342 8.94491i 0.557790 0.826957i
\(118\) 1.44014 + 8.16745i 0.132576 + 0.751875i
\(119\) 6.62856 + 13.5906i 0.607639 + 1.24584i
\(120\) −0.0483269 + 0.116525i −0.00441162 + 0.0106372i
\(121\) −1.88167 + 17.9029i −0.171061 + 1.62753i
\(122\) 0.494308 0.220080i 0.0447526 0.0199251i
\(123\) −0.00839165 0.0207701i −0.000756650 0.00187277i
\(124\) 5.35943 4.49710i 0.481291 0.403851i
\(125\) 8.86085 + 6.81801i 0.792539 + 0.609822i
\(126\) −3.71591 6.43615i −0.331040 0.573378i
\(127\) −4.50414 + 5.76503i −0.399677 + 0.511564i −0.945182 0.326544i \(-0.894116\pi\)
0.545505 + 0.838108i \(0.316338\pi\)
\(128\) −5.28002 + 5.09886i −0.466692 + 0.450679i
\(129\) 0.0255412 0.0523672i 0.00224878 0.00461067i
\(130\) −2.08020 6.60783i −0.182446 0.579545i
\(131\) −1.82959 0.127938i −0.159852 0.0111780i −0.0103940 0.999946i \(-0.503309\pi\)
−0.149458 + 0.988768i \(0.547753\pi\)
\(132\) −0.136212 −0.0118558
\(133\) −11.6129 + 4.72884i −1.00696 + 0.410042i
\(134\) −1.35931 4.18353i −0.117427 0.361402i
\(135\) 0.132701 + 0.234792i 0.0114211 + 0.0202077i
\(136\) 0.514808 + 14.7422i 0.0441444 + 1.26413i
\(137\) 5.45512 2.90054i 0.466062 0.247810i −0.219795 0.975546i \(-0.570539\pi\)
0.685857 + 0.727737i \(0.259428\pi\)
\(138\) 0.0518686 0.00728966i 0.00441535 0.000620537i
\(139\) 1.55831 1.99455i 0.132174 0.169175i −0.717371 0.696692i \(-0.754655\pi\)
0.849545 + 0.527517i \(0.176877\pi\)
\(140\) 8.00338 + 1.19976i 0.676409 + 0.101398i
\(141\) 0.195206 + 0.0414922i 0.0164393 + 0.00349428i
\(142\) −2.88562 + 11.5736i −0.242156 + 0.971234i
\(143\) 14.8389 12.4514i 1.24090 1.04123i
\(144\) 0.0311329 + 0.296210i 0.00259441 + 0.0246842i
\(145\) −1.13359 0.169933i −0.0941396 0.0141122i
\(146\) −3.69274 5.47472i −0.305614 0.453091i
\(147\) 0.0184347 0.0178022i 0.00152047 0.00146830i
\(148\) 5.66773 + 0.796548i 0.465885 + 0.0654759i
\(149\) −6.46253 + 2.35217i −0.529431 + 0.192697i −0.592884 0.805288i \(-0.702011\pi\)
0.0634532 + 0.997985i \(0.479789\pi\)
\(150\) 0.0854974 + 0.0136196i 0.00698084 + 0.00111204i
\(151\) −15.6294 −1.27190 −0.635952 0.771728i \(-0.719392\pi\)
−0.635952 + 0.771728i \(0.719392\pi\)
\(152\) −12.2259 0.393508i −0.991648 0.0319177i
\(153\) 12.7561 + 9.26788i 1.03127 + 0.749264i
\(154\) −3.22788 12.9463i −0.260110 1.04325i
\(155\) −9.99191 7.40052i −0.802570 0.594424i
\(156\) 0.0654455 + 0.0632000i 0.00523983 + 0.00506005i
\(157\) 0.355370 2.01540i 0.0283616 0.160847i −0.967338 0.253491i \(-0.918421\pi\)
0.995699 + 0.0926449i \(0.0295321\pi\)
\(158\) −5.53413 + 1.58689i −0.440272 + 0.126246i
\(159\) −0.00830426 + 0.00922281i −0.000658570 + 0.000731416i
\(160\) 10.7428 + 6.85063i 0.849290 + 0.541590i
\(161\) −3.25972 8.06809i −0.256902 0.635855i
\(162\) −6.57116 4.10612i −0.516279 0.322607i
\(163\) −0.519988 0.110527i −0.0407286 0.00865713i 0.187502 0.982264i \(-0.439961\pi\)
−0.228231 + 0.973607i \(0.573294\pi\)
\(164\) −1.37133 + 0.291486i −0.107083 + 0.0227612i
\(165\) 0.0564083 + 0.235420i 0.00439138 + 0.0183274i
\(166\) −13.9563 + 1.96143i −1.08322 + 0.152237i
\(167\) −3.44106 3.32299i −0.266277 0.257141i 0.549518 0.835482i \(-0.314811\pi\)
−0.815795 + 0.578341i \(0.803700\pi\)
\(168\) 0.152497 0.0555043i 0.0117654 0.00428225i
\(169\) 0.0615246 + 0.00430222i 0.00473266 + 0.000330940i
\(170\) 9.75670 2.70109i 0.748304 0.207164i
\(171\) −8.37702 + 10.0389i −0.640607 + 0.767694i
\(172\) −2.95001 2.14331i −0.224936 0.163426i
\(173\) −2.88886 + 1.80516i −0.219636 + 0.137244i −0.635275 0.772286i \(-0.719113\pi\)
0.415640 + 0.909529i \(0.363558\pi\)
\(174\) −0.00834080 + 0.00303580i −0.000632314 + 0.000230144i
\(175\) −1.24078 14.3293i −0.0937944 1.08320i
\(176\) −0.0928545 + 0.526604i −0.00699917 + 0.0396943i
\(177\) −0.119177 + 0.152540i −0.00895789 + 0.0114656i
\(178\) −0.713004 + 6.78378i −0.0534419 + 0.508466i
\(179\) 13.0162 5.79517i 0.972874 0.433151i 0.142156 0.989844i \(-0.454597\pi\)
0.830718 + 0.556693i \(0.187930\pi\)
\(180\) 7.95608 2.81341i 0.593011 0.209699i
\(181\) 1.69409 6.79462i 0.125921 0.505040i −0.873900 0.486106i \(-0.838417\pi\)
0.999821 0.0189347i \(-0.00602745\pi\)
\(182\) −4.45596 + 7.71796i −0.330298 + 0.572093i
\(183\) 0.0115375 + 0.00513685i 0.000852880 + 0.000379727i
\(184\) 0.296260 8.48379i 0.0218406 0.625433i
\(185\) −0.970428 10.1256i −0.0713473 0.744447i
\(186\) −0.0953467 0.0134001i −0.00699116 0.000982543i
\(187\) 17.4281 + 22.3070i 1.27447 + 1.63125i
\(188\) 4.67875 11.5803i 0.341233 0.844581i
\(189\) 0.107214 0.329971i 0.00779869 0.0240019i
\(190\) 1.69247 + 8.22254i 0.122785 + 0.596526i
\(191\) 0.831159 + 2.55804i 0.0601406 + 0.185094i 0.976613 0.215004i \(-0.0689763\pi\)
−0.916473 + 0.400097i \(0.868976\pi\)
\(192\) 0.0944390 + 0.00660382i 0.00681555 + 0.000476590i
\(193\) 11.9838 4.36175i 0.862613 0.313965i 0.127441 0.991846i \(-0.459324\pi\)
0.735172 + 0.677881i \(0.237101\pi\)
\(194\) −5.32358 5.14093i −0.382211 0.369097i
\(195\) 0.0821280 0.139284i 0.00588131 0.00997431i
\(196\) −0.896871 1.32967i −0.0640622 0.0949762i
\(197\) −1.44100 + 13.7102i −0.102667 + 0.976808i 0.815001 + 0.579459i \(0.196736\pi\)
−0.917668 + 0.397349i \(0.869930\pi\)
\(198\) −9.30976 10.3395i −0.661616 0.734799i
\(199\) 8.63085 7.24214i 0.611825 0.513382i −0.283397 0.959003i \(-0.591461\pi\)
0.895222 + 0.445621i \(0.147017\pi\)
\(200\) 4.57996 13.2628i 0.323852 0.937819i
\(201\) 0.0513360 0.0889165i 0.00362096 0.00627169i
\(202\) 12.0729 2.56617i 0.849446 0.180555i
\(203\) 0.824587 + 1.22250i 0.0578747 + 0.0858028i
\(204\) −0.0956400 + 0.0923585i −0.00669614 + 0.00646639i
\(205\) 1.07168 + 2.24941i 0.0748494 + 0.157105i
\(206\) 4.26649 6.32533i 0.297260 0.440706i
\(207\) −6.95094 5.83253i −0.483124 0.405389i
\(208\) 0.288948 0.209933i 0.0200349 0.0145562i
\(209\) −19.4249 + 13.1796i −1.34365 + 0.911651i
\(210\) −0.0614306 0.0929014i −0.00423911 0.00641081i
\(211\) −16.7017 + 10.4364i −1.14979 + 0.718470i −0.964466 0.264207i \(-0.914890\pi\)
−0.185327 + 0.982677i \(0.559334\pi\)
\(212\) 0.478187 + 0.612052i 0.0328420 + 0.0420359i
\(213\) −0.245818 + 0.130704i −0.0168432 + 0.00895569i
\(214\) 8.99920 + 4.78496i 0.615173 + 0.327093i
\(215\) −2.48268 + 5.98617i −0.169317 + 0.408253i
\(216\) 0.226480 0.251532i 0.0154100 0.0171146i
\(217\) 1.67202 + 15.9082i 0.113504 + 1.07992i
\(218\) 12.1601 10.2036i 0.823588 0.691073i
\(219\) 0.0372888 0.149557i 0.00251974 0.0101061i
\(220\) 15.1228 0.918185i 1.01958 0.0619040i
\(221\) 1.97639 18.8041i 0.132946 1.26490i
\(222\) −0.0440460 0.0653009i −0.00295617 0.00438271i
\(223\) 16.9758 + 9.02621i 1.13679 + 0.604440i 0.927651 0.373447i \(-0.121824\pi\)
0.209134 + 0.977887i \(0.432935\pi\)
\(224\) −2.84625 16.1419i −0.190173 1.07853i
\(225\) −8.15727 12.5856i −0.543818 0.839043i
\(226\) 10.5023 + 8.81250i 0.698604 + 0.586199i
\(227\) 5.77330 17.7684i 0.383187 1.17933i −0.554599 0.832118i \(-0.687128\pi\)
0.937787 0.347212i \(-0.112872\pi\)
\(228\) −0.0710985 0.0842634i −0.00470861 0.00558048i
\(229\) −15.5828 11.3216i −1.02974 0.748150i −0.0614836 0.998108i \(-0.519583\pi\)
−0.968257 + 0.249958i \(0.919583\pi\)
\(230\) −5.70951 + 1.15896i −0.376474 + 0.0764197i
\(231\) 0.174148 0.258186i 0.0114581 0.0169874i
\(232\) 0.249801 + 1.41669i 0.0164003 + 0.0930105i
\(233\) 6.98216 + 14.3156i 0.457417 + 0.937843i 0.995483 + 0.0949407i \(0.0302662\pi\)
−0.538066 + 0.842903i \(0.680845\pi\)
\(234\) −0.324321 + 9.28735i −0.0212016 + 0.607133i
\(235\) −21.9522 3.29078i −1.43200 0.214667i
\(236\) 8.10640 + 9.00307i 0.527681 + 0.586050i
\(237\) −0.113958 0.0712087i −0.00740235 0.00462550i
\(238\) −11.0447 6.90147i −0.715919 0.447356i
\(239\) 9.13140 + 10.1414i 0.590661 + 0.655996i 0.962175 0.272432i \(-0.0878279\pi\)
−0.371514 + 0.928427i \(0.621161\pi\)
\(240\) 0.000734732 0.00440264i 4.74267e−5 0.000284189i
\(241\) 0.881822 25.2521i 0.0568032 1.62663i −0.552374 0.833596i \(-0.686278\pi\)
0.609177 0.793034i \(-0.291500\pi\)
\(242\) −6.79680 13.9355i −0.436915 0.895809i
\(243\) −0.0942380 0.534450i −0.00604537 0.0342850i
\(244\) 0.441989 0.655275i 0.0282954 0.0419497i
\(245\) −1.92669 + 2.10073i −0.123092 + 0.134211i
\(246\) 0.0156093 + 0.0113408i 0.000995215 + 0.000723066i
\(247\) 15.4481 + 2.68043i 0.982938 + 0.170552i
\(248\) −4.82212 + 14.8410i −0.306205 + 0.942402i
\(249\) −0.251993 0.211447i −0.0159694 0.0133999i
\(250\) −9.58406 0.935775i −0.606149 0.0591836i
\(251\) −4.20627 23.8550i −0.265498 1.50571i −0.767614 0.640912i \(-0.778556\pi\)
0.502116 0.864800i \(-0.332555\pi\)
\(252\) −9.58544 5.09667i −0.603826 0.321060i
\(253\) −9.10959 13.5055i −0.572715 0.849085i
\(254\) 0.658656 6.26669i 0.0413278 0.393207i
\(255\) 0.199232 + 0.127050i 0.0124764 + 0.00795617i
\(256\) 3.80792 15.2727i 0.237995 0.954546i
\(257\) 12.8234 10.7601i 0.799900 0.671195i −0.148275 0.988946i \(-0.547372\pi\)
0.948174 + 0.317751i \(0.102928\pi\)
\(258\) 0.00524552 + 0.0499077i 0.000326572 + 0.00310712i
\(259\) −8.75607 + 9.72460i −0.544076 + 0.604257i
\(260\) −7.69202 6.57554i −0.477039 0.407798i
\(261\) 1.35767 + 0.721887i 0.0840378 + 0.0446837i
\(262\) 1.39477 0.741614i 0.0861693 0.0458171i
\(263\) −12.8427 16.4379i −0.791915 1.01361i −0.999375 0.0353614i \(-0.988742\pi\)
0.207460 0.978244i \(-0.433480\pi\)
\(264\) 0.257649 0.160997i 0.0158572 0.00990866i
\(265\) 0.859800 1.07993i 0.0528171 0.0663395i
\(266\) 6.32399 8.75440i 0.387748 0.536767i
\(267\) −0.128804 + 0.0935819i −0.00788270 + 0.00572712i
\(268\) −4.92235 4.13034i −0.300680 0.252301i
\(269\) 0.283382 0.420131i 0.0172781 0.0256159i −0.820300 0.571934i \(-0.806193\pi\)
0.837578 + 0.546318i \(0.183971\pi\)
\(270\) −0.204092 0.110930i −0.0124206 0.00675101i
\(271\) 2.89100 2.79180i 0.175616 0.169590i −0.601656 0.798755i \(-0.705492\pi\)
0.777271 + 0.629165i \(0.216603\pi\)
\(272\) 0.291866 + 0.432709i 0.0176970 + 0.0262368i
\(273\) −0.203466 + 0.0432480i −0.0123143 + 0.00261749i
\(274\) −2.66069 + 4.60844i −0.160738 + 0.278406i
\(275\) −7.84959 25.7570i −0.473348 1.55320i
\(276\) 0.0586121 0.0491814i 0.00352804 0.00296037i
\(277\) 3.18469 + 3.53695i 0.191349 + 0.212515i 0.831184 0.555998i \(-0.187664\pi\)
−0.639834 + 0.768513i \(0.720997\pi\)
\(278\) −0.227877 + 2.16811i −0.0136672 + 0.130034i
\(279\) 9.32723 + 13.8282i 0.558407 + 0.827872i
\(280\) −16.5566 + 7.19026i −0.989448 + 0.429700i
\(281\) 7.47754 + 7.22097i 0.446072 + 0.430767i 0.883460 0.468506i \(-0.155207\pi\)
−0.437388 + 0.899273i \(0.644096\pi\)
\(282\) −0.161521 + 0.0587888i −0.00961842 + 0.00350082i
\(283\) −5.61763 0.392823i −0.333933 0.0233509i −0.0981942 0.995167i \(-0.531307\pi\)
−0.235739 + 0.971816i \(0.575751\pi\)
\(284\) 5.38429 + 16.5711i 0.319499 + 0.983316i
\(285\) −0.116192 + 0.157777i −0.00688260 + 0.00934589i
\(286\) −5.15568 + 15.8676i −0.304862 + 0.938268i
\(287\) 1.20076 2.97198i 0.0708785 0.175430i
\(288\) −10.5228 13.4685i −0.620060 0.793640i
\(289\) 10.5276 + 1.47956i 0.619272 + 0.0870330i
\(290\) 0.905563 0.393270i 0.0531765 0.0230936i
\(291\) 0.00602843 0.172632i 0.000353393 0.0101199i
\(292\) −8.81251 3.92358i −0.515713 0.229610i
\(293\) 10.1998 17.6666i 0.595881 1.03210i −0.397541 0.917584i \(-0.630136\pi\)
0.993422 0.114511i \(-0.0365302\pi\)
\(294\) −0.00533989 + 0.0214171i −0.000311428 + 0.00124907i
\(295\) 12.2032 17.7389i 0.710500 1.03280i
\(296\) −11.6621 + 5.19231i −0.677847 + 0.301797i
\(297\) 0.0678948 0.645976i 0.00393966 0.0374833i
\(298\) 3.64681 4.66771i 0.211254 0.270393i
\(299\) −1.88945 + 10.7156i −0.109270 + 0.619701i
\(300\) 0.116457 0.0493107i 0.00672366 0.00284696i
\(301\) 7.83417 2.85140i 0.451554 0.164352i
\(302\) 11.4161 7.13358i 0.656923 0.410491i
\(303\) 0.233067 + 0.169333i 0.0133893 + 0.00972791i
\(304\) −0.374234 + 0.217429i −0.0214638 + 0.0124704i
\(305\) −1.31557 0.492539i −0.0753292 0.0282027i
\(306\) −13.5474 0.947329i −0.774455 0.0541552i
\(307\) 20.4872 7.45674i 1.16927 0.425579i 0.316868 0.948469i \(-0.397369\pi\)
0.852400 + 0.522891i \(0.175146\pi\)
\(308\) −14.0203 13.5393i −0.798883 0.771472i
\(309\) 0.176351 0.0247845i 0.0100322 0.00140994i
\(310\) 10.6761 + 0.845014i 0.606361 + 0.0479936i
\(311\) 28.7553 6.11212i 1.63056 0.346587i 0.700404 0.713746i \(-0.253003\pi\)
0.930158 + 0.367160i \(0.119670\pi\)
\(312\) −0.198491 0.0421906i −0.0112373 0.00238857i
\(313\) −6.97490 4.35840i −0.394244 0.246351i 0.318283 0.947996i \(-0.396894\pi\)
−0.712527 + 0.701645i \(0.752449\pi\)
\(314\) 0.660299 + 1.63430i 0.0372628 + 0.0922287i
\(315\) −4.83920 + 18.6774i −0.272658 + 1.05235i
\(316\) −5.62731 + 6.24976i −0.316561 + 0.351576i
\(317\) 23.1232 6.63047i 1.29873 0.372404i 0.446129 0.894969i \(-0.352802\pi\)
0.852600 + 0.522564i \(0.175025\pi\)
\(318\) 0.00185616 0.0105268i 0.000104088 0.000590313i
\(319\) 1.98583 + 1.91769i 0.111185 + 0.107370i
\(320\) −10.5295 0.0965830i −0.588617 0.00539915i
\(321\) 0.0575519 + 0.230828i 0.00321223 + 0.0128836i
\(322\) 6.06342 + 4.40533i 0.337901 + 0.245499i
\(323\) −4.70259 + 22.4249i −0.261659 + 1.24776i
\(324\) −11.3189 −0.628827
\(325\) −8.17927 + 16.0174i −0.453705 + 0.888486i
\(326\) 0.430258 0.156601i 0.0238298 0.00867334i
\(327\) 0.366904 + 0.0515650i 0.0202898 + 0.00285155i
\(328\) 2.24938 2.17220i 0.124201 0.119940i
\(329\) 15.9683 + 23.6739i 0.880359 + 1.30519i
\(330\) −0.148652 0.146210i −0.00818304 0.00804862i
\(331\) 0.824885 + 7.84826i 0.0453398 + 0.431379i 0.993521 + 0.113649i \(0.0362540\pi\)
−0.948181 + 0.317730i \(0.897079\pi\)
\(332\) −15.7708 + 13.2333i −0.865536 + 0.726271i
\(333\) −3.30110 + 13.2400i −0.180899 + 0.725546i
\(334\) 4.03011 + 0.856627i 0.220518 + 0.0468726i
\(335\) −5.10014 + 10.2179i −0.278651 + 0.558263i
\(336\) 0.00353519 0.00452484i 0.000192860 0.000246850i
\(337\) −17.8979 + 2.51538i −0.974960 + 0.137022i −0.608622 0.793460i \(-0.708278\pi\)
−0.366338 + 0.930482i \(0.619389\pi\)
\(338\) −0.0469027 + 0.0249386i −0.00255117 + 0.00135648i
\(339\) 0.0111678 + 0.319803i 0.000606550 + 0.0173693i
\(340\) 9.99574 10.8987i 0.542095 0.591064i
\(341\) 9.25381 + 28.4803i 0.501122 + 1.54229i
\(342\) 1.53683 11.1561i 0.0831021 0.603252i
\(343\) −16.4691 −0.889250
\(344\) 8.11329 + 0.567337i 0.437439 + 0.0305887i
\(345\) −0.109274 0.0809340i −0.00588312 0.00435734i
\(346\) 1.28618 2.63706i 0.0691455 0.141769i
\(347\) 17.7580 17.1487i 0.953298 0.920589i −0.0436197 0.999048i \(-0.513889\pi\)
0.996917 + 0.0784594i \(0.0250001\pi\)
\(348\) −0.00798262 + 0.0102173i −0.000427913 + 0.000547704i
\(349\) −5.30919 9.19578i −0.284194 0.492239i 0.688219 0.725503i \(-0.258393\pi\)
−0.972413 + 0.233264i \(0.925059\pi\)
\(350\) 7.44649 + 9.90017i 0.398031 + 0.529186i
\(351\) −0.332342 + 0.278868i −0.0177391 + 0.0148849i
\(352\) −11.4950 28.4512i −0.612688 1.51646i
\(353\) −5.77073 + 2.56930i −0.307145 + 0.136750i −0.554521 0.832170i \(-0.687098\pi\)
0.247376 + 0.968920i \(0.420432\pi\)
\(354\) 0.0174277 0.165813i 0.000926271 0.00881288i
\(355\) 26.4106 16.1683i 1.40173 0.858122i
\(356\) 4.36799 + 8.95570i 0.231503 + 0.474651i
\(357\) −0.0527858 0.299363i −0.00279372 0.0158440i
\(358\) −6.86229 + 10.1738i −0.362683 + 0.537700i
\(359\) −3.95115 + 9.77943i −0.208533 + 0.516138i −0.994812 0.101734i \(-0.967561\pi\)
0.786278 + 0.617873i \(0.212005\pi\)
\(360\) −11.7238 + 14.7253i −0.617898 + 0.776094i
\(361\) −18.2923 5.13727i −0.962753 0.270383i
\(362\) 1.86380 + 5.73617i 0.0979589 + 0.301487i
\(363\) 0.135567 0.335540i 0.00711542 0.0176113i
\(364\) 0.454331 + 13.0103i 0.0238134 + 0.681927i
\(365\) −3.13180 + 16.8558i −0.163926 + 0.882271i
\(366\) −0.0107719 + 0.00151389i −0.000563054 + 7.91321e-5i
\(367\) −22.9115 + 6.56978i −1.19597 + 0.342940i −0.813796 0.581150i \(-0.802603\pi\)
−0.382176 + 0.924090i \(0.624825\pi\)
\(368\) −0.150183 0.260124i −0.00782881 0.0135599i
\(369\) −0.349381 3.32414i −0.0181881 0.173048i
\(370\) 5.33034 + 6.95305i 0.277111 + 0.361472i
\(371\) −1.77149 + 0.123875i −0.0919711 + 0.00643125i
\(372\) −0.128489 + 0.0572068i −0.00666183 + 0.00296604i
\(373\) 6.20041 1.31794i 0.321045 0.0682403i −0.0445702 0.999006i \(-0.514192\pi\)
0.365616 + 0.930766i \(0.380859\pi\)
\(374\) −22.9113 8.33903i −1.18471 0.431201i
\(375\) −0.133453 0.180856i −0.00689146 0.00933936i
\(376\) 4.83744 + 27.4345i 0.249472 + 1.41483i
\(377\) −0.0643510 1.84277i −0.00331424 0.0949075i
\(378\) 0.0722936 + 0.289954i 0.00371838 + 0.0149136i
\(379\) −14.3802 10.4478i −0.738660 0.536668i 0.153631 0.988128i \(-0.450903\pi\)
−0.892291 + 0.451460i \(0.850903\pi\)
\(380\) 8.46163 + 8.87598i 0.434072 + 0.455328i
\(381\) 0.118986 0.0864486i 0.00609586 0.00442890i
\(382\) −1.77464 1.48910i −0.0907985 0.0761890i
\(383\) 9.21530 13.6622i 0.470880 0.698108i −0.516534 0.856267i \(-0.672778\pi\)
0.987414 + 0.158159i \(0.0505557\pi\)
\(384\) 0.130289 0.0692757i 0.00664876 0.00353521i
\(385\) −17.5942 + 29.8387i −0.896685 + 1.52072i
\(386\) −6.76247 + 8.65557i −0.344201 + 0.440557i
\(387\) 5.81705 6.46049i 0.295697 0.328405i
\(388\) −10.5744 2.24766i −0.536834 0.114108i
\(389\) 9.84588 + 24.3694i 0.499206 + 1.23558i 0.940983 + 0.338453i \(0.109904\pi\)
−0.441777 + 0.897125i \(0.645652\pi\)
\(390\) 0.00358354 + 0.139221i 0.000181459 + 0.00704973i
\(391\) −15.5536 3.30602i −0.786578 0.167192i
\(392\) 3.26806 + 1.45503i 0.165062 + 0.0734902i
\(393\) 0.0346473 + 0.0126106i 0.00174773 + 0.000636120i
\(394\) −5.20505 10.6719i −0.262226 0.537644i
\(395\) 13.1320 + 7.13769i 0.660744 + 0.359136i
\(396\) −19.5367 5.60205i −0.981755 0.281514i
\(397\) 1.53156 + 6.14275i 0.0768667 + 0.308296i 0.996406 0.0847017i \(-0.0269937\pi\)
−0.919540 + 0.392997i \(0.871438\pi\)
\(398\) −2.99872 + 9.22912i −0.150312 + 0.462614i
\(399\) 0.250618 0.0270333i 0.0125466 0.00135336i
\(400\) −0.111250 0.483845i −0.00556251 0.0241922i
\(401\) 29.4324 + 24.6967i 1.46978 + 1.23329i 0.916337 + 0.400408i \(0.131132\pi\)
0.553445 + 0.832886i \(0.313313\pi\)
\(402\) 0.00308621 + 0.0883776i 0.000153926 + 0.00440787i
\(403\) 8.76818 17.9774i 0.436774 0.895519i
\(404\) 12.9695 12.5245i 0.645256 0.623116i
\(405\) 4.68738 + 19.5628i 0.232918 + 0.972081i
\(406\) −1.16027 0.516586i −0.0575833 0.0256378i
\(407\) −12.2490 + 21.2159i −0.607160 + 1.05163i
\(408\) 0.0717417 0.287740i 0.00355174 0.0142453i
\(409\) −29.4328 18.3916i −1.45536 0.909407i −0.999816 0.0191922i \(-0.993891\pi\)
−0.455540 0.890215i \(-0.650554\pi\)
\(410\) −1.80945 1.15388i −0.0893626 0.0569863i
\(411\) −0.121491 + 0.0258237i −0.00599270 + 0.00127379i
\(412\) 0.388964 11.1385i 0.0191629 0.548753i
\(413\) −27.4291 + 3.85491i −1.34970 + 0.189688i
\(414\) 7.73922 + 1.08768i 0.380362 + 0.0534564i
\(415\) 29.4025 + 21.7770i 1.44331 + 1.06899i
\(416\) −7.67785 + 19.0033i −0.376437 + 0.931715i
\(417\) −0.0411661 + 0.0299089i −0.00201591 + 0.00146465i
\(418\) 8.17299 18.4926i 0.399754 0.904502i
\(419\) −19.1294 + 13.8984i −0.934534 + 0.678979i −0.947099 0.320942i \(-0.896001\pi\)
0.0125644 + 0.999921i \(0.496001\pi\)
\(420\) −0.148014 0.0675338i −0.00722237 0.00329531i
\(421\) 37.9075 + 10.8698i 1.84750 + 0.529761i 0.999999 0.00103740i \(-0.000330215\pi\)
0.847498 + 0.530799i \(0.178108\pi\)
\(422\) 7.43596 15.2460i 0.361977 0.742162i
\(423\) 26.2915 + 13.9794i 1.27834 + 0.679704i
\(424\) −1.62792 0.592514i −0.0790587 0.0287750i
\(425\) −22.9759 12.7626i −1.11450 0.619075i
\(426\) 0.119896 0.207666i 0.00580897 0.0100614i
\(427\) 0.676966 + 1.67555i 0.0327607 + 0.0810855i
\(428\) 14.8522 1.03857i 0.717910 0.0502011i
\(429\) −0.355754 + 0.158392i −0.0171759 + 0.00764722i
\(430\) −0.918797 5.50559i −0.0443083 0.265503i
\(431\) 22.1815 6.36044i 1.06845 0.306372i 0.305072 0.952329i \(-0.401319\pi\)
0.763373 + 0.645958i \(0.223542\pi\)
\(432\) 0.00207962 0.0117941i 0.000100056 0.000567446i
\(433\) 26.7579 + 25.8398i 1.28590 + 1.24178i 0.954472 + 0.298300i \(0.0964195\pi\)
0.331429 + 0.943480i \(0.392469\pi\)
\(434\) −8.48209 10.8566i −0.407153 0.521132i
\(435\) 0.0209646 + 0.00956541i 0.00100518 + 0.000458626i
\(436\) 7.16554 22.0533i 0.343167 1.05616i
\(437\) 3.59985 12.6848i 0.172204 0.606797i
\(438\) 0.0410242 + 0.126259i 0.00196021 + 0.00603291i
\(439\) 6.81631 4.25930i 0.325325 0.203285i −0.357418 0.933945i \(-0.616343\pi\)
0.682742 + 0.730659i \(0.260787\pi\)
\(440\) −27.5199 + 19.6112i −1.31196 + 0.934929i
\(441\) 3.37621 1.79516i 0.160772 0.0854840i
\(442\) 7.13895 + 14.6370i 0.339565 + 0.696212i
\(443\) −25.2230 9.18041i −1.19838 0.436174i −0.335721 0.941962i \(-0.608980\pi\)
−0.862658 + 0.505787i \(0.831202\pi\)
\(444\) −0.105113 0.0467994i −0.00498845 0.00222100i
\(445\) 13.6695 11.2581i 0.647998 0.533683i
\(446\) −16.5193 + 1.15514i −0.782211 + 0.0546975i
\(447\) 0.137920 0.00964431i 0.00652340 0.000456160i
\(448\) 9.06420 + 10.0668i 0.428243 + 0.475612i
\(449\) −17.8970 30.9985i −0.844611 1.46291i −0.885959 0.463764i \(-0.846498\pi\)
0.0413477 0.999145i \(-0.486835\pi\)
\(450\) 11.7026 + 5.46972i 0.551666 + 0.257845i
\(451\) 1.04204 5.90968i 0.0490675 0.278276i
\(452\) 19.8320 + 2.78720i 0.932818 + 0.131099i
\(453\) 0.302033 + 0.0866066i 0.0141908 + 0.00406913i
\(454\) 3.89289 + 15.6135i 0.182702 + 0.732779i
\(455\) 22.2980 6.17308i 1.04535 0.289399i
\(456\) 0.234080 + 0.0753510i 0.0109618 + 0.00352863i
\(457\) 3.18149 0.148824 0.0744120 0.997228i \(-0.476292\pi\)
0.0744120 + 0.997228i \(0.476292\pi\)
\(458\) 16.5494 + 1.15725i 0.773304 + 0.0540747i
\(459\) −0.390331 0.499601i −0.0182191 0.0233194i
\(460\) −6.17582 + 5.85540i −0.287949 + 0.273009i
\(461\) −18.4745 9.82307i −0.860443 0.457506i −0.0202513 0.999795i \(-0.506447\pi\)
−0.840192 + 0.542289i \(0.817558\pi\)
\(462\) −0.00936121 + 0.268070i −0.000435523 + 0.0124717i
\(463\) 17.6698 19.6243i 0.821184 0.912017i −0.176197 0.984355i \(-0.556379\pi\)
0.997380 + 0.0723382i \(0.0230461\pi\)
\(464\) 0.0340589 + 0.0378262i 0.00158115 + 0.00175604i
\(465\) 0.152082 + 0.198380i 0.00705264 + 0.00919966i
\(466\) −11.6338 7.26963i −0.538927 0.336759i
\(467\) −0.325128 3.09339i −0.0150451 0.143145i 0.984421 0.175830i \(-0.0562609\pi\)
−0.999466 + 0.0326850i \(0.989594\pi\)
\(468\) 6.78747 + 11.7563i 0.313751 + 0.543433i
\(469\) 14.1222 4.04947i 0.652101 0.186987i
\(470\) 17.5364 7.61574i 0.808892 0.351288i
\(471\) −0.0180353 + 0.0369778i −0.000831021 + 0.00170385i
\(472\) −25.9746 7.44811i −1.19558 0.342827i
\(473\) 13.2361 8.27082i 0.608596 0.380293i
\(474\) 0.115739 0.00531605
\(475\) 11.8365 18.3002i 0.543095 0.839671i
\(476\) −19.0245 −0.871987
\(477\) −1.57037 + 0.981278i −0.0719025 + 0.0449296i
\(478\) −11.2986 3.23981i −0.516784 0.148185i
\(479\) 7.97367 16.3485i 0.364326 0.746980i −0.635355 0.772220i \(-0.719146\pi\)
0.999681 + 0.0252403i \(0.00803508\pi\)
\(480\) −0.169639 0.191914i −0.00774293 0.00875965i
\(481\) 15.7290 4.51022i 0.717180 0.205648i
\(482\) 10.8814 + 18.8472i 0.495636 + 0.858467i
\(483\) 0.0182856 + 0.173976i 0.000832024 + 0.00791618i
\(484\) −19.2072 12.0020i −0.873057 0.545546i
\(485\) 0.494383 + 19.2069i 0.0224488 + 0.872139i
\(486\) 0.312767 + 0.347363i 0.0141874 + 0.0157567i
\(487\) 4.41103 4.89894i 0.199883 0.221992i −0.634867 0.772621i \(-0.718945\pi\)
0.834750 + 0.550629i \(0.185612\pi\)
\(488\) −0.0615261 + 1.76188i −0.00278516 + 0.0797565i
\(489\) 0.00943613 + 0.00501728i 0.000426716 + 0.000226889i
\(490\) 0.448485 2.41380i 0.0202605 0.109045i
\(491\) −8.96488 11.4745i −0.404580 0.517838i 0.541969 0.840398i \(-0.317679\pi\)
−0.946549 + 0.322560i \(0.895457\pi\)
\(492\) 0.0281157 + 0.00196604i 0.00126756 + 8.86361e-5i
\(493\) 2.69461 0.121359
\(494\) −12.5071 + 5.09296i −0.562719 + 0.229143i
\(495\) −1.59165 + 36.0858i −0.0715395 + 1.62193i
\(496\) 0.133575 + 0.535741i 0.00599771 + 0.0240555i
\(497\) −38.2938 10.9806i −1.71771 0.492547i
\(498\) 0.280570 + 0.0394315i 0.0125726 + 0.00176697i
\(499\) −4.20784 + 23.8638i −0.188369 + 1.06829i 0.733182 + 0.680033i \(0.238034\pi\)
−0.921550 + 0.388259i \(0.873077\pi\)
\(500\) −12.5971 + 6.25968i −0.563361 + 0.279941i
\(501\) 0.0480837 + 0.0832835i 0.00214822 + 0.00372083i
\(502\) 13.9602 + 15.5044i 0.623076 + 0.691996i
\(503\) −35.6535 + 2.49314i −1.58971 + 0.111164i −0.837006 0.547193i \(-0.815696\pi\)
−0.752706 + 0.658357i \(0.771252\pi\)
\(504\) 24.1551 1.68909i 1.07595 0.0752380i
\(505\) −27.0174 17.2289i −1.20226 0.766676i
\(506\) 12.8180 + 5.70696i 0.569832 + 0.253705i
\(507\) −0.00116510 0.000424062i −5.17440e−5 1.88333e-5i
\(508\) −4.03504 8.27306i −0.179026 0.367058i
\(509\) −31.7815 + 16.8985i −1.40869 + 0.749015i −0.987450 0.157934i \(-0.949517\pi\)
−0.421242 + 0.906948i \(0.638406\pi\)
\(510\) −0.203512 0.00186674i −0.00901167 8.26606e-5i
\(511\) 18.7039 11.6875i 0.827410 0.517023i
\(512\) −0.347047 1.06810i −0.0153375 0.0472039i
\(513\) 0.435051 0.295178i 0.0192080 0.0130324i
\(514\) −4.45538 + 13.7123i −0.196519 + 0.604822i
\(515\) −19.4120 + 3.94041i −0.855396 + 0.173635i
\(516\) 0.0451313 + 0.0577654i 0.00198679 + 0.00254298i
\(517\) 38.4558 + 37.1364i 1.69129 + 1.63326i
\(518\) 1.95715 11.0995i 0.0859920 0.487685i
\(519\) 0.0658290 0.0188762i 0.00288957 0.000828571i
\(520\) 22.3216 + 3.34616i 0.978868 + 0.146739i
\(521\) 14.3473 6.38781i 0.628565 0.279855i −0.0676271 0.997711i \(-0.521543\pi\)
0.696192 + 0.717855i \(0.254876\pi\)
\(522\) −1.32116 + 0.0923845i −0.0578256 + 0.00404356i
\(523\) 2.35143 + 5.82000i 0.102821 + 0.254491i 0.969821 0.243817i \(-0.0783995\pi\)
−0.867000 + 0.498307i \(0.833955\pi\)
\(524\) 1.15377 1.99839i 0.0504028 0.0873002i
\(525\) −0.0554248 + 0.283785i −0.00241893 + 0.0123854i
\(526\) 16.8832 + 6.14498i 0.736143 + 0.267934i
\(527\) 25.8085 + 13.7226i 1.12423 + 0.597766i
\(528\) 0.00471243 0.00966191i 0.000205082 0.000420481i
\(529\) −13.3128 3.81739i −0.578818 0.165973i
\(530\) −0.135118 + 1.18124i −0.00586916 + 0.0513096i
\(531\) −23.3669 + 16.9770i −1.01404 + 0.736741i
\(532\) 1.05748 15.7403i 0.0458475 0.682429i
\(533\) −3.24264 + 2.35592i −0.140454 + 0.102046i
\(534\) 0.0513692 0.127143i 0.00222296 0.00550203i
\(535\) −7.94560 25.2394i −0.343518 1.09120i
\(536\) 14.1926 + 1.99464i 0.613027 + 0.0861553i
\(537\) −0.283645 + 0.0398638i −0.0122402 + 0.00172025i
\(538\) −0.0152330 + 0.436215i −0.000656740 + 0.0188066i
\(539\) 6.71501 1.42732i 0.289236 0.0614790i
\(540\) −0.338699 + 0.0205642i −0.0145753 + 0.000884943i
\(541\) 34.6913 + 21.6775i 1.49149 + 0.931989i 0.998064 + 0.0622032i \(0.0198127\pi\)
0.493430 + 0.869785i \(0.335743\pi\)
\(542\) −0.837420 + 3.35871i −0.0359703 + 0.144269i
\(543\) −0.0703884 + 0.121916i −0.00302066 + 0.00523193i
\(544\) −27.3624 12.1825i −1.17315 0.522321i
\(545\) −41.0827 3.25170i −1.75979 0.139288i
\(546\) 0.128877 0.124455i 0.00551543 0.00532619i
\(547\) 12.4847 25.5973i 0.533805 1.09446i −0.446097 0.894985i \(-0.647186\pi\)
0.979902 0.199478i \(-0.0639247\pi\)
\(548\) 0.271284 + 7.76857i 0.0115887 + 0.331857i
\(549\) 1.44354 + 1.21128i 0.0616089 + 0.0516960i
\(550\) 17.4895 + 15.2308i 0.745755 + 0.649443i
\(551\) −0.149780 + 2.22944i −0.00638085 + 0.0949774i
\(552\) −0.0527359 + 0.162305i −0.00224459 + 0.00690814i
\(553\) −4.65164 18.6567i −0.197808 0.793365i
\(554\) −3.94051 1.12992i −0.167416 0.0480058i
\(555\) −0.0373552 + 0.201051i −0.00158564 + 0.00853413i
\(556\) 1.39602 + 2.86225i 0.0592042 + 0.121387i
\(557\) 9.53142 + 3.46915i 0.403859 + 0.146993i 0.535960 0.844244i \(-0.319950\pi\)
−0.132100 + 0.991236i \(0.542172\pi\)
\(558\) −13.1243 5.84331i −0.555595 0.247367i
\(559\) −10.1970 2.16744i −0.431287 0.0916729i
\(560\) −0.361989 + 0.526195i −0.0152968 + 0.0222358i
\(561\) −0.213184 0.527649i −0.00900063 0.0222773i
\(562\) −8.75757 1.86148i −0.369416 0.0785217i
\(563\) −28.0542 + 31.1573i −1.18234 + 1.31313i −0.243048 + 0.970014i \(0.578147\pi\)
−0.939295 + 0.343111i \(0.888519\pi\)
\(564\) −0.154585 + 0.197859i −0.00650919 + 0.00833138i
\(565\) −3.39563 35.4304i −0.142855 1.49057i
\(566\) 4.28254 2.27707i 0.180009 0.0957123i
\(567\) 14.4713 21.4545i 0.607736 0.901006i
\(568\) −29.7708 24.9807i −1.24916 1.04817i
\(569\) 31.1258 22.6142i 1.30486 0.948038i 0.304872 0.952393i \(-0.401386\pi\)
0.999991 + 0.00435483i \(0.00138619\pi\)
\(570\) 0.0128567 0.168276i 0.000538509 0.00704831i
\(571\) 26.3138 + 19.1181i 1.10120 + 0.800067i 0.981255 0.192713i \(-0.0617287\pi\)
0.119943 + 0.992781i \(0.461729\pi\)
\(572\) 5.89604 + 23.6477i 0.246526 + 0.988762i
\(573\) −0.00188708 0.0540390i −7.88340e−5 0.00225751i
\(574\) 0.479408 + 2.71886i 0.0200101 + 0.113483i
\(575\) 12.6776 + 8.24900i 0.528692 + 0.344007i
\(576\) 13.2736 + 4.83120i 0.553067 + 0.201300i
\(577\) −15.5803 + 3.31170i −0.648617 + 0.137868i −0.520460 0.853886i \(-0.674239\pi\)
−0.128157 + 0.991754i \(0.540906\pi\)
\(578\) −8.36493 + 3.72431i −0.347935 + 0.154911i
\(579\) −0.255752 + 0.0178839i −0.0106287 + 0.000743231i
\(580\) 0.817388 1.18817i 0.0339402 0.0493361i
\(581\) −4.92013 46.8119i −0.204121 1.94208i
\(582\) 0.0743892 + 0.128846i 0.00308353 + 0.00534084i
\(583\) −3.19574 + 0.916364i −0.132354 + 0.0379519i
\(584\) 21.3065 2.99444i 0.881671 0.123911i
\(585\) 17.5078 16.5995i 0.723860 0.686305i
\(586\) 0.613192 + 17.5595i 0.0253307 + 0.725378i
\(587\) 3.89828 9.64858i 0.160899 0.398239i −0.825101 0.564986i \(-0.808882\pi\)
0.986000 + 0.166746i \(0.0533261\pi\)
\(588\) 0.00996371 + 0.0306651i 0.000410896 + 0.00126461i
\(589\) −12.7882 + 20.5904i −0.526930 + 0.848412i
\(590\) −0.817167 + 18.5267i −0.0336422 + 0.762732i
\(591\) 0.103818 0.256959i 0.00427051 0.0105699i
\(592\) −0.252583 + 0.374470i −0.0103811 + 0.0153906i
\(593\) −1.07216 6.08054i −0.0440285 0.249698i 0.954848 0.297096i \(-0.0960182\pi\)
−0.998876 + 0.0473981i \(0.984907\pi\)
\(594\) 0.245244 + 0.502825i 0.0100625 + 0.0206312i
\(595\) 7.87844 + 32.8806i 0.322984 + 1.34797i
\(596\) 0.904457 8.60533i 0.0370480 0.352488i
\(597\) −0.206919 + 0.0921261i −0.00846862 + 0.00377047i
\(598\) −3.51072 8.68934i −0.143564 0.355333i
\(599\) −4.46357 + 3.74538i −0.182377 + 0.153032i −0.729406 0.684082i \(-0.760203\pi\)
0.547029 + 0.837114i \(0.315759\pi\)
\(600\) −0.161998 + 0.230919i −0.00661356 + 0.00942725i
\(601\) 6.82835 + 11.8270i 0.278534 + 0.482435i 0.971021 0.238996i \(-0.0768182\pi\)
−0.692487 + 0.721431i \(0.743485\pi\)
\(602\) −4.42083 + 5.65840i −0.180179 + 0.230619i
\(603\) 11.0199 10.6418i 0.448766 0.433368i
\(604\) 8.62028 17.6742i 0.350754 0.719153i
\(605\) −12.7893 + 38.1667i −0.519960 + 1.55170i
\(606\) −0.247524 0.0173086i −0.0100550 0.000703113i
\(607\) −25.2435 −1.02460 −0.512301 0.858806i \(-0.671207\pi\)
−0.512301 + 0.858806i \(0.671207\pi\)
\(608\) 11.6004 21.9617i 0.470458 0.890663i
\(609\) −0.00916067 0.0281937i −0.000371209 0.00114246i
\(610\) 1.18573 0.240689i 0.0480087 0.00974520i
\(611\) −1.24617 35.6855i −0.0504145 1.44368i
\(612\) −17.5159 + 9.31338i −0.708039 + 0.376471i
\(613\) −3.09683 + 0.435231i −0.125080 + 0.0175788i −0.201435 0.979502i \(-0.564561\pi\)
0.0763554 + 0.997081i \(0.475672\pi\)
\(614\) −11.5610 + 14.7974i −0.466563 + 0.597173i
\(615\) −0.00824533 0.0494074i −0.000332484 0.00199230i
\(616\) 42.5226 + 9.03846i 1.71328 + 0.364170i
\(617\) 6.57815 26.3835i 0.264826 1.06216i −0.679638 0.733547i \(-0.737863\pi\)
0.944465 0.328613i \(-0.106581\pi\)
\(618\) −0.117499 + 0.0985930i −0.00472649 + 0.00396599i
\(619\) −1.69725 16.1483i −0.0682182 0.649053i −0.974192 0.225720i \(-0.927527\pi\)
0.905974 0.423333i \(-0.139140\pi\)
\(620\) 13.8797 7.21744i 0.557421 0.289859i
\(621\) 0.204024 + 0.302478i 0.00818719 + 0.0121380i
\(622\) −18.2139 + 17.5889i −0.730309 + 0.705251i
\(623\) −22.5597 3.17056i −0.903836 0.127026i
\(624\) −0.00674711 + 0.00245575i −0.000270100 + 9.83085e-5i
\(625\) 16.0355 + 19.1797i 0.641421 + 0.767189i
\(626\) 7.08389 0.283129
\(627\) 0.448411 0.147053i 0.0179078 0.00587272i
\(628\) 2.08307 + 1.51344i 0.0831237 + 0.0603929i
\(629\) 5.78488 + 23.2019i 0.230658 + 0.925120i
\(630\) −4.99008 15.8512i −0.198810 0.631525i
\(631\) 20.7790 + 20.0660i 0.827197 + 0.798815i 0.981950 0.189138i \(-0.0605694\pi\)
−0.154753 + 0.987953i \(0.549458\pi\)
\(632\) 3.25725 18.4728i 0.129566 0.734807i
\(633\) 0.380585 0.109131i 0.0151269 0.00433757i
\(634\) −13.8635 + 15.3969i −0.550589 + 0.611491i
\(635\) −12.6276 + 10.3999i −0.501110 + 0.412708i
\(636\) −0.00584927 0.0144775i −0.000231939 0.000574068i
\(637\) −3.88858 2.42986i −0.154071 0.0962745i
\(638\) −2.32577 0.494357i −0.0920780 0.0195718i
\(639\) −40.6328 + 8.63676i −1.60741 + 0.341665i
\(640\) −13.9982 + 8.56950i −0.553326 + 0.338739i
\(641\) −31.0617 + 4.36543i −1.22686 + 0.172424i −0.722686 0.691177i \(-0.757093\pi\)
−0.504176 + 0.863601i \(0.668204\pi\)
\(642\) −0.147392 0.142335i −0.00581709 0.00561750i
\(643\) 30.1976 10.9910i 1.19088 0.433444i 0.330846 0.943685i \(-0.392666\pi\)
0.860032 + 0.510241i \(0.170444\pi\)
\(644\) 10.9215 + 0.763706i 0.430367 + 0.0300942i
\(645\) 0.0811478 0.101923i 0.00319519 0.00401323i
\(646\) −6.80029 18.5260i −0.267554 0.728897i
\(647\) −32.1929 23.3895i −1.26564 0.919538i −0.266616 0.963803i \(-0.585905\pi\)
−0.999020 + 0.0442651i \(0.985905\pi\)
\(648\) 21.4099 13.3784i 0.841060 0.525553i
\(649\) −48.7278 + 17.7355i −1.91273 + 0.696177i
\(650\) −1.33632 15.4327i −0.0524149 0.605320i
\(651\) 0.0558401 0.316685i 0.00218855 0.0124119i
\(652\) 0.411782 0.527057i 0.0161266 0.0206411i
\(653\) −2.36060 + 22.4596i −0.0923774 + 0.878913i 0.845973 + 0.533226i \(0.179021\pi\)
−0.938350 + 0.345686i \(0.887646\pi\)
\(654\) −0.291531 + 0.129798i −0.0113998 + 0.00507550i
\(655\) −3.93168 1.16652i −0.153624 0.0455799i
\(656\) 0.0267670 0.107357i 0.00104508 0.00419157i
\(657\) 11.4992 19.9171i 0.448625 0.777041i
\(658\) −22.4688 10.0038i −0.875927 0.389988i
\(659\) 0.0503530 1.44192i 0.00196147 0.0561693i −0.998015 0.0629704i \(-0.979943\pi\)
0.999977 + 0.00680107i \(0.00216487\pi\)
\(660\) −0.297331 0.0660557i −0.0115736 0.00257122i
\(661\) 11.2537 + 1.58161i 0.437719 + 0.0615174i 0.354591 0.935021i \(-0.384620\pi\)
0.0831280 + 0.996539i \(0.473509\pi\)
\(662\) −4.18462 5.35606i −0.162640 0.208169i
\(663\) −0.142391 + 0.352431i −0.00553002 + 0.0136873i
\(664\) 14.1897 43.6714i 0.550667 1.69478i
\(665\) −27.6424 + 4.69071i −1.07192 + 0.181898i
\(666\) −3.63178 11.1775i −0.140729 0.433119i
\(667\) −1.54691 0.108170i −0.0598966 0.00418838i
\(668\) 5.65562 2.05848i 0.218823 0.0796449i
\(669\) −0.278035 0.268496i −0.0107495 0.0103806i
\(670\) −0.938382 9.79121i −0.0362528 0.378267i
\(671\) 1.89184 + 2.80477i 0.0730338 + 0.108277i
\(672\) −0.0344435 + 0.327708i −0.00132869 + 0.0126416i
\(673\) 12.4187 + 13.7924i 0.478705 + 0.531656i 0.933327 0.359029i \(-0.116892\pi\)
−0.454621 + 0.890685i \(0.650225\pi\)
\(674\) 11.9250 10.0062i 0.459333 0.385426i
\(675\) 0.175804 + 0.576868i 0.00676670 + 0.0222037i
\(676\) −0.0387985 + 0.0672009i −0.00149225 + 0.00258465i
\(677\) −14.4606 + 3.07369i −0.555766 + 0.118132i −0.477228 0.878780i \(-0.658358\pi\)
−0.0785376 + 0.996911i \(0.525025\pi\)
\(678\) −0.154122 0.228495i −0.00591900 0.00877528i
\(679\) 17.7798 17.1698i 0.682327 0.658916i
\(680\) −6.02542 + 32.4296i −0.231064 + 1.24362i
\(681\) −0.210026 + 0.311377i −0.00804822 + 0.0119320i
\(682\) −19.7582 16.5791i −0.756580 0.634846i
\(683\) −25.0921 + 18.2305i −0.960121 + 0.697569i −0.953179 0.302407i \(-0.902210\pi\)
−0.00694251 + 0.999976i \(0.502210\pi\)
\(684\) −6.73199 15.0098i −0.257404 0.573916i
\(685\) 13.3143 3.68599i 0.508713 0.140834i
\(686\) 12.0295 7.51684i 0.459287 0.286994i
\(687\) 0.238396 + 0.305134i 0.00909539 + 0.0116416i
\(688\) 0.254089 0.135102i 0.00968707 0.00515071i
\(689\) 1.96062 + 1.04248i 0.0746937 + 0.0397154i
\(690\) 0.116756 + 0.00924129i 0.00444484 + 0.000351810i
\(691\) 17.8140 19.7844i 0.677676 0.752635i −0.301981 0.953314i \(-0.597648\pi\)
0.979657 + 0.200679i \(0.0643147\pi\)
\(692\) −0.447998 4.26242i −0.0170303 0.162033i
\(693\) 35.5963 29.8688i 1.35219 1.13462i
\(694\) −5.14386 + 20.6309i −0.195258 + 0.783138i
\(695\) 4.36880 3.59809i 0.165718 0.136483i
\(696\) 0.00302294 0.0287613i 0.000114584 0.00109019i
\(697\) −3.27539 4.85596i −0.124064 0.183933i
\(698\) 8.07509 + 4.29360i 0.305647 + 0.162515i
\(699\) −0.0556017 0.315333i −0.00210305 0.0119270i
\(700\) 16.8884 + 6.50011i 0.638320 + 0.245681i
\(701\) −12.6120 10.5827i −0.476349 0.399704i 0.372755 0.927930i \(-0.378413\pi\)
−0.849104 + 0.528226i \(0.822858\pi\)
\(702\) 0.115470 0.355379i 0.00435812 0.0134129i
\(703\) −19.5181 + 3.49656i −0.736139 + 0.131875i
\(704\) 20.5167 + 14.9063i 0.773254 + 0.561802i
\(705\) 0.405983 + 0.185236i 0.0152902 + 0.00697638i
\(706\) 3.04241 4.51055i 0.114502 0.169757i
\(707\) 7.15814 + 40.5958i 0.269210 + 1.52676i
\(708\) −0.106765 0.218901i −0.00401247 0.00822679i
\(709\) 1.31022 37.5197i 0.0492062 1.40908i −0.684202 0.729292i \(-0.739849\pi\)
0.733408 0.679788i \(-0.237928\pi\)
\(710\) −11.9114 + 23.8640i −0.447029 + 0.895601i
\(711\) −13.4161 14.9001i −0.503144 0.558798i
\(712\) −18.8474 11.7771i −0.706335 0.441367i
\(713\) −14.2651 8.91384i −0.534233 0.333826i
\(714\) 0.175191 + 0.194570i 0.00655637 + 0.00728159i
\(715\) 38.4294 19.9833i 1.43718 0.747334i
\(716\) −0.625617 + 17.9153i −0.0233804 + 0.669527i
\(717\) −0.120265 0.246579i −0.00449137 0.00920867i
\(718\) −1.57751 8.94651i −0.0588722 0.333881i
\(719\) 22.7525 33.7320i 0.848527 1.25799i −0.115799 0.993273i \(-0.536943\pi\)
0.964325 0.264720i \(-0.0852794\pi\)
\(720\) −0.0756876 + 0.661680i −0.00282071 + 0.0246593i
\(721\) 20.6153 + 14.9779i 0.767754 + 0.557806i
\(722\) 15.7059 4.59658i 0.584513 0.171067i
\(723\) −0.156969 + 0.483101i −0.00583775 + 0.0179667i
\(724\) 6.74919 + 5.66324i 0.250832 + 0.210473i
\(725\) −2.39205 0.920669i −0.0888384 0.0341928i
\(726\) 0.0541256 + 0.306962i 0.00200879 + 0.0113924i
\(727\) −35.5370 18.8953i −1.31799 0.700790i −0.346544 0.938034i \(-0.612645\pi\)
−0.971450 + 0.237244i \(0.923756\pi\)
\(728\) −16.2370 24.0724i −0.601783 0.892181i
\(729\) 2.81999 26.8304i 0.104444 0.993718i
\(730\) −5.40575 13.7413i −0.200076 0.508587i
\(731\) 3.68556 14.7820i 0.136315 0.546731i
\(732\) −0.0121723 + 0.0102138i −0.000449902 + 0.000377513i
\(733\) 4.29164 + 40.8323i 0.158515 + 1.50817i 0.727661 + 0.685937i \(0.240607\pi\)
−0.569146 + 0.822237i \(0.692726\pi\)
\(734\) 13.7366 15.2560i 0.507026 0.563109i
\(735\) 0.0488733 0.0299196i 0.00180272 0.00110360i
\(736\) 15.2190 + 8.09210i 0.560981 + 0.298279i
\(737\) 24.2844 12.9122i 0.894526 0.475628i
\(738\) 1.77240 + 2.26857i 0.0652429 + 0.0835071i
\(739\) −25.0060 + 15.6255i −0.919862 + 0.574794i −0.905147 0.425098i \(-0.860240\pi\)
−0.0147147 + 0.999892i \(0.504684\pi\)
\(740\) 11.9855 + 4.48729i 0.440597 + 0.164956i
\(741\) −0.283676 0.137400i −0.0104211 0.00504752i
\(742\) 1.23740 0.899024i 0.0454264 0.0330042i
\(743\) −2.57376 2.15964i −0.0944221 0.0792296i 0.594355 0.804203i \(-0.297408\pi\)
−0.688777 + 0.724973i \(0.741852\pi\)
\(744\) 0.175423 0.260076i 0.00643133 0.00953484i
\(745\) −15.2474 + 2.00044i −0.558621 + 0.0732906i
\(746\) −3.92740 + 3.79265i −0.143792 + 0.138859i
\(747\) −27.4466 40.6912i −1.00422 1.48881i
\(748\) −34.8377 + 7.40499i −1.27379 + 0.270753i
\(749\) −17.0201 + 29.4797i −0.621901 + 1.07716i
\(750\) 0.180023 + 0.0711912i 0.00657352 + 0.00259954i
\(751\) 16.1911 13.5860i 0.590823 0.495760i −0.297658 0.954673i \(-0.596205\pi\)
0.888481 + 0.458913i \(0.151761\pi\)
\(752\) 0.659556 + 0.732511i 0.0240515 + 0.0267119i
\(753\) −0.0509017 + 0.484297i −0.00185496 + 0.0176488i
\(754\) 0.888081 + 1.31663i 0.0323420 + 0.0479490i
\(755\) −34.1167 7.57944i −1.24163 0.275844i
\(756\) 0.314008 + 0.303234i 0.0114204 + 0.0110285i
\(757\) 47.7055 17.3634i 1.73389 0.631083i 0.734990 0.678078i \(-0.237187\pi\)
0.998895 + 0.0469953i \(0.0149646\pi\)
\(758\) 15.2722 + 1.06794i 0.554712 + 0.0387892i
\(759\) 0.101202 + 0.311468i 0.00367340 + 0.0113056i
\(760\) −26.4964 6.78786i −0.961124 0.246221i
\(761\) −11.4184 + 35.1421i −0.413916 + 1.27390i 0.499302 + 0.866428i \(0.333590\pi\)
−0.913217 + 0.407473i \(0.866410\pi\)
\(762\) −0.0474536 + 0.117452i −0.00171906 + 0.00425483i
\(763\) 32.6400 + 41.7773i 1.18165 + 1.51244i
\(764\) −3.35113 0.470970i −0.121240 0.0170391i
\(765\) 23.3503 + 26.4164i 0.844232 + 0.955088i
\(766\) −0.495361 + 14.1853i −0.0178981 + 0.512535i
\(767\) 31.6410 + 14.0875i 1.14249 + 0.508669i
\(768\) −0.158217 + 0.274040i −0.00570916 + 0.00988855i
\(769\) −5.85521 + 23.4840i −0.211144 + 0.846853i 0.767459 + 0.641098i \(0.221521\pi\)
−0.978603